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Abstract

Zero-shot learning (ZSL) is an emerging research
topic whose goal is to build recognition models for
previously unseen classes. The basic idea of ZSL
is based on heterogeneous feature matching which
learns a compatibility function between image and
class features using seen classes. The function is
constructed based on one-vs-all training in which
each class has only one class feature and many
image features. Existing ZSL works mostly treat
all image features equivalently. However, in this
paper we argue that it is more reasonable to use
some representative cross-domain data instead of
all. Motivated by this idea, we propose a novel ap-
proach, termed as Landmark Selection(LAST) for
ZSL. LAST is able to identify representative cross-
domain features which further lead to better image-
class compatibility function. Experiments on sev-
eral ZSL datasets including ImageNet demonstrate
the superiority of LAST to the state-of-the-arts.

1 Introduction

When training a recognition model for a category, it is ex-
pected to have sufficient labeled samples for training in a
standard supervised learning way. However, this require-
ment is too demanding in many real-world applications, such
as Web image classification and fine-grained classification.
In these scenarios, there are a large number of classes, in
which some common ones have sufficient labeled examples
while most uncommon ones have only few or no labeled da-
ta, since the number of labeled samples follows a long-tail
distribution [Changpinyo et al., 2016]. To deal with this
challenge, zero-shot learning (ZSL) [Farhadi er al., 2009;
Lampert ef al., 2014] has been demonstrated to be a promis-
ing solution. ZSL learns a compatibility function between
image and class features by the data from seen classes. Then
this function is transferred to the unseen ones for prediction.

ZSL is currently a hot research topic attracting consid-
erable research interest. Many approaches have been pro-
posed yielding promising performance [Xian ef al., 2017].
Formally, most of representative approaches are formulat-
ed as a heterogeneous domain adaptation problem which
aligns the image feature space and class feature space, such
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Figure 1: The “polar bear” class has the attribute “water” in AWA
dataset, while not all images contain it. It is clearly unreasonable to
align all image features indiscriminately to the class attribute vector.

as the deep networks’ output [He er al., 2016] and the
class attributes [Lampert er al., 2014] or word2vec embed-
dings [Huang er al., 2012]. The alignment function, or the
compatibility function, is learned from the seen classes and
their labeled samples. By assuming the transferability of the
function between classes, one can apply it to unseen classes
even though they do not have labeled images for training.

How to learn the compatibility function is the key problem
in ZSL literatures [Xian et al., 2017]. Based on the proper-
ties of data, one-vs-all training is always utilized. In particu-
lar, each class has one class feature vector and many images.
Therefore, the class vector is combined with each of the im-
age vectors to compute the loss function, which indicates that
all images contribute equally to the training procedure.

It is necessary to raise a question: is every image equally
important for training? The answer has been given by many
literatures, including active learning [Aggarwal et al., 2014]
and hard example mining [Shrivastava et al., 2016], which
demonstrates that using the most representative and informa-
tive samples may leads to better performance. In the scenario
of ZSL, it is more reasonable to assign different weights to
different images. In fact, each class has only one feature vec-
tor, like the attribute vector. This vector usually indicates the
general characteristics of the class. On the other hand, differ-
ent images may show different characteristics of a class due
to the various occlusion, object size, orientation, and so on.
For example, a “polar bear” class has the attribute “water”.
However, this attribute does not appear in all “polar bear” im-
ages since some images are captured on the ground. In this
circumstance, it seems unreasonable to match a “non-water”
image to the “water” attribute. Moreover, due to the missing
attributes, the image-class pair yields large training loss. To
minimize the total loss, the model will try to fit these mis-
matching pairs, resulting a biased model from a good one.
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Here we show an illustration in Figure 1. The Animals with
Attributes (AwA) [Lampert ef al., 2014] uses an attribute vec-
tor for each class. The “polar bear” has the attribute “water”.
However, many “polar bear” images do not contain this at-
tribute. Obviously not all “polar bear” images are representa-
tive for the class, especially when described by only one at-
tribute vector. To learn a good compatibility function between
class features and image features in the one-vs-all setting, it
is necessary to find the most representative images which are
the most compatible with the class feature for model training.

Based on this motivation, in this paper we propose a nov-
el approach, Landmark Selection (LAST) for ZSL. Instead
of regarding all images equally important for compatibility
function learning, LAST exploits the representative images
which are then associated to the class features. We jointly
optimize the landmark selection and function learning from
a cold start, which turns out to be an effective strategy. In
addition, different from most existing ZSL approaches which
use sample-wise or class-wise matching, we further introduce
a global domain alignment term into the objective function,
which is inspired by domain adaptation [Pan and Yang, 2010;
Tsai et al., 2016]. Based on this global alignment term, the
model is capable of generalizing better for unseen classes and
images, which is desired for ZSL. Both global term and class-
specific conditional term are formulated into a joint optimiza-
tion function. It improves the performance of ZSL, especially
for large-scale benchmarks which have many classes. In sum-
mary, we make the following contributions in this paper.

1. We notice that it is unreasonable to assign the same
weight to all images during training a ZSL model in one-vs-
all strategy. To address this issue, we propose LAST which
finds representative images to match the class features. The
selected landmarks result in more effective ZSL models.

2. Inspired by domain adaptation, we further incorporate
a global alignment term into the objective function together
with the conditional term, making the model generalize bet-
ter, especially for large-scale benchmarks with many classes.

3. We carry out extensive experiments on several bench-
marks, including ImageNet [Russakovsky et al., 2015]. The
results demonstrate the effectiveness of LAST for (general-
ized) ZSL in comparison with the state-of-the-art approaches.

2 Preliminary and Related Work

2.1 Notations

Following the definition in [Xian et al., 20171, we describe
ZSL problem as follows. There are two disjoint class sets
Cs = {ci,...,ci }and Cy = {c},...,c} } withC; N C, = 0,
denoted as seen classes and unseen classes respectively. Each
image is represented by an image feature vector x € R? and
each class is represented by a label feature vector y € RY.
There is a training set Dy, = {(z;,¥;)};; where the each
class feature y; corresponds to a seen class from C;. A com-
patibility function F'(x,y; W) between image and class fea-
tures is trained based on the training set. Then, it is applied to
a test sample, which is from unseen classes C,, in the conven-
tional ZSL setting, or Cs U C,, in the generalized ZSL setting.
The classification is performed by selecting the class which
has the largest compatibility to the test sample by F'(z, y; W).
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2.2 Zero-shot Learning

The key component in ZSL is the compatibility function
F(z,y; W). Given an unseen class, we can use F' to compute
its relationship to any images even though no visual example
of this class is available for training. Most ZSL approaches
focus on the learning algorithm and the specific form for F'.

One widely used definition is the bilinear model
F(z,y; W) = aWy'. It has been used in Attribute Label
Embedding (ALE) [Akata et al., 2016], Deep Visual Seman-
tic Embedding (DEVISE) [Frome er al., 2013], Structured
Joint Embedding (SJE) [Akata er al., 2015], Embarrassing-
ly Simple ZSL (ESZSL) [Romera-Paredes and Torr, 2015],
and so on [Guo et al., 2016; Zhang and Saligrama, 2016]. To
train the model, different loss functions are utilized, includ-
ing ranking loss, triplet loss, Euclidean loss, cross-entropy
loss, and etc. Besides, some other compatibility functions are
equivalent to the bilinear function. For example, Euclidean
distance based function, like F'(x,y; W) = —|zW, — yl|2
or F(z,y; W) = —|la — yWy||2 [Kodirov er al., 2017]. La-
tent Embedding (LATEM) [Xian ef al., 2016] uses multiple
compatibility function with latent variables F'(z,y; W) =
maxi<;<x £W;y. Moreover, some approaches try to learn
image-specific feature transformation and/or class-specific
feature transformation to improve the non-linearity of the
function. Cross-modal Transfer (CMT) [Socher et al., 2013]
utilizes tanh(zW,,) for image feature transformation. Se-
mantic Similarity Embedding (SSE) [Zhang and Saligrama,
2015] uses sparse coding for image transformation and ReL.U
for class transformation. Implicit Non-linear Similarity Scor-
ing (ICINESS) [Guo et al., 2018] uses deep convolutional
networks for image transformation and multi-layer percep-
tron for class transformation. Discriminative Semantic Rep-
resentation Learning (DSRL) [Ye and Guo, 2017] uses sparse
non-negative matrix factorization and max-margin semantic
alignment for class transformation. Though they have differ-
ent details, they basically follow the bilinear model.

Besides, some ZSL approaches use other ideas. For ex-
ample, sample transfer [Guo er al., 2017b] and sample syn-
thesis [Guo et al., 2017a] focus on bring in pseudo exam-
ples for unseen classes. Direct/Indirect Attribute Prediction
(DAP/IAP) [Farhadi er al., 2009; Lampert et al., 2014] con-
sider to recognize the attributes from images and compare
them to the class attributes. Convex Semantic Embedding
(CONSE) [Norouzi et al., 2013] firstly compute the proba-
bility of an image belonging to a seen class. Then based
on the similarity between class features, the probability is
propagated to the unseen classes. Semantic Manifold Dis-
tance (SMD) [Fu et al., 2015] further utilizes a similarity
graph constructed from class features and hidden Markov
process to propagate the probability. Synthesized Classifier
(SYNC) [Changpinyo et al., 2016] and Shared Model Space
(SMS) [Guo et al., 2016] learn a mapping from class features
to the classifier parameter space. Semantics-Preserving Ad-
versarial Embedding Networks (SP-AEN) [Chen et al., 2018]
uses generative adversarial networks to construct visual ex-
amples for the unseen classes. Cycle-consistent Generalized
ZSL [Felix et al., 2018] considers to adopt multi-modal cycle-
consistent GAN to generate image representations.
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3 The Proposed Approach

3.1 Objective Function

In this paper, we regard ZSL as a domain adaptation problem,
which learns a transformation matrix W to align image fea-
ture x and class feature y. We base our approach on the ideas
of autoencoder [Kodirov er al., 2017] and cycle-GAN [Felix
et al., 2018]. The base objective function is:

ns

min z_; lziW = yill3 + Alzs — g W[5 + A WI[E (D)
We hope the compatibility matrix W can well align heteroge-
neous features such that our objective is to minimize the dis-
tortion of both image-to-class projection and class-to-image
projection. This function can be regarded as the base model.

Obviously, Eq. (1) is class aware and it connects image fea-
tures and class features belonging to the same class. There-
fore, we can regard Eq. (1) as minimizing the difference be-
tween the conditional distribution of image features and class
features. Inspired by the basic idea of domain adaptation [Pan
and Yang, 2010], we propose to further consider the marginal
distribution difference between image features and class fea-
tures. In fact, one goal of learning the compatibility matrix
W is to align the image feature space and class feature space.
Based on this motivation, we propose to further minimize the
maximum mean discrepancy (MMD) [Wang and Deng, 2018]
between the projected image features and the projected class
features as follows,
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If Eq. (1) is regarded as the class-specific alignment, Eq. (2)
can be regarded as the global alignment. By reviewing ex-
isting ZSL literatures, it is observed that Eq. (2) is always
ignored. In fact, ZSL focuses more on the unseen classes in-
stead of the seen ones. Therefore, when using seen classes
for training, the generalization ability of the model is an im-
portant issue. To improve the generalization ability, it seems
reasonable to consider the global alignment between hetero-
geneous feature spaces. In the experiments, we will show the
effectiveness of this term. By combining Eq. (1) and Eq. (2),
we obtain an objective function based on domain adaptation.

As discussed above, Eq. (1) and many other ZSL approach-
es adopt a one-vs-all strategy where each of the k; class fea-
tures is combined with all image features belonging to this
class. In this way, all images belonging to this class have the
same training weight. However, not all of them are represen-
tative for this class, as illustrated in Figure 1. To improve the
performance, it seems reasonable to identify the adaptation
ability of each image with a proper weight. These images are
the landmarks for adaptation which indicates that they are the
most representative to reflect the properties (attributes) of the
class like the class feature. As introduced, each class has only
one class feature, which shows the most general characteris-
tics of this class. Therefore, it is also desired that the selected
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images could contain general characteristics such that they
can be correctly aligned to the class feature. To do so, we
introduce a learnable non-negative weight p; for each image.
Taking the weight for each image into account, the objective
function of the proposed LAST is:

Ng Ns
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where the first two terms consider the conditional alignment,
the third and the fourth terms consider the marginal alignmen-
t, and the fifth term is a regularization to control the complex-
ity. The weight parameter p; indicates if x; a representative
image. A non-zero weight means that this image is selected
as a landmark. Theoretically, using 0-1 binary weight seems
more compatible with “landmark selection”. However, bina-
ry weight makes the optimization complicated. Therefore we
use continuous value in [0, 1] as soft selection. This value can
reflects the importance of an image and its contribution to the
alignment. The parameter 6 € [0, 1] determines the portion
of the selected landmarks. For example, we can set 6 = 0.5
to softly use half of images.

It is easy to observe the difference between LAST and pre-
vious ZSL approaches. Firstly, unlike the other approaches
regarding all images equally important, we propose to use
(soft) landmark selection to find the representative images for
cross-domain adaptation. Since each class has only one class
feature, it is more reasonable to use the representative images
instead of the ones with micro and specific characteristics.
Secondly, for domain adaptation, LAST not only considers
the conditional alignment like previous approaches, but it also
utilizes the marginal alignment between image feature space
and class feature space. This strategy is capable of aligning
two heterogeneous spaces from a global perspective, making
the model generalize better for previously unseen classes.

3.2 Optimization

Eq. (3) has two variables to optimize, the compatibility ma-
trix W and the selection weight p;. One simple strategy is
to use an iterative optimization algorithm which alternatively
updates one of them while keeping the other variable fixed.
Optimizing W. Denote Q = diag(p1, ..., ptin,)s 1t =
(1, -, fn, ] and fix . We can rewrite Eq. (3) as follows,

min|[(QX)W — QV[|% + AJQX — () W||%

1 1 )
+CV||6TLS(HX)W* kfseksYCHz 4)
1 1
+ Bl X — (e Y)W I3+ W
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where ey is a ks-long row vector whose all elements are 1,
X = [z15.52n,] € R™*PY = [y1;...;yn,] € R™=%9,
and Yo = [y';,,,;9%] € R*¥>*4 Now we need to take a
derivative of the loss function above with respect to W and
set it to zero to solve W, which leads to the problem below,

AW + WB =C (5)
where o
A = X/Q/QX —|— WX/M/MX + ')/

B = /\Y/Q/QY + %Yée;% €k, YC
a+p
ongks
Eq. (4) is a Sylvester equation which can be efficiently solved
by the Bartels-Stewart algorithm [Bartels and Stewart, 1972].
For example, it can be solved in MATLAB by a build-in func-
tion sylvester!. The complexity of the solver depends on the
dimensionality of features, and is independent of the number
of samples, making it feasible for large-scale datasets.
Optimizing p. By fixing W, we can rewrite Eq. (3) as

C=(1+N)X'QY +

X’,u'eksYc

min pFu' + pg (6)
1i€[0,1] e, =dns

where

B
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F=_% Xww'x'+ XX’

52n?
2(a+B)
ongks
ry = diag((XW = Y)(XW - Y)")
ry = diag((X —YW')(X —YW'))
Eq. (6) is a standard quadratic programming problem, which

can be solved efficiently and easily by many well-established
QP solvers, such as the quadprog? function in MATLAB.

g=ra+Ar, — XWYle),

3.3 Discussion

Since we use an iterative algorithm to solve Eq. (3), we need
to initialize variables at first. In this paper, we simply initial-
ize p; = ¢ and optimize W first. Since our goal is to find the
representative images for cross-domain alignment. At first,
no cross-domain alignment function is available, and thus we
have to initialize them with the same weight. In fact, be-
sides the self-initialization, we can also consider a warm-start
method by using other ZSL approaches to find the represen-
tative images and initialize u; accordingly.

As introduced above, the complexity of solving Eq. (4)
is irrelevant to n,. However, the QP solver for Eq. (6) has
polynomial complexity of ns. In this case, training a model
on a large-scale dataset, like ImageNet is quite challenging.
To address this issue, we propose a mini-batch based strategy.
For a dataset with ng training samples, we divide it into M
mini batches and each batch has n; /M samples. We use one
batch to solve Eq. (6) to obtain the weights for samples in
this batch and then we process each batch in the same way. In

Uhttps://uk.mathworks.com/help/matlab/ref/sylvester.html
“https://www.mathworks.com/help/optim/ug/quadprog.html
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Algorithm 1 Landmark Selection for ZSL

Input: Training set {z;,y;}.=,, parameter A, «, 3, , 0;
Output: The compatibility matrix W;
Initialize: p; = 6;
repeat
Update W by solving Eq. (4);
for one mini batch in training set do
Update p; for this batch by solving Eq. (6);
end for
until Convergence;
Return W;

this way, the complexity of solving Eq. (6) is reduced from
poly(ns) to ng X poly(b) where b the the size of a mini batch
which is much smaller than n,. This strategy turns out to be
effective and efficient in practice.

At test stage, given a test sample and a set of unseen class-
es, the compatibility function is defined as:

exp(—||laW — yl3
Frasr(z,y; W) = — p(—l yl3) _
Yoty eap(=llaW —y3)

exp(—|lz — yW'[3)
Fu -
ety eap(=lx — yeW'|[3)
which considers the embedding in image feature space and

class feature space like the training objective function, and
normalizes them for addition by a softmax-like operation.

)

4 Experiment

4.1 Setting

We use five widely used ZSL benchmark datasets for e-
valuation. The first dataset is Animals with Attributes2
(AwA?2) [Xian et al., 2017] which has 50 animal categories.
In AwAZ2, 40 categories are used as seen classes and the other
10 as unseen classes. The second dataset is aPascal-aYahoo
(aPY) [Farhadi ef al., 2009]. It has 20 classes from Pascal
VOC challenge like “person” and “dog” as the seen class-
es, and 12 related classes like “centaur” and “wolf” collected
from Yahoo search engine. The third dataset is SUN [Patter-
son and Hays, 2012] scene recognition dataset which has 717
different scenes of which 645 are used as seen classes and the
other 72 as unseen classes. The fourth dataset is CUB [Wah et
al.,2011] bird fine-grained recognition dataset with 200 kinds
of birds of which 150 are used as seen classes and the other 50
as unseen classes. The last dataset is ImageNet [Russakovsky
et al., 2015] which is a large-scale dataset with a large num-
ber of classes. The widely used 1, 000 classes with about 1.3
images are used as training set. There are another about 20k
classes with about 14 million images, which are utilized as
the test set. To comprehensively evaluate on ImageNet, we
consider different subset of the test set, including classes that
are 2-hops (denoted as 2H, 1,509 classes) and 3-hops (3H,
7,678 classes) away from the 1,000 seen classes, the most
popular 500 (M500), 1k (M1K), and 5k (M5k) classes, and
the least popular 500 (L500), 1k (L1K), and 5k (L5K) classes.
For each dataset, some seen class images are used for model
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AwA2 aPY SUN CUB Average

ACC [ H ACC [ H ACC [ H ACC [ H ACC [ H
DEVISE [Frome et al., 2013] 59.7 | 27.8 | 39.8 9.2 56.5 | 20.9 | 52.0 | 32.8 | 52.00 | 22.68
CMT [Socher et al., 2013] 37.9 | 159 | 28.0 | 19.0 | 39.9 | 13.3 | 34.6 8.7 | 35.10 | 14.23
SJE [Akata et al., 2015] 61.9 | 144 | 32.9 6.9 53.7 | 19.8 | 53.9 | 33.6 | 50.60 | 18.68
EZZSL [Romera-Paredes and Torr, 2015] 58.6 | 11.0 | 38.3 4.6 54.5 | 15.8 | 53.9 | 21.0 | 51.33 | 13.10
ALE [Akata et al., 2016] 62.5 | 23.9 | 39.7 | 87 | 58.1 | 26.3 | 54.9 | 34.4 | 53.80 | 23.33
SYNC [Changpinyo et al., 2016] 46.6 | 18.0 | 239 | 13.3 | 56.3 | 13.4 | 55.6 | 19.8 | 45.60 | 16.13
LATEM [Xian et al., 2016] 55.8 | 20.0 | 35.2 0.2 55.3 | 19.5 | 49.3 | 24.0 | 48.90 | 15.93
PSR [Annadani and Biswas, 2018] 63.8 | 32.3 | 384 | 21.4 | 61.4 | 26.7 | 56.0 | 33.9 | 54.90 | 28.58
ICINESS [Guo et al., 2018] 64.2 | 36.3 | 42.4 | 23.1 | 62.9 | 30.3 | 59.8 | 39.4 | 57.33 | 32.28
ZKL [Zhang and Koniusz, 2018] 70.5 | 30.8 | 45.3 | 20.5 | 61.7 | 25.1 | 57.1 | 35.1 | 58.65 | 27.88
LAST 71.0 | 384 | 47.2 | 26.7 | 64.7 | 33.2 | 62.8 | 41.9 | 61.43 | 35.05

Table 1: (Generalized) ZSL performance comparison on benchmarks. ZSL is evaluated by ACC and GZSL is evaluated by H.

Figure 2: The top-1, top-5, and top-10 accuracy on ImageNet.

2H 3H | M500 | M1k | M5k | L500 | L1k | L5k | ALL

CONSE [Norouzi et al., 2013] 7.63 | 2.18 | 12.33 | 831 | 3.22 | 3.53 | 2.69 | 1.05 | 0.95

CMT [Socher et al., 2013] 2.88 | 0.67 | 5.10 3.04 | 1.04 | 1.87 | 1.08 | 0.33 | 0.29

LATEM [Xian et al., 2016] 545 | 1.32 | 10.81 | 6.63 | 1.90 | 4.53 | 2.74 | 0.76 | 0.50

ALE [Akata et al., 2016] 5.38 | 1.32 | 10.40 | 6.77 | 2.00 | 4.27 | 2.85 | 0.79 | 0.50

DEVISE [Frome et al., 2013] 5.25 | 1.29 | 10.36 | 6.68 | 1.94 | 4.23 | 2.86 | 0.78 | 0.49

SJE [Akata e al., 2015] 531 | 1.33 | 9.88 6.53 | 1.99 | 4.93 | 2.93 | 0.78 | 0.52

ESZSL [Romera-Paredes and Torr, 2015] || 6.35 | 1.51 | 11.91 | 7.69 | 2.34 | 4.50 | 3.23 | 0.94 | 0.62

SYNC [Changpinyo ef al., 2016] 9.26 | 2.29 | 15.83 | 10.75 | 3.42 | 5.83 | 3.52 | 1.26 | 0.96

SAE [Kodirov et al., 2017] 4.89 | 1.26 | 9.96 6.57 | 2.09 | 2.50 | 2.17 | 0.72 | 0.56

LAST 10.27 | 244 | 17.19 | 12.37 | 3.72 | 6.71 | 432 | 147 | 1.21
Table 2: ZSL performance comparison on ImageNet.

20— 50
>
g g 8
310 3 3
§ § 2 g
- 1o} =]
§° R 5
0 2H 3H M500 M1k M5k L500 L1k L5k ALL 2H 3H M500 M1k M5k L500 L1k L5k ALL 0 2H 38H M500 M1k M5k L500 L1k L5k ALL

training and the other seen class images together with all un-
seen class images are utilized as the test set. For each image,
the ResNet-101 [He et al., 2016] pre-trained on ImageNet is
employed as feature extractor producing 2, 048-dimensional
image feature. For each class, the class attribute vector is re-
garded as the label feature vector for the first four datasets.
For ImageNet, we use the 500-dimensional word2vec rep-
resentations for all classes [Changpinyo er al., 2016]. For
fair comparison, we make use of the same seen-unseen split,
train-test split, image feature, and label feature given by Xi-
an ef al. [2017]. To evaluation the performance, we consider
two tasks. The first task is standard ZSL where a test image
comes from only unseen classes. The second task is general-
ized ZSL where a test image may come from both seen and
unseen classes. To evaluate performance, we use the aver-
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age per-class top-1 accuracy and the harmonic mean for two
tasks respectively. Please refer to [Xian et al., 2017] details.
To implement LAST, we use the following settings. We
set the parameters in Eq. (3) as: A = 1, « = 8 = n,/10,
v = 0.01 and § = 0.5. When using mini-batch based opti-
mization, we set the mini batch size to 1, 024. For both image
features and class features, we further perform dimension-
wise centralization such that these features have zero mean.

4.2 Result

The comparison between LAST and several state-of-the-art
ZSL approaches on four small-scale benchmark datasets is
summarized in Table 1, and the comparison on ImageNet is
shown in Table 2 and Figure 2. It is clearly observed from
the results that LAST outperforms the state-of-the-art ZS-
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L approaches with significant and consistent margin, which
demonstrates the effectiveness of LAST for ZSL. Besides, we
can also obtain the following observations from the results.

Firstly, among all approaches, LAST is the only one which
does not use all images for training. In fact, since each class
has only one class feature, it is not reasonable to use unrep-
resentative images to fit the class feature, which will result in
biased model. LAST combines model training and landmark
selection such that it is capable of finding the most represen-
tative images for model training. In this way, the model can
focus on the most important and general properties for align-
ing heterogeneous spaces, making it perform better for ZSL.

Secondly, not only the conditional alignment which per-
forms alignment for each class, LAST also takes into account
the marginal distribution such that it can align heterogeneous
feature spaces globally. This property is very important for
ZSL. As introduced, ZSL is to build recognition model for
previously unseen classes. Therefore, it is necessary that the
ZSL model should generalize well. If only conditional distri-
bution is considered, the model may pay too much attention
to the details between image feature space and class feature
space such that it does not well align two spaces. We notice
that ZSL can be regarded as a alignment problem between
image feature space and class feature space. Therefore, align-
ing them globally is essential for building an effective model.
One may argue that image feature space and class feature s-
pace has zero MMD after feature centralization since W is
a simple linear transformation. This is true in a usual case.
However, with the landmark selection, it is not guaranteed
that the weighted samples still have zero mean. Therefore, it
is necessary to combining this term to the objective function.

4.3 Analysis

The parameter § controls the power of landmark selection. It
is interesting to investigate its influence on LAST. Here we
use 2H and ALL of ImageNet for analysis. The top 1 accura-
cy of LAST with respect to different values of § is shown in
Figure 3. When ¢ is small (say, 0.1), the performance drops
because too many images are ignored. In this case, the align-
ment between heterogeneous spaces is imperfect since too
much information is lost. On the other hand, when § is large
(say, 1), the performance is worse than the best performance
too. This phenomenon is very important to verify the motiva-
tion of LAST. When § = 1, all images are used with the same
weight and no landmark selection is performed. We can ob-
serve that any smaller value for ¢ leads to better performance
than the case when 6 = 1. This result clearly demonstrates
the basic idea of LAST that selecting representative images,
instead of using all indiscriminately, is beneficial for ZSL.

In addition, we propose to incorporate a marginal align-
ment term into LAST by minimizing a MMD loss. To inves-
tigate its effectiveness, we compare LAST to the version with
only conditional alignment denoted as LAST-C. The compar-
ison one four benchmarks and eight subsets of ImageNet is
shown in Figure 4. It can be observe that the marginal align-
ment significantly and consistently promote the performance,
which validates the efficacy of the marginal alignment.
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5 Conclusion

In this paper we focus on ZSL. We notice that previous ZSL
approaches are mostly based heterogenous feature matching
and the matching/compatibility function is constructed from
one-vs-all training in which each class feature is combined
with all image features for loss computation. However, this
operation seems unreasonable since some images may focus
on details that the class feature does not reflects. Therefore,
the mismatching between them leads to biased ZSL model.
To address this issue, we propose a novel approach, termed
as LAST. In particular, during model training, LAST simul-
taneously perform landmark selection which assigns different
weights to different samples, aiming at finding the represen-
tative cross-domain data instead of using all. In addition, a
marginal alignment term is incorporated into LAST to im-
prove its generalization ability. LAST is capable of identify-
ing representative cross-domain features which further lead
to better image-class compatibility function. Experiments on
several benchmark datasets including ImageNet demonstrate
that LAST significantly outperforms the state-of-the-arts.
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