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Abstract
Although releasing crowdsourced data brings many
benefits to the data analyzers to conduct statisti-
cal analysis, it may violate crowd users’ data pri-
vacy. A potential way to address this problem is to
employ traditional differential privacy (DP) mech-
anisms and perturb the data with some noise before
releasing them. However, considering that there
usually exist conflicts among the crowdsourced data
and these data are usually large in volume, directly
using these mechanisms can not guarantee good
utility in the setting of releasing crowdsourced data.
To address this challenge, in this paper, we pro-
pose a novel privacy-aware synthesizing method
(i.e., PrisCrowd) for crowdsourced data, based on
which the data collector can release users’ data with
strong privacy protection for their private informa-
tion, while at the same time, the data analyzer can
achieve good utility from the released data. Both
theoretical analysis and extensive experiments on
real-world datasets demonstrate the desired perfor-
mance of the proposed method.

1 Introduction
In recent years, crowdsourcing has emerged as a popular and
fast paradigm to solve many challenging data analysis tasks.
Through the power of the crowd, the data collectors (e.g., hos-
pitals, foundations and government agencies) can easily ob-
tain large amounts of useful information. At the same time,
the proliferation of new information techniques enables these
data collectors to easily share their data that are collected from
a crowd of users (e.g., patients, customers) with researchers or
data analyzers. From such a wealth of shared data, researchers
or data analyzers can discover useful knowledge or patterns
to improve the quality of products, the management of pub-
lic health, and so on. For example, in healthcare applications,
the adverse events about a new drug can be easily collected by
the hospitals from different patients. If the hospitals are will-
ing to share these medical data, it would be very useful for the
drug makers or medical research institutions to understand the
efficacy of the drug.

Although the sharing of crowdsourced data brings many
benefits, it may introduce privacy issues [Miao et al., 2015;

Shi and Wu, 2017; Miao et al., 2017; Feng et al., 2017]. Con-
sidering the above example, the hospital aims to collect the
adverse events about a new drug from different patients. The
patients usually trust the hospital and are willing to provide all
the requested information. But if the hospital directly releases
the patients’ medical data to the drug makers, the private in-
formation of patients would be disclosed. Without effective
privacy-preserving mechanisms, the patients may not allow
their data to be released. Thus, it is essential to address how
to enable the data collectors to release the crowdsourced data
without disclosing users’ private information.

Among existing privacy-preserving techniques, differential
privacy (DP) has drawn significant attention as it can pro-
vide very rigorous privacy and utility guarantee [Dwork et
al., 2006]. However, this technique has several practical lim-
itations when it is applied in the setting of releasing crowd-
sourced data. First of all, since the crowdsourced data on an
object (e.g., the new drug) are usually collected from multiple
users or sources, there inevitably exist conflicts among these
data. The reasons include incomplete views of observations,
environment noise, different knowledge bases and even the in-
tent to deceive, etc. Directly applyingDP on these data can not
eliminate the conflicts, and this will certainly degrade the ac-
curacy of the data analysis results. Additionally, DP is usually
achieved by adding noise following the Laplace or exponen-
tial mechanisms [Dwork et al., 2006]. The noise scale intro-
duced by the Laplace mechanism is proportional to the num-
ber of data records, and such noise may make the data useless
considering that crowdsourced dataset usually contains large
amounts of data records. Although the noise introduced by
the exponential mechanism does not depend on the number
of data records, it depends on the domains of the input data
[Dwork et al., 2014], which may also make the crowdsourced
data useless because these data usually have large domains.

To address the above challenges, in this paper, we propose
a novel sampling-based privacy-aware synthesizing method
for crowdsourced data (PrisCrowd). In this method, the data
collector first learns the underlying patterns (i.e., densities)
of the data for the objects through assigning each user a fine
grainedweight (or reliability degree) on each object. Then, for
each object, the data collector samples a set of candidate syn-
thetic data from the learned density. Finally, these synthetic
data are subjected to our proposed privacy test, and the data
collector only releases the synthetics that can pass the privacy
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test. The proposed method can not only extract high quality
crowdsourced data via differentiating each user’s fine grained
reliability degrees on different objects but also achieve DP
without injecting noise to the data. Both theoretical analysis
and extensive experiments on real-world datasets are provided
to verify the desirable performance of the proposed method.

2 Problem Setting
This paper considers a data releasing scenario, where a crowd
of users and a data collector are involved. The users (or data
sources) are the individuals (e.g., patients, customers) who
can observe some objects (e.g., drugs, commodities) and pro-
vide claims for them. The data collector is an individual or in-
stitution (e.g., a hospital, an online store) who can collect the
claims for these objects from a crowd of users and then release
these claims to the public either voluntarily or for financial in-
centives. Here, we assume that the collector is trusted and the
security threats mainly come from the public.
Problem formulation. Suppose there are N objects  =
{oi}Ni=1 which are observed by M users  = {1, 2, ...,M}.
For each object oi, the claims of users are denoted as i =
{xi,s}s∈i

, where xi,s represents the claim provided by user
s for object oi and i represents the set of users who pro-
vide claims for this object. The claims collected by the data
collector from all users are denoted as  = {i}Ni=1, which
need to be released to the public. Our goal in this paper is
to design a mechanism based on which the data collector can
release users’ claims with strong privacy protection for their
private information, while at the same time, the data analyzer
can achieve good utility from the released data.

3 Preliminary
Definition 1 (Differential Privacy [Dwork et al., 2006]). A
randomized algorithm  is (�, �)-differentially private if for
all neighboring datasets D,D′ ∈ n and for all events S in
the output space of, the following holds: Pr((D) ∈ S) ≤
e� Pr((D′) ∈ S) + �.
The kernel density estimation (KDE) is a statistically-sound

method to estimate a continuous distribution. Suppose there
are n independent observations X = {x1, ..., xn} ∈ ℝd fol-
lowing an unknown true density f ∗(x). The standard KDE
f̃ (x) for the estimation of f ∗(x) at those points is defined as
f̃ (x) = 1

n
∑n
i=1(x, xi). The following assumption will be

used throughout the paper.
Assumption 1. For a vector xi ∈ ℝd , we assume that the ker-
nel function satisfies (x, xi) = (x − xi). Furthermore,
(x−xi) is essentially a bump centered at xi. More specif-
ically, we take (x) = ||

− 1
2(− 1

2 z), where the kernel
 itself is a probability density with zero mean and identity
covariance and satisfying lim

‖x‖→∞ ‖x‖d(x) = 0.
Common choices for  that satisfy the above assumption

include Gaussian and Epanechinikov kernels. As an example,
Fig. 1 visualizes the construction of the standard KDE of 5
data points (black circles) using the well-knownGaussian ker-
nel that is defined as (x − xi) = ( 1

√

2�ℎ
)d exp(− ‖x−xi‖2

2ℎ2 ),
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Figure 1: An example for the standard KDE

where ℎ is the bandwidth. The red curves are the component
densities, and each red curve is a scaled version of the nor-
mal density curve centered at a datum. The standard KDE is
obtained by summing these five scaled components.

4 Methodology
4.1 Overview
To achieve the goal described in Section 2, we propose a
novel privacy-aware synthesizing method for crowdsourced
data (i.e., PrisCrowd), which contains two phases. In the first
phase, we propose to use the weighted KDE as an intermedi-
ate representation of the raw data. This intermediate repre-
sentation can well capture the statistical properties of the raw
data. In the second phase, we first sample a set of candidate
synthetic claims from the learned densities in the first phase,
then each of these candidate claims is subjected to the pro-
posed privacy test. If the claim passes the privacy test, it will
be released, otherwise it will be discarded. The flowchart of
the proposed two-phase method is shown in Fig. 2.

Figure 2: Privacy-aware synthesizing for crowdsourced data

4.2 Weighted KDE-based Data Representation
In order to share “wealth” data with the data analyzer, the
data collector first needs to learn the characteristics or the un-
derlying patterns of original data, i.e., the informative den-
sity distributions of objects. To estimate the density for each
object, the standard kernel density estimation (KDE) can be
adopted. Additionally, since different users may provide dif-
ferent claims for the same object, the reliability degrees (or
weights) of these users should be taken into account when
estimating the densities [Li et al., 2014b; Li et al., 2014a;
Li et al., 2016;Miao et al., 2019]. However, the standardKDE
cannot differentiate the importance of users (i.e., user reliabil-
ity degrees). In order to learn users’ reliability and compute
the densities of objects simultaneously, we propose a novel
method which can estimate users’ global and local weights,
and then combine them to learn objects’ informative density
distributions. A user’s global weight reflects his capability to
provide truthful information for all the objects, and the local
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weights represent that this user may have different confidence
when providing claims for different objects. The advantage of
the proposed method is that it can estimate reasonable relia-
bility for each user, and in turn, learn the accurate informative
density distributions for objects.
Global Weight Estimation
To evaluate the overall importance of users, the data collec-
tor assigns a global weight gs ∈ ℝ to each user s. Mean-
while, we can obtain a global density f gi for each object oi,
which should be close to the distribution of claims from re-
liable users. The distribution of the input claims i can be
obtained by i

(x,i) (x ∈ ℝ is a variable), i.e., the kernel
function associated with a reproducing kernel Hilbert space
i. To minimize the weighted deviation from the estimated
density Q = {f gi (x)}

N
i=1 to the multi-user input  = {i}Ni=1,

we propose the following optimization framework

min
G,Q

∑

s∈
gs

∑

i∈s

di
(i

(x, xi,s), f
g
i (x)) (1)

s.t.
∑

s∈
exp(gs) = 1,

where s denotes the set of objects observed by user
s, G = {gs}s∈ and the normalized squared loss
di

(i
(⋅, ⋅), f gi (x)) is defined as di

(i
(x, xi,s), f

g
i (x)) =

‖i
(x, xi,s) − f

g
i (x)‖

2
i
. The global loss function (i.e., Eq.

(1)) extends the framework in [Li et al., 2014b] from real
space to Hilbert space. We can use an iterative procedure to
solve it. Specifically, in the k-th iteration, gs is updated as

g(k+1)s = − log

∑

i∈s di
(i

(x, xi,s), f
g(k)
i (x))

∑

s′∈
∑

i∈s′
di

(i
(x, xi,s′ ), f

g(k)
i (x))

,

(2)

where f g(k)i (x) =
∑

t∈i
g(k)t i

(x, xi,t)∕(
∑

t∈i
g(k)t ). Eq.

(2) shows that a user’s global weight is inversely proportional
to the distance between its claims and the estimated global
densities at the log scale. Users whose claims are close to the
derived global densities will have higher global weights.
Local Weight Estimation
As described above, each user may have different confidence
when providing claims for different objects. Thus, we need
to model the local weight of each user on every object, which
will in turn help to infer the accurate density estimations. A
potential way to achieve this is to establish a square loss func-
tion. However, it leads to a problem that each user would re-
ceive the same local weight, and the trustworthiness of the
claims provided by different users would be equal. In order to
address this problem, we use Hampel loss function [Hampel
et al., 2011]:

�q1,q2,q3 (y) =

⎧

⎪

⎨

⎪

⎩

y2∕2, 0 ≤ y < q1
q1y − q21∕2, q1 ≤ y < q2
q1(y−q3)2

2(q2−q3)
+ q1(q2+q3−q1)

2
, q2 ≤ y < q3

q1(q2 + q3 − q1)∕2, q3 ≤ y,

where q1 < q2 < q3 are predefined nonnegative parameters.
These parameters allow us to decrease the trustworthiness of

“bad” claims and increase that of “good” ones for each object,
so the importance of users can be well distinguished.

Since we incorporate users’ reliability into estimating the
local densities, the local kernel density of object oi can be
defined as f li (x) =

∑

s∈i
li,si

(x, xi,s), where li,s is the
local weight of the user s on object oi. Thus, the objective
function for estimating li = {li,s}s∈i

is

J (li) = min
li

∑

s′∈i

� (‖i
(x, xi,s′ ) −

∑

s∈i

li,si
(x, xi,s)‖),

(3)
where ‖⋅‖ denotes the difference between users’ claims and
the estimated local density f li (x). This objective function is
not convex, i.e., Eq. (3) does not have a closed form solu-
tion. Fortunately, it is possible to approximate li = {li,s}s∈i
with a standard iteratively re-weighted least squares (IRWLS)
algorithm. The iterative procedure for computing {li,s}s∈i

is

l(k+1)i,s =
� (‖i

(x, xi,s) −
∑

t∈i
l(k)i,t i

(x, xi,t)‖)
∑

s′∈i
� (‖i

(x, xi,s′ ) −
∑

t∈i
l(k)i,t i

(x, xi,t)‖)
,

where k denotes the number of iterations. This equation
shows that users would receive lower weights when they
provide “bad” claims which deviate largely from the center
f li (x) =

∑

t∈i
li,ti

(x, xi,t).

Combined Weight Estimation
For each user s, to measure the consistency degree of the
global and local weights (i.e., gs and li,s), we define a mix-
ture weight, named combined weight ci,s. To learn the com-
bined weight, the relative entropy is employed, which mini-
mizes the information loss between user’s global weight and
local weight. The smaller the relative entropy value of those
weights, the higher the degree of their consistency. The ob-
jective of the combined model is

min
{ci,s}s∈i

∑

s∈i

ci,s log
ci,s
li,s

+
∑

s∈i

ci,s log
ci,s
gs
.

s.t.
∑

s∈i

ci,s = 1, ci,s ≥ 0.
(4)

By solving Eq. (4), we can obtain the combined weight ci,s
of user s on the object oi as ci,s =

√

li,sgs∕(
∑

t∈i

√

li,tgt).
Based on the learned combined weights, we can obtain the
density of object oi which is the weighted sum of claims in
Hilbert space and is given as

fi(x) =
∑

s∈i

√

li,sgs
∑

t∈i

√

li,tgt
i

(x, xi,s). (5)

4.3 Privacy Test-based Synthetics Release
To provide strong privacy protection for users’ private infor-
mation, in this section, we propose a privacy test-based syn-
thetics release method, which contains two steps: Candidate
synthetics generation and Privacy test for candidate synthet-
ics. In the first step, we sample a set of synthetic claims from
the learned density in Eq. (5) as the candidate data to release.
Then, in the second step, these sampled synthetics are sub-
jected to a privacy test. If a synthetic claim passes the test, it
will be released, otherwise it will be discarded.
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Candidate Synthetics Generation
We first discuss how to generate the synthetic claims ̃i for
each object oi. Specifically, we generate each element in ̃i
as follows:
1. Select a random integer s ∈ i with probability ci,s;
2. Generate a synthetic claim x̃i,s through sampling from

the probability distribution i
(x, xi,s).

Here ci,s can be treated as the sampling probability that deter-
mines whether xi,s is selected or not. In this step, we aim to se-
lect some seed data (e.g., xi,s) and then probabilistically trans-
form them into the synthetic data. The sampling mechanism
used here can increase the uncertainty of the adversary about
whether a user’s data is in the released dataset or not, and thus
it can help to protect users’ privacy to some extent. How-
ever, it is not enough to only use the sampling mechanism,
directly releasing the sampled data can still violate users’ pri-
vacy [Gehrke et al., 2012]. To tackle this problem, we design
the following privacy test mechanism to further prevent users’
private information from being disclosed.

Privacy Test for Candidate Synthetics
To prevent an adversary from deducing that a particular claim
in i is more responsible for generating the released synthetic
data than other claims, the following randomized privacy test
mechanism is proposed. Each candidate synthetic data in ̃i
is subjected to the randomized privacy test, and it is released
only when it passes this test.

Suppose k ≥ 1 and 
 > 1 are the privacy parameters, and
�0 is the randomness parameter. Let (⋅) denote the above
synthetic data generation procedure, which samples a candi-
date synthetic based on a seed data. Given xi,s ∈ i, we use
Pr{x̃i,s = (xi,s)} to denote the probability that a synthetic
data x̃i,s is generated based on (⋅). Then the privacy test
procedure for x̃i,s is described as follows:

1. Randomize k by adding a noise: k̃ = k + z, where z ∼
Lap(1∕�0) is sampled from the Laplace Distribution.

2. Let a ≥ 0 be the integer that satisfies the inequalities

−a−1 < Pr{x̃i,s = (xi,s)} ≤ 
−a.

3. Let k′ be the number of records xi,s′ ∈ i that satisfies

−a−1 < Pr{x̃i,s = (xi,s′} ≤ 
−a.

4. If k′ ≥ k̃, x̃i,s passes the test, otherwise it fails.

Note that k′ denotes the number of possible data seeds that
can generate x̃i,s with a probability value falling into a very
stringent interval [
−a−1, 
−a]. The threshold parameter k̃
prevents releasing sensitive synthetic data. Under this ran-
domized privacy test, a candidate synthetic data is released
only when there are at least k̃ possible data seeds that can
generate x̃i,s. Intuitively, the larger the value of k, the larger
the number of the possible seed data that are indistinguish-
able from xi,s. Also, the less the value of 
 , the more dif-
ficult to distinguish xi,s from other possible seed data. Al-
gorithm 1 summarizes the proposed privacy test-based syn-
thetics release procedure, in which m denotes the number of
synthetic claims that need to be released for object oi.

Algorithm 1 Private test-based synthetics release for oi
Input: {ci,s}s∈i

, i = {xi,s}s∈i
, k, 
 , �0, and m.

Output: The dataset ̃i that can be released.
1: ̃i = ∅
2: while |̃i| < m do
3: Select a random integer s ∈ i with probability ci,s;
4: Generate a synthetic claim x̃i,s based on the

probability distribution i
(x, xi,s);

5: Conduct randomized privacy test for x̃i,s;
6: if x̃i,s passes the privacy test then
7: ̃i = ̃i

⋃

{x̃i,s};
8: end if
9: end while

10: return ̃i;

4.4 Theoretical Analysis
Consistency Analysis
In Section 4.3, we generate the synthetic claims for object oi
by sampling from the mixture distribution fi(x), i.e., x̃i,s ∼
fi(x). After obtaining the dataset ̃i = {x̃i,s}ms=1, a basic
question here is that howwell the generated dataset can reflect
the original density function fi(x). Since each x̃i,s is sampled
from fi(x) independently, the density function over {x̃i,s}ms=1
can be denoted as f̃i(x) =

1
m
∑m
s=1i

(x, x̃i,s). In Theorem
1, we provide the expected squaredL2-norm distance between
fi(x) and f̃i(x).
Theorem 1. Under Assumption 1 for i

with the diago-
nal bandwidth matrix i = ℎ̂2Id , we further assume that
the support of (z) satisfies ‖z‖ ≤ 1. Then, the expected
squared L2-norm distance between fi(x) and f̃i(x), i.e., J =
E[∫ (fi(x) − f̃i(x))2dx], satisfies

J ≤ 4Aℎ̂ + A2ℎ̂2V + B
mℎ̂d

+ ABV
mℎ̂d−1

, (6)

where A = supx∈ℝd ‖∇fi(x)‖, B = ∫ ((z))2dz and V is the
volume of the support of fi(x). The expectation is respected
to {x̃i,s}ms=1 ∼ fi(x). This theorem is a general result for d
dimensional case, in this paper, the value of d is 1.

Privacy Analysis
Next, we conduct privacy analysis for Algorithm 1. Based on
Theorem 2, we know that the proposed algorithm is differen-
tially private.
Theorem 2. Note that the input parameters of Algorithm 1
include {ci,s}s∈i

, k ≥ 1, 
 > 0, and �0. For any neigh-
boring datasets i and  ′

i such that |i|, | ′
i| ≥ k and

any integer 1 ≤ t < k, we have that Algorithm 1 is (�, �)-
differentially private, where � = �0+log(1+



t
maxs∈i ci,s
mins∈i ci,s

), � =

|i|maxs∈i
ci,se−�(k−t).

Remark 1. Note that the proposed Algorithm 1 is different
from the mechanism in [Bindschaedler et al., 2017]. The
probability of choosing the seed xi,s is non-uniform in Algo-
rithm 1 while that is uniform in [Bindschaedler et al., 2017].
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Dataset # users # objects
Population 2,344 1,124
Stock 55 5,521
Indoor Floorplan 247 129

Table 1: The statistics of the adopted datasets.

The non-uniform property may generate different parameters
of differential privacy. When maxs∈i

ci,s = mins∈i
ci,s =

1∕|i| (i.e., we uniformly sample the seed xi,s), the above
Theorem 2 is actually Theorem 1 in [Bindschaedler et al.,
2017]. Thus, Theorem 2 in our paper is a generalization of
Theorem 1 in [Bindschaedler et al., 2017]. Although the main
idea of the proof for Theorem 2 is similar to that in [Bind-
schaedler et al., 2017], the details are quite different: in [Bind-
schaedler et al., 2017] the proof consider  ′

i = i
⋃

{xi,s′}
as the neighborhood dataset while ours consider  ′

i = {i −
{xi,s}}

⋃

{xi,s′} as the neighborhood dataset. That is because
if we add one data record, the probability of sampling seeds,
i.e., {ci,s}, will be totally changed. So the proof in [Bind-
schaedler et al., 2017] cannot satisfy our case.

5 Experiments
Performance measure. To evaluate the performance of
our method, we adopt two measure metrics: the integrated
squared error (ISE) and the squared integrated squared er-
ror (SISE). ISE is defined as:

∑N
i=1 ∫

+∞
−∞ (fi − f̃i)2dx, where

fi and f̃i are respectively the original density and the density
derived from the synthetic data for object oi. SISE is defined
as:

∑N
i=1(∫

+∞
−∞ (fi−f̃i)2dx)2. Compared with ISE, SISE tends

to penalize more on the large distance and less on the small
distance. Since the goal of the collector is to release the data
whose pattern is similar to the true underlying pattern for the
objects, the lower the ISE or SISE, the better the method.
Datasets. We adopt the following real-world datasets for
our experiments: Population Dataset [Pasternack and Roth,
2010; Wan et al., 2016], Stock Dataset [Li et al., 2012], and
Indoor Floorplan Dataset [Li et al., 2014a]. The statistics of
these datasets are provided in Table 1.
Baselines. Here, we adopt two baselines, i.e. Basic andUni-
form. In the Basic method, the data collector adds three level
noise to the original data: � = 0.1 (Strong), � = 1 (normal)
and � = 10 (Weak). In the Uniform method, the collector
treats all users equally and the entities’ densities are learned
with the uniformly weighted kernel density estimation. Here,
the synthetic data generation and the privacy tests procedures
are the same with those in our proposed method.
Case study. In order to investigate the advantages of the
users’ combined weights, we conduct case studies on the three
real-world datasets. For each dataset, we randomly select two
objects as the cases, and then estimate their densities. The es-
timated densities are shown in Fig. 3. The red line in each sub-
figure represents the density estimated based on users’ com-
bined weights. The black line represents the result estimated
only based on the global weight of each user. We also conduct
estimations without considering user quality, i.e., treating all
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Figure 3: Case study on real-world datasets. (a) and (b): the two
cases for Population dataset. (c) and (d): the two cases for Stock
dataset. (e) and (f): the two cases for Indoor Floorplan dataset.

users equally, and the estimated density for each object is rep-
resented with the green line. The results in Fig.3 show that
the densities estimated based on users’ combined weights are
the closest to the true densities which are represented with the
blue lines. Additionally, we show the claims of each object in
this figure with magenta circles and crosses. We can see that
some claims (i.e., the magenta crosses) are far away from oth-
ers (i.e., the magenta circles). These claims are usually pro-
vided by the users with low weights, and they can be treated
as outliers when estimating each object’s density. The results
show that the method based on the combined weight is more
robust to outliers than the methods which only adopt users’
global weights or treat all users equally. In other words, the
estimated density for each object based PrisCrowd can well
reflect the underlying true density of this object.

Accuracy comparison. In this experiment, we evaluate the
accuracy (or quality) of the published synthetic data and ex-
plore whether these data can well reflect the underlying true
densities of the objects. Here we assume that the data collec-
tor releases 30 synthetic claims for each object to the public.
The parameters 
 and k are set as 4 and 5 respectively. In or-
der to evaluate the accuracy of the synthetic claims, we first
derive the density (i.e., f̃i) of each object from the synthetic
data, and then calculate ISE and SISE for each dataset. The
results are shown in Table 2, from which we can see the pro-
posed approach performs much better than the baseline meth-
ods on all real-world datasets. That is to say, the synthetic data
generated based on our proposed method could well preserve
the characteristics of the underlying pattern for the objects.
Additionally, the results also show that the advantages of our
proposed approach on the Stock dataset is larger than that on
the Population and Indoor Floorplan datasets. The reason is
that there are more outlying data points in the Stock dataset,
and our proposed approach is robust to these outliers while
the baseline methods are very sensitive to them.

The effect of the number of sampled claims. In this exper-
iment, we evaluate the effect of the number of sampled claims
for each object on the performance of the proposed method.
Here we vary the number of the sampled claims for each ob-
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Measure Method Population Stock Indoor
PrisCrowd 0.479 1.699 1.051
Uniform 0.628 17.628 1.220

ISE Basic(Strong) 1.183 12.799 1.943
Basic(Normal) 1.119 9.867 1.937
Basic(Weak) 0.866 2.125 1.882

PrisCrowd 6.209 11.430 8.405
Uniform 8.502 47.217 11.112

SISE Basic(Strong) 12.013 40.420 15.111
Basic(Normal) 11.768 35.391 15.046
Basic(Weak) 10.149 15.412 14.723

Table 2: Accuracy comparison on the real-world datasets

ject from 1 to 30 and then calculate the ISE and SISE on the
three real-world datasets. The results are shown in Fig. 4,
from which we can see the ISE and SISE gradually get flat-
tened with the increase of the number of the sampled claims
for each object. Take the population dataset as an example,
when the number of sampled claims is lager than 10, the val-
ues of ISE and SISE are almost the same. That is to say, the
released data generated based on our proposed method could
well reflect the underlying patterns of the objects even only a
few claims are sampled for each object.

Computational cost. Next we evaluate the computational
cost of the synthetic claims generation procedure, i.e., the sec-
ond phase in our proposed method. In this experiment, we
only generate synthetic claims for the objects whose ground
truths can be achieved from the original datasets, and consider
two scenarios, i.e., with privacy tests and without privacy
tests. Then we vary the number of the sampled claims for each
object from 1 to 30. The running time of the synthetic claims
generation procedure for the Population and Indoor Floorplan
datasets is shown in Fig. 5, fromwhich we can see the running
time in the two scenarios is approximately linear with respect
to the number of sampled claims for each object. Additionally,
the results also show that the privacy test step introduce extra
computational cost during the released data generation pro-
cedure. This is because each candidate synthetic data record
needs to be tested in the privacy test step. Since good utility
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Figure 4: Accuracy w.r.t. Number of Sampled Claims. (a) and (b):
Population. (c) and (d): Stock. (e) and (f): Indoor Floorplan.
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Figure 5: Running time vs. number of sampled claims for each ob-
ject. (a): Population. (b): Indoor Floorplan.

can be achieved based on our proposed method even only a
few synthetic claims are generated for each object, the com-
putational cost is tolerable in practice.

6 Related Work
Recently, various differential private data release approaches
have been proposed. Those methods can be roughly parti-
tioned into two categories: the interactive ones and the non-
interactive ones. In an interactive method [Li et al., 2010;
Hardt and Rothblum, 2010; Roth and Roughgarden, 2010], a
data analyzer can pose queries via a private mechanism, and a
dataset owner answers these queries in response. In the non-
interactive framework [Nissim et al., 2007; Bindschaedler
and Shokri, 2016; Blum et al., 2013; Wang et al., 2018;
Wang et al., 2019], a data owner releases the private version
of the original data. Once data are published, the owner has
no further control over the published data.

The method in our paper is non-interactive. The typical
approach to protect data privacy in the non-interactive con-
text is to directly add noise, which is taken by [Bindschaedler
and Shokri, 2016; Blum et al., 2013]. These works are either
computationally infeasible on high-dimensional data, or prac-
tically ineffective because of their large utility costs. There
are also some other works [Bindschaedler and Shokri, 2016]
which release private data without adding noise, but they are
unsuitable to be used in the newly appearing crowdsourcing
setting considered in this paper where multi-sources provide
multi-observations for multi-objects.

7 Conclusions
In this paper, we propose a novel privacy-aware synthesizing
method for crowdsourced data. Based on this method, the
data collector can release the crowdsourced data with strong
privacy protection for users’ private information, while at the
same time, the data analyzer can achieve good utility from the
released data. Both theoretical analysis and extensive exper-
iments on real-world datasets verify the effectiveness of the
proposed method.
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