
Robust Learning from Noisy Side-information by Semidefinite Programming

En-Liang Hu1 , Quanming Yao2,3

1Department of Mathematic, Yunnan Normal University
24Paradigm Inc

3Department of Computer Science and Engineering, Hong Kong University of Science and Technology
ynel.hu@gmail.com, yaoquanming@4paradigm.com

Abstract

Robustness recently becomes one of the major con-
cerns among machine learning community, since
learning algorithms are usually vulnerable to out-
liers or corruptions. Motivated by such trend and
needs, we pursue robustness in semi-definite pro-
gramming (SDP) in this paper. Specifically, this is
done by replacing the commonly used squared loss
with the more robust `1-loss in the low-rank SDP.
However, the resulting objective becomes neither
convex nor smooth. As no existing algorithms can
be applied, we design an efficient algorithm, based
on majorization-minimization, to optimize the ob-
jective. The proposed algorithm not only has cheap
iterations and low space complexity, but also theo-
retically converges to some critical points. Finally,
empirical study shows that the new objective armed
with proposed algorithm outperforms state-of-the-
arts in terms of both speed and accuracy. 1

1 Introduction
Semidefinite programming (SDP) studies optimization prob-
lems with a convex objective function over semidefinite con-
straints [Vandenberghe and Boyd, 1996; Boyd and Vanden-
berghe, 2004]. Many machine learning problems can be
reduced as SDPs [Lemon et al., 2016]. Prominent exam-
ples include embedding and clustering [Kulis et al., 2007;
Royer, 2017], sparse PCA [D’aspremont et al., 2007; Zou
and Xue, 2018], maximum variance unfolding (MVU) [Wein-
berger et al., 2004; Song et al., 2008], non-parametric kernel
learning (NPKL) [Li et al., 2008; Zhuang et al., 2011]. Gen-
erally, the SDP optimization problem is formulated as

min
Z∈S+

F(Z) ≡
m∑
τ=1

1

2
(tr(ZQτ)− tτ)

2
+
γ

2
tr(ZA), (1)

where {Qτ , tτ}mτ=1 comes from the training data (such as
side information), A is a symmetric matrix to regularize Z
(depending on applications), S+ is the cone of positive semi-
definite (PSD) matrices, and γ > 0 is a hyper-parameter.

1Quanming Yao is the corresponding author.

The PSD constraint, i.e., Z ∈ S+, is the most challeng-
ing part in solving (1) [Lemon et al., 2016]. For exam-
ple, it costs O(n3) time at each iteration using the interi-
or point algorithm [Helmberg et al., 1996] if Z is of size
n × n. Another example is the projection gradient descen-
t algorithm, in which the projection to PSD cone will also
cost O(n3) time [Jaggi, 2013]. To drop the PSD constrain-
t, there is an (efficient) matrix factorization method to go
about fitting a low rank model [Burer and Monteiro, 2003;
Lemon et al., 2016]. Namely, factorizing Z to XX>, then
(1) can be converted into as below

min
X∈Rn×r

m∑
τ=1

1

2
(tr(X>QτX)−tτ)2+

γ

2
tr(X>AX). (2)

While the problem is nonconvex, instead of optimizing w.r.t.
Z ∈ S+, we only need to solve an unconstrained optimization
problem with variableX ∈ Rn×r. Moreover, it is theoretical-
ly shown that the factorized problem (2) is equivalent to (1)
when the rank of solution is deficient [Srinadh et al., 2016;
Zheng and Lafferty, 2015].

Many algorithms have been proposed to solve (2) and are
all much more efficient than interior method and projec-
tion gradient descent for (1). When the objective F is lin-
ear, L-BFGS is introduced in [Burer and Monteiro, 2003;
Nocedal and Wright, 2006] for optimization. However, the
convergence properties of L-BFGS are unclear for the non-
convex problem here. When F is convex and smooth, block-
cyclic coordinate minimization has been used in [Hu et al.,
2011] to solve a special nonconvex program of SDP, but
a closed-form solution is preferred in each block coordi-
nate update, which might be overly restrictive. More re-
cently, gradient descent based methods [Srinadh et al., 2016;
Zheng and Lafferty, 2015] have been developed as the state-
of-the-art for low-rank SDP. These algorithms have a conver-
gence guarantee, and linear/sub-linear convergence rate are
also established for some low-rank SDP formulations [Sri-
nadh et al., 2016; Pumir et al., 2018].

In above applications, the squared loss is used in F to
encourage the learned Z to be consistent with give side-
information. However, since the squared loss is sensitive to
outliers, all existing SDP algorithms are not robust. More-
over, robustness is of a real demand. The side-information
utilized in SDP may not be accurate for real applications,
e.g., samples can corrupted in MVU [Dekel et al., 2010] and

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2514

links collected for kernel learning can come from spammer
or attacker [Raykar et al., 2010]. Such corruptions and noise
can significantly deteriorate performance of learning models
[Raykar et al., 2010].

Motivated by the success of making matrix factorization
robust by replacing the squared loss with `1 loss [Lin et al.,
2017; Yao and Kwok, 2018], we also proposed to use the `1
loss in (2) for SDP, and illustrate such need with three appli-
cations, i.e., robust NPKL, robust colored MVU and sparse
PCA. However, the resulting optimization problem is neither
convex nor smooth, and none of existing SDP algorithms can
be used for optimization. To solve the new objective, we pro-
pose a new optimization algorithm based on Majorization-
Minimization (MM), of which the crux is constructing a good
surrogate. Besides, while MM generally only guarantees pro-
ducing limit points, we prove that by iteratively optimizing
the constructed surrogate, the proposed algorithm ensures a
convergence to some critical points. Finally, we demonstrate
the efficiency and robustness of the proposed algorithm us-
ing above three applications. Results show that the proposed
algorithm is not only faster but also better in recovery over
state-of-the-arts. As a summary, we hight-light our contribu-
tions as follows:

• We are the first to introduce the robust loss, i.e., `1 loss,
into SDP. To show its necessity, we further illustrate the
usage of the new objective with three applications, i.e., ro-
bust NPKL, robust colored MVU and sparse PCA;

• As no existing SDP algorithms can be applied, we propose
a novel optimization algorithm to solve the new objective,
which is not only efficient but also guaranteed converging
to some critical points;

• Finally, the robustness of the new objective and the effec-
tiveness of the proposed algorithm over state-of-the-arts
SDP algorithms are empirically verified on above three ap-
plications.

Notation
We use an uppercase letter to indicate a matrix, and a lower-
case letters to a scalar. The transpose of vector or matrix is
denoted by the superscript (·)>. The identity matrix is denot-
ed by I; for a matrix A = [aij], tr(A) is the trace of a square
matrix, ‖A‖F = (

∑
ij a

2
ij)

1/2 is its Frobenius norm. |a| is
the absolute of scaler a, and |S| is cardinal number of set S .

2 Robust Semidefinite Programming
Most SDP learning algorithms assume perfect side informa-
tion (i.e., perfect triplet constraints in our case). This however
is not always the case in practice because in many real-world
applications, the constraints are derived from the side infor-
mation such as users implicit feedbacks and citations among
articles. As a result, these constraints are usually noisy and
consist of many mistakes. We refer to the problem of learn-
ing SDP matrix from noisy side information as robust SDP
learning. Feeding the noisy constraints directly into a SD-
P learning algorithm will inevitably degrade its performance,
and more seriously.

2.1 Proposed Formulation
Inspired by the recent success of using `1-loss instead of the
squared loss in making matrix factorization robust [Lin et al.,
2017; Yao and Kwok, 2018], we also propose to replace the
squared loss in (1) by the more robust `1 loss, which makes
low-rank SDP less sensitive to corruptions in the training da-
ta. This leads to the objective of robust SDP as

min
X
R(X) ≡

m∑
τ=1

∣∣tr(X>QτX)− tτ
∣∣ (3)

+
γ

2
tr(X>AX) +

λ

2
‖X‖2

where λ > 0 and the last term is to further prevent over-
fitting. This new objective is neither convex nor smooth. As
a result, none of existing algorithms for low-rank SDP, e.g.,
L-BFGS [Burer and Monteiro, 2003], gradient descent [Sri-
nadh et al., 2016; Zheng and Lafferty, 2015], and coordinate
descent [Hu et al., 2011], can be applied. In next Section, we
will design an efficient algorithm for (3) based on MM, which
also has a convergence guarantee.

2.2 Application Examples
However, before that, we illustrate the usage and importance
of the new formulation using three examples.

Example 1: Robust NPKL
Given n patterns, letM be the must-link set containing pairs
that should belong to the same class, and C be the cannot-link
set containing pairs that should not belong to the same class.
Denote T =M∪C. Non-parametric kernel learning (NPKL)
[Hoi et al., 2007] tries to build a kernel matrix utilizing above
side information. We adopt the formulation in [Li et al., 2008;
Zhuang et al., 2011], which learns a kernel matrix using the
following SDP problem

min
Z∈S+

|T |∑
τ=1

(tr (ZQτ)− tτ)
2

+
γ

2
tr(ZL), (4)

where Z is the target kernel matrix, L is the graph Laplacian
matrix of the data,M and C are encoded into {(Qτ , tτ)}|T |τ=1.
Let Qτ = I(:, j) (I(:, i))>, then tr(QτZ) = Zij . Thus
tτ = 1 if (i, j) ∈ M and 0 if (i, j) ∈ C. The first term
of objective in (4) measures the difference between Zij and
tτ , and the second term tr(ZL) encourages smoothness on
the data manifold by aligning Z with L.

The side information in this application is those “can” and
“cannot” links. These links are usually provided by humans,
e.g., labeled by experts or crowdsourced from the web. As
human may not be reliable and there can be spammers and
attackers in the crowdsourcing platform, errors and noise can
exist in these links [Raykar et al., 2010]. These again inspire
a more robust formulation of NPKL as

min
X

|T |∑
τ=1

∣∣tr(X>QτX)− tτ
∣∣+

γ

2
tr(X>LX) +

λ

2
‖X‖2.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2515

Examples 2: Robust CMVU
Maximum variance unfolding (MVU) [Weinberger et al.,
2004; Weinberger and Saul, 2006] is an effective method
for dimensionality reduction. It produces a low-dimensional
representation of the data by simultaneously maximizing the
variance of their embeddings and preserving the local dis-
tances of the original data. MVU can be viewed as a non-
linear generalization of principal component analysis. The
colored maximum variance unfolding (CMVU) is a “colored”
variants of MVU [Song et al., 2008], subjected to class label-
s information. In [Song et al., 2008], it is formulated as a
low-rank SDP problem as

min
Z∈S+

|N |∑
τ=1

(tr(ZQτ)−dτ)
2− γ

2
tr(ZHTH), (5)

where Eij = I(:, i) − I(:, j), Qτ = EijEij
>, dτ = dij de-

notes the Euclidean distance between the i-th and j-th objects
in primal space, N denotes the set of neighbor pairs, whose
distances are to be preserved in the embedding, T is a kernel
matrix of the labels,Hij = δij− 1

n centers the data and the la-
bels in the feature space, and λ controls the tradeoff between
dependence maximization and distance preservation.

In this example, the side information is the local distance
dτ from the original data. However, during the data collec-
tion, outliers or corrupted samples can be introduced into fea-
ture space [Dekel et al., 2010]. This motivates our robust for-
mulation as:

min
X

|N |∑
τ=1

∣∣tr(X>QτX)−dτ
∣∣− γ

2
tr(X>HTHX) +

λ

2
‖X‖2.

Example 3: Sparse PCA
Finally, for the last example, we consider sparse PCA [Zou
and Xue, 2018]. Here, we are not making sparse PCA more
robust, but show sparse PCA also fall into our objective (3),
and thus can be solved with proposed algorithm. For a giv-
en covariance matrix Σ ∈ Rn×n, sparse PCA tries to find a
sparse vector x that maximizes x>Σx, i.e. a sparse princi-
pal component of Σ. Following [D’aspremont et al., 2007],
sparse PCA can be relaxed into SDP problem as:

min
Z∈S+,tr(Z)=1

−tr(ZΣ). (6)

We propose to factorize Z = XX>, and solve the following
approximated objective instead

min
X

n(n+1)
2∑

τ=1

∣∣∣tr(X>QτX)− 0
∣∣∣− γ

2
tr(X>ΣX) +

λ

2
‖X‖2.

where Qτ = I(:, j) (I(:, i))>, i = 1, · · ·n, j = i, · · · , n.

3 Optimization Algorithm
Majorization minimization (MM) is a general technique to
make difficult optimization problems easier [Hunter and
Lange, 2004; Lange et al., 2000]. Recently, it has been ap-
plied in robust matrix factorization (RMF) [Lin et al., 2017;
Yao and Kwok, 2018]. Inspired by such success and the fact
that no existing SDP algorithms can be applied here, we give
a MM algorithm to solve (3) in the sequel.

3.1 Majorization-Minimization (MM)
Consider a function g(X), which is hard to optimize. Let
the iterate at the kth MM iteration be Xk. The next iterate is
generated as

Xk+1 = Xk + arg min
X̃

hk(X̃;Xk), (7)

where hk is a surrogate that is being optimized instead of g. A
good surrogate should have the following properties [Lange
et al., 2000]:

(a). g(X̃ +Xk) ≤ hk(X̃;Xk) for any X̃;

(b). 0 ∈ arg minX̃(hk(X̃;Xk)− g(X̃ +Xk)) and g(Xk) =

hk(0;Xk); and

(c). hk is convex on X̃ .

The first two conditions (a) and (b) ensure {g(Xk)} generated
from MM is a non-increasing sequence, and (c) encourages
sub-problems hk(X̃;Xk) can be easily solved.

However, MM only guarantees that the objectives obtained
in successive iterations are non-increasing, but does not guar-
antee convergence of the sequence {Xk} [Hunter and Lange,
2004; Lange et al., 2000; Lin et al., 2017].

3.2 Constructing the Convex Surrogate
Here, we show how a surrogate can be constructed from R,
which can meet the above three conditions of MM. First, we
upper boundR (see (3)) in following Lemma 1 based on (7).

Lemma 1. Let Ȧ = A + λ
γ I , for any X̃ ∈ Rn×r we have

R(X̃ +Xk) ≤
∑m
τ=1

∣∣∣tr(2X̃>QτXk +X>k QτXk)− tτ
∣∣∣+∑m

τ=1

∣∣∣tr(X̃>Qτ X̃)
∣∣∣+ γ

2 tr
(
X̃
>
ȦX̃ + (Xk + 2X̃)>ȦXk

)
.

However, the upper bound in Lemma 1 is not convex, as
the term |tr(X̃>Qτ X̃)| is convex only when Qτ ∈ S+ [Boy-
d and Vandenberghe, 2004], which is not guaranteed. Let
(γi, vi)’s be the eigen-pairs of a symmetric square matrix
M , we use (·)+ and (·)− to denote positive and negative
eigen values of M , i.e., M+ =

∑
i max(γi, 0)vivi

> and
M− =

∑
i min(γi, 0)vivi

>, thus M = M+ + M−. To ad-
dress this issue, we make use of following Lemma 2.

Lemma 2. |tr(X̃>Qτ X̃)| ≤ tr(X̃>Q̄τ X̃) where Q̄τ =
1
2 (Qτ +Q>τ)+ − 1

2 (Qτ +Q>τ)−.

Combining Lemma 1 and 2, a convex surrogate is con-
structed as follow:

Proposition 1. Let B = Q + 1
2 (λI + γA+), C = A + λ

γ I ,
Q =

∑m
τ=1 Q̄τ , bkτ = 1

2 (tr(Xk
>QτXk) − tτ), and ck =

γ
2 tr(Xk

>(A + λ
γ I)Xk), then R(X̃ + Xk) ≤ Hk(X̃,Xk)

where

Hk(X̃,Xk) =tr(X̃>(BX̃ + γCXk))

+ 2
m∑
τ=1

∣∣∣tr(X̃>QτXk) + bkτ

∣∣∣+ ck,

and the equality holds iff X̃ = 0.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2516

model complexity
factorized loss space iteration

FW [Laue, 2012] × squared loss O(n2) O(n2)
L-BFGS [Nocedal and Wright, 2006]

√
squared loss O(nr) O(nr2)

nmAPG [Li and Lin, 2015]
√

squared loss O(nr) O(nr2)
SADMM [Boyd et al., 2011] × `1 loss O(n2) O(n2r)

SDPLR [Burer and Monteiro, 2003]
√

`1 loss O(n2) O(nr2)
SDPNAL [Toh et al., 2015] × `1 loss O(n2) O(n3)

RSDP ADMM
√

`1 loss O(n2) O(n2)
APG

√
`1 loss O(nnz(E)+nr) O(nnz(E)+nr2)

Table 1: Comparison of exemplar existing algorithms with the proposed one. The space and iteration complexity are derived based on the
example of robust NPKL; E =

∑m
τ=1 Qτ + C and “nnz” denotes the number of nonzero elements in a matrix.

Obviously, Hk(X̃,X) is convex w.r.t. X̃ , so it is a con-
vex surrogate of R. Besides, from Proposition 1, it can al-
so been seen that R(X̃ + Xk) ≤ Hk(X̃;Xk) for any X̃ ,
0 = arg minX̃(Hk(X̃;Xk) − R(X̃ + Xk)) and R(Xk) =

Hk(0;Xk). Thus, all three desired properties on surrogate of
MM (Section 3.1) are satisfied.
Remark 1. MM algorithm, recently, has also been consid-
ered in RMF-MM [Lin et al., 2017] and RMFNL [Yao and
Kwok, 2018] for RMF. While our algorithm is also based
on MM and adopt matrix factorization, since our objective
comes from low-rank SDP, the way to construct the surro-
gate is significantly different. Specifically, in [Lin et al., 2017;
Yao and Kwok, 2018], Z is factorized as XY >, X and Y are
bounded separately; we need to find other ways to bound X
here, which is enabled by Lemma 2.

3.3 Solving the Surrogate
According to the framework of MM algorithm, i.e., (7), at
each iteration we need to update Xk by Xk+1 = Xk +

arg minX̃ Hk(X̃,Xk). Previously, ADMM (Alternating Di-
rection Method of Multipliers) [Boyd et al., 2011] is used
in [Lin et al., 2017] for RMF, and APG (Accelerated Proxi-
mal Gradient) [Beck and Teboulle, 2009] is later proposed in
[Yao and Kwok, 2018] to further explore data sparsity in RM-
F. Here, we show both ADMM and APG can still be applied
to solve the optimization problem arg minX̃ Hk(X̃,Xk). In
Table 1, we can see APG can need less space than ADMM
when E is sparse.

Using ADMM
Since terms in the `1 loss is complex, we reformulateHk as

min
X̃

tr
(
X̃>(BX̃ + γCX)

)
+ 2

m∑
τ=1

|eτ | , (8)

s.t. eτ = tr(X̃>QτX) + bkτ .

Then, we can introduce dual parameter pτ for each linear
constraint, and use ADMM algorithm [Boyd et al., 2011;
Lin et al., 2017] to solve the augmented Lagrangian of (8).
It can be easily checked that updates of X̃ , eτ and pτ have
closed-form solutions.

Using APG
In the other way, using ‖x‖1 = infz x

>z : ‖z‖∞ ≤ 1 [Boyd
and Vandenberghe, 2004]. We can derive the dual form Dk

ofHk from

max
|zτ |≤1

min
X̃

X̃>(BX̃+γCXk)+2
m∑
τ=1

zτ (tr(X̃>QτXk) + bkτ).

which is given by

min
|zτ |≤1

: Dk(zτ) = tr
(
P (zτ)>B−1P (zτ)

)
− 2

m∑
τ=1

bkτzτ .

where P (zτ) = (
∑m
τ=1 zτQτ + γ

2C)Xk. Since the du-
al problem is a smooth and convex optimization problem
with simple box constraints. Thus, as [Yao and Kwok,
2018], we also solve this problem by APG, and recover
X̃ = −B−1(

∑m
τ=1 zτQτ + γ

2C)Xk. Let Q =
∑m
τ=1Qτ ,

it only requires nnz(Q) entries to store dual variables zτ ’s
when using APG.

3.4 Complete Algorithm
Based on the above analysis, we list the complete steps for
solving (3) in Algorithm 1.

Algorithm 1 RSDP: Robust semi-definite programming by
majorization-minimization.

1: Initialization: X1 = 0.
2: for k = 1, . . . ,K do
3: X̃k=arg minX̃ H(X̃,Xk) via ADMM or APG;
4: update Xk+1 = X̃k +Xk;
5: end for
6: return XK+1.

The convergence guarantee is in Theorem 1. Note that,
as in Section 3.1, MM generally only guarantees the conver-
gence of {R(Xk)} not {Xk}. Besides, the proofs in RMF-
MM and RMFNL cannot be directly applied neither, due to
the difference in Remark 1.
Theorem 1. If lim‖X‖F→∞R(X) = ∞ and infX R(X) >
−∞, then for Algorithm 1, we have
(a). there exists a constant α > 0 such that R(Xk) −
R(Xk+1) ≥ α

2 ‖Xk+1 −Xk‖2;
(b). the sequence {Xk} is bounded;
(c). any limit points of {Xk} are also critical points ofR.

An overall comparison of the proposed Algorithm 1 and
other algorithms used in Section 4 is summarized in Table 1.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2517

testing RMSE CPU time(sec)

loss algorithm Gaussian noise flipping labels Gaussian noise flipping labels
5% 10% 5% 10% 5% 10% 5% 10%

squared FW 0.50±0.01 0.70±0.01 0.31±0.01 0.35±0.01 68.2±3.0 69.2±1.0 47.5±9.9 55.7±6.8
nmAPG 0.47±0.01 0.63±0.04 0.31±0.01 0.35±0.01 12.1±4.6 15.8±14.5 6.8±1.7 7.6±1.1
L-BFGS 0.50±0.01 0.69±0.01 0.31±0.01 0.35±0.01 4.7±0.2 4.8±0.3 3.6±0.1 4.3±0.2

`1 SADMM 0.27±0.07 0.34±0.01 0.23±0.01 0.29±0.01 886.5±26.6 1002.6±755.9 774.8±247.3 783.6±190.1
SDPNAL 0.24±0.06 0.35±0.02 0.22±0.02 0.28±0.01 3291.5±73.6 3281.8±258.5 3141.7±412.1 3241.5±322.4
SDPLR 0.23±0.01 0.34±0.01 0.21±0.01 0.27±0.01 3617.9±1.3 3620.6±0.7 3617.4±0.8 3601.8±33.2

RSDP(ADMM) 0.23±0.02 0.34±0.01 0.21±0.01 0.28±0.01 45.9±23.4 117.9±49.6 55.1±33.4 71.9±36.1
RSDP(APG) 0.23±0.01 0.35±0.01 0.21±0.02 0.28±0.01 34.5±4.0 44.6±5.6 48.5±12.4 43.9±3.6

Table 2: Testing RMSEs and CPU time (sec) of various algorithms in the application of robust NPKL.

testing RMSE CPU time(sec)

loss algorithm small large outliers small large outliers
deviations 5% 10% deviations 5% 10%

squared FW 9.16±0.81 12.99±1.39 13.52±2.49 882.4±46.9 786.8±129.9 729.2±37.5
nmAPG 9.07±0.89 12.14±1.07 12.59±1.84 86.9±17.1 82.3±13.7 82.1±4.5
L-BFGS 9.08±0.91 12.64±0.99 13.50±2.37 55.5±7.3 65.6±4.7 64.6±4.1

`1 SADMM 0.06±0.02 0.71±0.02 2.43±0.81 1750.4±101.3 333.8±109.6 304.8±18.4
SDPNAL 0.06±0.01 0.86±0.02 2.06±0.25 2935.6±347.5 7015.3±455.9 5454.7±398.1
SDPLR 0.06±0.01 0.85±0.02 2.04±0.21 1249.3±109.9 3628.3±1.1 3624.9±2.2

RSDP(ADMM) 0.06±0.01 0.67±0.01 2.06±0.26 238.9±37.8 305.5±65.6 308.7±68.1
RSDP(APG) 0.06±0.01 0.66±0.01 2.06±0.23 269.6±64.8 240.5±2.7 229.1±13.1

Table 3: Testing RMSEs and CPU time (sec) of various algorithms in the application of robust CMVU.

4 Empirical Study
In this section, we perform experiments on three application-
s of SDP, namely, robust NPKL (Section 4.1), robust MVU
(Section 4.2), and sparse PCA (Section 4.3). These are also
three applications we discussed in Section 2.2. The following
algorithms based on squared loss will be compared:

1. FW [Laue, 2012]: an application of Frank-Wolf algo-
rithm [Jaggi, 2013] in SDP problem (1);

2. L-BFGS [Nocedal and Wright, 2006]: solve (2) with the
most commonly used quasi-Newton solver for smooth
minimization problem;

3. nmAPG [Li and Lin, 2015]: an application of state-of-
the-art accelerated gradient descent algorithm for prob-
lem (2);

The following algorithms based on `1-loss are compared:
1. SADMM [Boyd et al., 2011]: replace the squared loss

in (1) by `1 loss, and solve the resulting nonsmooth but
convex problem with ADMM;

2. SDPLR [Burer and Monteiro, 2003]: solve the same
problem as SADMM, but the SDPLR package is used;

3. SDPNAL [Toh et al., 2015]: solve the same problem
as SADMM, but SDPNAL package (a newton-CG aug-
mented Lagrangian method) is used;

4. RSDP(ADMM): the proposed Algorithm 1 for the ro-
bust objective (3); and ADMM is used as solver for the
convex surrogate;

5. RSDP(APG): same as RSDP(ADMM) but APG is used
as the solver instead of ADMM.

All algorithm is stopped when the relative change of ob-
jective values in successive iterations is smaller than 10−5 or

when the number of iterations reaches 2000. As for the rank
r of initial solutionX , in Sections 4.1 and 4.2 we follow [Bu-
rer and Monteiro, 2003] and set its value to be the largest r
satisfying r(r + 1) ≤ m, where m is the total number of
observed data (i.e, m is the number of must-link and cannot-
link pairs in Section 4.1, the number of given neighbor pairs
in Section 4.2 respectively). In Section 4.3 we set r = 10.
Finally, all algorithms are implemented in Matlab run on a
PC with a 3.07GHz CPU and 24GB RAM. To reduce statis-
tical variability, all results are averaged over five repetitions.
Availability of codes and data sets are in Appendix.B.

4.1 Robust NPKL
Experiments are performed on the adult data sets that has
been commonly used as benchmark data about NPKL learn-
ing [Zhuang et al., 2011]. Let the number of training samples
be n̄, we randomly sample 6n̄ pairs and construct set T =
{(Qτ , tτ)}, i.e., |T | = 6n̄. We randomly sample 20% pairs
from T for training, 20% for validation, and the rest for test-
ing. For performance evaluation, we follow [Lin et al., 2017;
Yao and Kwok, 2018] and use the (i) testing root mean square
error, RMSE = (

∑n̄t
τ=1(tr(X̄>Qτ X̄) − tτ)2/n̄t)

1/2, where
X̄ is the output of the algorithm, n̄t is a the number of the
testing pairs; and (ii) CPU time (sec).

Robustness Against Gaussian Noise
Gaussian noise is the most natural noise type, here, to test
the robustness of RSDP against such noise. Specifically, we
randomly sample respectively 5% or 10% pairs from training
pairs; and for selected pairs, all their labels tτ ’s are added
with Gaussian noise N (0, 5). Table 2 2 shows the perfor-

2For all tables in the sequel, the best and comparable results ac-
cording to the pair-wise 95% significance test are high-lighted.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2518

n algorithm f value time sparsity. explained var.
50 SADMM -18.08 ± 3.39 2.83 ± 1.15 0.76 ± 0.09 8.43 ± 0.89

SDPLR -18.08 ± 2.48 28.20 ± 18.99 0.76 ± 0.07 8.33 ± 0.86
RSDP(ADMM) -18.08 ± 5.30 2.89 ± 1.26 0.76 ± 0.08 8.43 ± 0.91

RSDP(APG) -18.07 ± 5.29 2.29 ± 1.16 0.76 ± 0.08 8.43 ± 0.91
100 SADMM -31.57 ± 4.67 51.02 ± 18.62 0.79 ± 0.08 15.76 ± 1.82

SDPLR -31.66 ± 2.93 442.15 ± 19.64 0.79 ± 0.03 15.38 ± 1.19
RSDP(ADMM) -31.57 ± 4.43 49.83 ± 17.20 0.79 ± 0.05 15.75 ± 1.13

RSDP(APG) -31.55 ± 4.42 9.32 ± 1.24 0.79 ± 0.05 15.75 ± 1.13
200 SADMM -58.77 ± 6.48 321.27 ± 26.83 0.82 ± 0.04 30.24 ± 1.54

SDPLR -58.50 ± 6.43 3600.65 ± 195.62 0.82 ± 0.03 29.99 ± 2.69
RSDP(ADMM) -58.77 ± 6.35 316.42 ± 23.69 0.82 ± 0.02 30.24 ± 1.97

RSDP(APG) -58.76 ± 6.35 74.54 ± 11.35 0.82 ± 0.02 30.24 ± 1.97

Table 4: Performance of various sparse PCA algorithms on the colon cancer data set.

mance of the all compared algorithms. As can be seen, while
squared loss based algorithms, i.e., FW, nmAPG and L-BFGS
are very fast, they produce much higher testing RMSEs than
those based on the `1-loss, i.e, ADMM, SDPNAL, SDPLR and
RSDP. Among algorithms for the `1-loss, RSDP(APG) is the
fastest and RSDP(ADMM) is the second fastest due to the us-
age of factorization. These demonstrate the robustness of the
proposed formulation and the efficiency of the proposed ro-
bust SDP algorithms.

Robustness Against Flipping Labels
In real applications, some attackers want to deteriorate the
system’s learning performance by directly flipping the label-
s [Raykar et al., 2010]. This is also the worst case of label
noise. To further test the robustness our method, we consid-
er such scenario here. Specifically, we take 5% or 10% pairs
from training pairs; for selected pairs, all their labels tτ ’s are
reverse (i.e., making tτ = 1−tτ). Table 2 shows performance
of the all compared algorithms. As can be seen, all algorithm-
s based on `1-loss again produces lower testing RMSE than
the squared loss based algorithms; and RSDP is faster than
other `1-loss based algorithms, i.e., SADMM, SDPNAL and
SDPLR.

4.2 Robust CMVU

Newsgroups 20, is used here. As in [Song et al., 2008], we
construct the set N by considering the 1% nearest neighbor
pairs of each point. We first construct 1%n square Euclid dis-
tances {dτ}’s as reference ’labels’ using noiseless data, then
add random or outlier to data in MVU modle to output embd-
ding X̄ by all compared algorithms. The tradeoff parameter γ
is set to 0.01 as a default. For performance evaluation, same
as in robust NPLK, we also use the testing RMSE and CPU
time (sec).

Robustness Again Small Deviations
We add Gaussian noiseN (0, 0.01x̄), where x̄ is a vector con-
tains means of each features, to Newsgroups 20 data in each
dimension. Tabel 3 shows the performance. The observation-
s are the same as that of Section 4.1. We can see that RSDP
produces much lower testing RMSE and is the most efficient
among algorithms working with the `1 loss.

Robustness Against Large Outliers
Except small deviations, there also can be outliers in the data.
Here, we randomly smaple 5% and 10% data points respec-
tively, for the selected each data points xi, we convert it into
outliers by adding large random noise, N (0, 5x̃) where x̃ is
a vector made from largest elements in the absolute value a-
mong each feature. Tabel 3 shows the performance against
outliers. Again, by adopting factorization and the `1-loss,
RSDP is not only efficient but also achieves the lowest testing
RMSE.

4.3 Sparse PCA
We use the colon cancer data set which contains 2000 mi-
croarray readings from 62 subjects. In order to vary the prob-
lem dimension n, we randomly sampled readings. We set
γ = 10 to obtain sparse solution. Results are reported in
Table 4 (including the running CPU time (sec), the objective
value at convergence, the sparsity of the solution and the cap-
tured variance, and these measurements have been used in
[Laue, 2012; D’aspremont et al., 2007]). As can been seen,
all compared algorithms produce close solutions. The RSD-
P(ADMM) is comparable with the state-of-the-arts, and RS-
DP(APG) is much faster than the others when n is large.

5 Conclusion
In this paper, we propose a robust formulation of semi-
definite programing (SDP) by replacing commonly used
squared loss with `1 loss in standard SDP applications. As the
resulting optimization problem is neither convex nor smooth,
where existing SDP algorithms cannot be applied, we pro-
pose a new algorithm based on majorization-minimization.
The algorithm is not efficient, but also guaranteed converging
to some critical points. Finally, we demonstrate the efficiency
and robustness over state-of-the-arts SDP solvers using three
applications as kernel learning, matrix variance unfolding and
sparse PCA. As a future work, we plan to automatically selec-
t the choice of loss function by automated machine learning
[Yao et al., 2018].

Acknowledgments
This research was supported in part by the National Natural
Science Foundation of China (No. 61663049, 61165012 and
2019010108203008).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2519

References
[Beck and Teboulle, 2009] A. Beck and M. Teboulle. A fast

iterative shrinkage-thresholding algorithm for linear in-
verse problems. SIJIS, 2(1):183–202, 2009.

[Boyd and Vandenberghe, 2004] S. Boyd and L. Vanden-
berghe. Convex Optimization. Cambridge University
Press, 2004.

[Boyd et al., 2011] S. Boyd, N. Parikh, E. Chu, B. Peleato,
and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multiplier-
s. Foundations and Trends in Machine Learning, 3(1):1–
122, 2011.

[Burer and Monteiro, 2003] S. Burer and R.D.C. Monteiro.
A nonlinear programming algorithm for solving semidef-
inite programs via low-rank factorization. MathProg,
95:329–357, 2003.

[D’aspremont et al., 2007] A. D’aspremont, El L. Ghaoui,
M. I. Jordan, and G. R. G. Lanckriet. A direct formulation
for sparse PCA using semidefinite programming. SIAM
Review, 49(3):434–48, 2007.

[Dekel et al., 2010] Ofer Dekel, Ohad Shamir, and Lin Xiao.
Learning to classify with missing and corrupted features.
ML, 2010.

[Helmberg et al., 1996] C. Helmberg, F. Rendl, R.J. Vander-
bei, and H. Wolkowicz. An interior-point method for
semidefinite programming. SIOPT, 1996.

[Hoi et al., 2007] S. Hoi, R. Jin, and M.R. Lyu. Learning
nonparametric kernel matrices from pairwise constraints.
In ICML, pages 361–368, 2007.

[Hu et al., 2011] E.-L. Hu, B. Wang, and S.-C. Chen. BCD-
NPKL: Scalable non-parametric kernel learning using
block coordinate descent. In ICML, pages 209–216, 2011.

[Hunter and Lange, 2004] D. Hunter and K. Lange. A tu-
torial on MM algorithms. The American Statistician,
58(1):30–37, 2004.

[Jaggi, 2013] M. Jaggi. Revisiting Frank-Wolfe: Projection-
free sparse convex optimization. In ICML, 2013.

[Kulis et al., 2007] B. Kulis, A. C. Surendran, and J. C. Plat-
t. Fast low-rank semidefinite programming for embedding
and clustering. In AISTAT, pages 235–242, 2007.

[Lange et al., 2000] K. Lange, R. Hunter, and I. Yang. Op-
timization transfer using surrogate objective functions.
JCGS, 9(1):1–20, 2000.

[Laue, 2012] S. Laue. A hybrid algorithm for convex
semidefinite optimization. In ICML, pages 177–184. Om-
nipress, 2012.

[Lemon et al., 2016] A. Lemon, A. So, and Y. Ye. Low-
rank semidefinite programming: Theory and application-
s. Foundations and Trends in Optimization, 2(1-2):1–156,
2016.

[Li and Lin, 2015] H. Li and Z. Lin. Accelerated proximal
gradient methods for nonconvex programming. In NeurIP-
S, pages 379–387. 2015.

[Li et al., 2008] Z. Li, J. Liu, and X. Tang. Pairwise con-
straint propagation by semidefinite programming for semi-
supervised classification. In ICML, pages 576–583, 2008.

[Lin et al., 2017] Z. Lin, C. Xu, and H. Zha. Robust matrix
factorization by majorization minimization. TPAMI, (99),
2017.

[Nocedal and Wright, 2006] J. Nocedal and S.J. Wright. Nu-
merical Optimization. Springer, 2006.

[Pumir et al., 2018] T. Pumir, S. Jelassi, and N. Boumal. S-
moothed analysis of the low-rank approach for smooth
semidefinite programs. In NeurIPS, 2018.

[Raykar et al., 2010] V. Raykar, S. Yu, L. Zhao, G. Valadez,
C. Florin, L. Bogoni, and L. Moy. Learning from crowds.
JMLR, 2010.

[Royer, 2017] M. Royer. Adaptive clustering through
semidefinite programming. In NeurIPS, pages 1793–1801,
2017.

[Song et al., 2008] L. Song, A. Smola, K. Borgwardt, and
A. Gretton. Colored maximum variance unfolding. In
NeurIPS, 2008.

[Srinadh et al., 2016] B. Srinadh, K. Anastasios, and Sujay
S. Dropping convexity for faster semidefinite optimiza-
tion. Preprint arXiv:1509.03917, 2016.

[Toh et al., 2015] K.-C. Toh, L. Yang, and D. Sun. SDP-
NAL+: a majorized semismooth Newton-CG augment-
ed Lagrangian method for semidefinite programming with
nonnegative constraints. MPC, 2015.

[Vandenberghe and Boyd, 1996] L. Vandenberghe and
S. Boyd. Semidefinite programming. SIAM Review,
38(1):49–95, 1996.

[Weinberger and Saul, 2006] K.Q. Weinberger and L.K.
Saul. Unsupervised learning of image manifolds by
semidefinite programming. IJCV, 2006.

[Weinberger et al., 2004] K. Q. Weinberger, F. Sha, and L.K.
Saul. Learning a kernel matrix for nonlinear dimensional-
ity reduction. In ICML, pages 839–846, 2004.

[Yao and Kwok, 2018] Q. Yao and J. Kwok. Scalable robust
matrix factorization with nonconvex loss. In NeurIPS 31,
pages 5066–5075. 2018.

[Yao et al., 2018] Q. Yao, M. Wang, Y. Chen, W. Dai, Y. Hu,
Y. Li, W. Tu, Q. Yang, and Y. Yu. Taking human out
of learning applications: A survey on automated machine
learning. Technical report, arXiv preprint, 2018.

[Zheng and Lafferty, 2015] Q. Zheng and J. Lafferty. A con-
vergent gradient descent algorithm for rank minimization
and semidefinite programming from random linear mea-
surements. In NeurIPS, 2015.

[Zhuang et al., 2011] J. Zhuang, I. Tsang, and S. Hoi. A fam-
ily of simple non-parametric kernel learning algorithms.
JMLR, 12:1313–1347, 2011.

[Zou and Xue, 2018] H. Zou and L.Z. Xue. A selective
overview of sparse principal component analysis. Pro-
ceedings of the IEEE, 2018.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2520

