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Abstract
Multi-view clustering aims to cluster data from di-
verse sources or domains, which has drawn con-
siderable attention in recent years. In this pa-
per, we propose a novel multi-view clustering
method named multi-view spectral clustering net-
work (MvSCN) which could be the first deep ver-
sion of multi-view spectral clustering to the best of
our knowledge. To deeply cluster multi-view data,
MvSCN incorporates the local invariance within
every single view and the consistency across differ-
ent views into a novel objective function, where the
local invariance is defined by a deep metric learning
network rather than the Euclidean distance adopted
by traditional approaches. In addition, we enforce
and reformulate an orthogonal constraint as a novel
layer stacked on an embedding network for two ad-
vantages, i.e. jointly optimizing the neural network
and performing matrix decomposition and avoid-
ing trivial solutions. Extensive experiments on four
challenging datasets demonstrate the effectiveness
of our method compared with 10 state-of-the-art
approaches in terms of three evaluation metrics.

1 Introduction
Clustering is a fundamental task in computer vision and ma-
chine learning communities, which aims to cluster data in
an unsupervised manner. Over the past decades, a variety
of clustering methods have been proposed and recent focus
has shifted to handling high-dimensional data that usually
lies on a nonlinear low-dimensional manifold. The typical
clustering methods include but not limited to spectral cluster-
ing or called subspace clustering (SC) [Elhamifar and Vidal,
2013; Liu et al., 2013; Lu et al., 2018; Yang et al., 2018;
Peng et al., 2018b] and deep learning based clustering meth-
ods [Ji et al., 2017; Peng et al., 2016; Shaham et al., 2018;
Peng et al., 2018a]. Although impressive results have been
achieved, the aforementioned clustering methods only con-
sider the single-view case while ignoring the information
from multiple sources or domains, e.g., image and text. In
fact, the object in the real world is usually presented in the
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Figure 1: The visualization on Noisy MNIST w.r.t. increasing train-
ing epoch, where t-SNE [Maaten and Hinton, 2008] is used to visu-
alize our learned multi-view representation. As shown, our method
could separate the data into different clusters with growing training
epochs, which converges quickly.

form of multi-view and only all views together could repre-
sent the object exactly and faithfully. Therefore, it is highly
expected to develop multi-view clustering (MvC) approaches
to utilize the multi-view information [Hu et al., 2018; Liu et
al., 2015; Zhou et al., 2019].

To exploit the diverse and complementary information
contained in different views, numerous multi-view cluster-
ing methods have been proposed [Xu et al., 2013; Wang et
al., 2018], which could be roughly classified into two cate-
gories, namely, generative (model-based) methods and dis-
criminative (or similarity-based) approaches. In this paper,
we mainly focus on discriminative approaches which learn
a set of representations for different views by considering
within-view similarity and between-view consistency. The
within-view similarity is utilized to learn invariant represen-
tation for each single view and the between-view consistency
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is used to enforce the representations of different views as
similar as possible. With the view-specific representation, the
clustering results are obtained by conducting some clustering
approaches such as k-means on the final representation. In
summary, the key to discriminative MvC is formulating the
within-view similarity and the between-view consistency.

Based on different formulations of within-view similar-
ity and between-view consistency, discriminative approaches
could be further divided into multi-view canonical correlation
clustering (MvC3) [Vinokourov et al., 2003], multi-view ma-
trix decomposition clustering (MvMDC) [Deng et al., 2015;
Zhao et al., 2017], and multi-view spectral clustering or
called multi-view subspace clustering (MvSC) [Kumar et al.,
2011; Li et al., 2015; Lu et al., 2016; Wang et al., 2018;
Zhang et al., 2017]. Among these methods, MvSC has earned
a lot of interests and achieved state-of-the-art performance.

Despite the success of existing MvC works, most of them
are nonparametric shallow models which have been proven
ineffective and inefficient to handle real-world data, espe-
cially considering the large-scale setting and the complex
data distribution. To overcome these disadvantages, one
promising way is encapsulating deep learning into MvC
to utilize the parallel computing fashion and nonlinearity
of neural networks. However, only few works have de-
voted to developing deep multi-view clustering approaches,
e.g., deep canonical correlation analysis (DCCA) [Andrew
et al., 2013], deep canonically correlated autoencoders (DC-
CAE) [Wang et al., 2015], and multi-view deep matrix fac-
torization (MvDMF) [Zhao et al., 2017]. On the other hand,
although traditional spectral clustering (SC) [Ng et al., 2002]
is powerful and widely used, there is no attempt to extend it
to the deep neural network framework so far. The main dif-
ficulty may lie onto the joint optimization of neural network
and the SC loss function. In brief, SC requires solving a ma-
trix decomposition problem, thus making difficulty in jointly
optimizing the neural network and the objective function of
SC, i.e. the gradient derived from the matrix decomposition
cannot be back-propagated to optimize the neural network.

To exploit how to make multi-view spectral clustering ben-
efiting from deep learning, we propose Multi-view Spectral
Clustering Network (MvSCN) which aims to learn a common
space from multi-view data using a parametric deep model
(see Fig. 2). Specifically, MvSCN progressively maps each
multi-view data point into a common space with a deep neu-
ral network which embraces the local invariance on manifold
for each single view and the consistency of pairwise view-
specific representation. The novelty and contribution of this
work could be summarized as below:

• Different from traditional SC and MvSC, we propose
learning the local invariance by SiameseNet [Hadsell et
al., 2006] rather than pairwise local similarity, thus en-
joying better clustering performance and smooth coop-
eration with deep neural network.

• To overcome the aforementioned optimization chal-
lenge, we construct an orthogonal layer and propose an
optimization method. Note that, the orthogonal layer is
generalizable and could be a feasible solution to other
matrix decomposition related deep learning, that is be-

yond the scope of this work and will be investigated in
the future.
• To the best of our knowledge, the proposed MvSCN

could be the first deep extension of multi-view spec-
tral clustering, which is complementary to the classical
MvSC. From the view of the classical SC/MvSC, our
work may provide a promising way to boost the perfor-
mance and revive it in the era of big data and deep learn-
ing. Fig. 1 presents a visualization result of MvSCN to
show its effectiveness and fast convergence.

2 Background and Notations
In this section, we briefly introduce some related works in-
cluding spectral clustering [Ng et al., 2002] and multi-view
spectral clustering [Cai et al., 2011; Kumar et al., 2011]. In
this paper, the lower-case mathematical letters denote scalars,
the lower-case bold letters denote vectors, the upper-case bold
ones denote matrices, and I denotes an identity matrix.

2.1 Spectral Clustering
For a given dataset X = [x1,x2, · · · ,xn] ∈ Rd×n, one aims
to separate all data points into one of c clusters. Spectral
clustering [Ng et al., 2002] first builds an affinity matrix or
graph in which each vertex represents a data point, and any
two data points are connected i.i.f. one of them is among k
nearest neighbors of the other. Specifically, the vanilla spec-
tral clustering method adopts the Euclidean distance with the
Gaussian kernel to construct the affinity matrix W as below:

Wij =

{
exp(−‖xi−xj‖

2
2

2σ2 ), xi,xj are connected.
0, otherwise.

(1)

where Wij ∈ W is the connection weight between the i-th
and the j-th data point.

With the precomputed W, the objective function of SC is
defined by:

argmin
Y

Tr(Y>LY)

s.t. Y>Y = I (2)
where L is a Laplacian matrix defined by L = D−W, D is
a diagonal matrix of Dii =

∑
jWij , and Tr(·) denotes the

trace of a matrix. The optimal data representation Y to Eq. 2
consists of c eigenvectors corresponding to c smallest eigen-
values of L. With the optimal Y, the clustering assignment is
obtained by conducting k-means on it.

2.2 Multi-view Spectral Clustering
Let {X(v)}mv=1 (m ≥ 2) be the v-th view of a dataset. For
ease of presentation, considering two-view case, x

(1)
i and

x
(2)
i denote the same object xi in the first and second views.

A general formulation of multi-view based spectral clustering
is given in [Li et al., 2015] as below:

arg min
Y,a(v)

m∑
v

(a(v))rTr(Y>L(v)Y)

s.t. Y>Y = I,
m∑
v

a(v) = 1, a(v) > 0 (3)
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where a(v) is the non-negative normalized variable for reflect-
ing the contribution/importance of the v-th view and r is a
scalar to control the distribution of different weights on dif-
ferent views. More detail can be seen in [Kumar et al., 2011;
Li et al., 2015].

3 Multi-view Spectral Clustering Network
In this section, we propose a deep multi-view clustering
method, termed Multi-view Spectral Clustering Network
(MvSCN). Different from existing multi-view spectral clus-
tering methods, MvSCN is a deep MvSC which implements
the deep neural networks as a parametric function as fθ :
Rd → Rc, where d denotes the data dimension, c is the clus-
ter number, and θ denotes the parametric model. Once the
representation is obtained with the well-trained θ, k-means is
applied to compute the cluster assignments similarly to the
traditional MvSC.

3.1 Objective Function
To deeply perform multi-view spectral clustering, we propose
the following objective function:

L = (1− λ)
m∑
v=1

L(v)
1 + λL2, (4)

where the within-view similarity L(v)
1 enforces similar points

as close as possible in each single view and the between-view
consistency L2 aims to learn a common space in which the
discrepancy among different views is minimized. λ ∈ [0, 1]
is a scalar to balance the contribution of these two losses.

In our objective function, L(v)
1 and L2 encapsulate local

invariance on manifold and representation consistency via:

L(v)
1 =

1

n2

n∑
i,j

W
(v)
ij ‖y

(v)
i − y

(v)
j ‖

2
2, (5)

and

L2 =
1

nm2

m∑
v,p

n∑
i

‖y(v)
i − y

(p)
i ‖

2
2, (6)

whereW (v)
ij denotes a precomputed similarity graph and y

(v)
i

denotes the output of a neural network w.r.t. the input x(v)
i ,

namely, y
(v)
i = f

(v)
θ (x

(v)
i ), where f

(v)
θ is the v-th sub-

network θ(v) that is used to handle the v-th view. Note that,
we do not explicitly learn a common representation which is
close to different view-specific representations. Instead, we
learn a common space in which the view-specific represen-
tations are as close as possible and obtain the final represen-
tation by concatenating the view-specific representations like
[Cao et al., 2015; Lu et al., 2016] did. One major advantage
of the common space learning is that fewer variables need op-
timization, thus remarkably decreasing the optimization com-
plexity. In addition, our experimental results will show that
such a simple approach could give a favorite clustering result.

In the objective function, L2 (Eq.6) is designed to enforce
the view-specific representations of the same data points as
similar as possible. L(v)

1 (Eq.5) is designed based on the man-
ifold assumption, i.e., the similarity between the data point

x
(v)
i and its neighbor x(v)j is invariant on manifold in differ-

ent projection spaces. Clearly, the formulation of W (v)
ij plays

an important role to the clustering performance. In fact, re-
cent efforts of SC and MvSC have been devoted to this aspect
in the context of shallow models, e.g., low rank affinity ma-
trix [Liu et al., 2013; Zhang et al., 2017] and group effect
based affinity matrix [Lu et al., 2018]. Different from these
methods, we adopt SiameseNet [Hadsell et al., 2006] to learn
W

(v)
ij for improving performance, and will elaborate the im-

plementation in Section 3.2.
Although our network with the above objective function

could be easily optimized by the back-propagation algorithm,
it will give a trivial solution that maps all inputs to the same
point into the common space, i.e.

y
(v)
i = y, ∀(i, v), (7)

which makes Eq. 4 achieve the minimizer of 0. In other
words, all the data points will collapse into the same point,
which is undesirable for clustering task. In order to avoid this
issue, a constraint is used to orthogonalize the outputs via

(Y(v))>Y(v) = In×n, (8)

where Y(v) is a n× d matrix in which i-th denotes the y
(v)
i .

Note that, there are two ways to implement the orthog-
onal constraint (i.e., Eq. 8). The first one is to incorpo-
rate the orthogonal constraint into Eq. 4 as a regularizer,
i.e., soft constraint. Such an approach is widely adopted by
plenty of shallow models such as SC [Liu et al., 2013; Ng et
al., 2002] and MvSC [Kumar et al., 2011; Lu et al., 2016;
Zhang et al., 2017], which has suffered from two limita-
tions. On the one hand, a new hyper-parameter is introduced
to determine the contribution of the orthogonal term, whose
optimal value is hard to find. On the other hand, the soft
constraint cannot guarantee the strict orthogonality of Y(v).
Thus, we choose to achieve the orthogonality by recasting the
constraint as the top layer of our neural network through the
following theorem:

Theorem 1 Given a matrix A and suppose A>A is full
rank, Q is an orthogonal matrix which is defined as

Q = A(L−1)> (9)

where L is obtained by Cholesky decomposition as A>A =
LL> and L is a lower triangular matrix.

Proof For a matrix A that A>A is full rank, performing
Cholesky decomposition gives A>A = LL>, where L is
a lower triangular matrix. Thus L−1 is lower triangular and
(L−1)> is upper triangular. For Q = A(L−1)>, it is easy to
find that Q is an orthogonal matrix by

Q>Q =L−1A>A(L−1)> = L−1LL>(L−1)> = I.
(10)

The proof is complete. �
With Theorem 1, we could construct a new layer to im-

plement the orthogonal constraint. To be specific, the or-
thogonal layer first performs Cholesky decomposition on
(Y(v))>Y(v) to obtain L(v) and then obtains the orthogonal
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Figure 2: The architecture of the proposed MvSCN. Our model consists m embedding networks which output the representation of original
data from different views. In order to obtain the orthogonal representation, each embedding network is followed by an orthogonal layer which
performs the QR decomposition with Theorem 1. Once we obtain the representation of the batch data, we compute the objective function and
update the network weight using the gradients.

representation via Ŷ(v) = Y(v)((L(v))−1)>. Note that, the
full rankness of (Y(v))>Y(v) could be easily guaranteed by
adding a sufficiently small number (e.g., 10−5) at the diago-
nal elements without loss of generality.

3.2 Affinity Learning
Most subspace clustering methods define the local invariance
using Euclidean distance with a Gaussian kernel [Ng et al.,
2002] or self-expressive representation [Elhamifar and Vi-
dal, 2013; Lu et al., 2016; Yang et al., 2018] from raw data
space. Although these methods have shown impressive per-
formance, they may achieve inferior performance when the
data distribution is complex. For example, when the data is
insufficient sampling.

Different from the aforementioned scheme, we employ
SiameseNet [Hadsell et al., 2006] to learn W

(v)
ij for each

view. Given pairs of positive (similar) or negative (dissimi-
lar) samples (xi,xj), SiameseNet learns a parametric model
gθ(·) by minimizing the distance of positive pairs while max-
imizing the distance of negative pairs under the help of the
ground-truth. Note that, for ease of representation, we dis-
card the superscript of x

(v)
i in this section, which will not

cause misunderstandings. Formally, the objective function of
the SiameseNet is defined as:

Ls =P‖gθ(xi)− gθ(xj)‖22+ (11)

(1− P )max(γ − ‖gθ(xi)− gθ(xj)‖22, 0),

where the ground-truth P = 0/1 if the pair (xi,xj) is neg-
ative/positive, gθ is a neural network to embed the input xi
into a latent space, and γ denotes the distance margin which
is fixed to 1.0.

In the unsupervised settings including clustering, however,
the ground-truth is unavailable. To solve this issue, we con-
struct the positive and negative pairs using the k-NN graph.

To be exact, (xi,xj) is a positive pair if xj falls into the k-
neighborhood of xi. To construct the negative pairs, we use
xi and its k non-neighbors that are randomly selected. In
other words, the positive pairs and the positive pairs are with
equal size. Once the SiameseNet achieves convergence, all
the data points are passed through the network gθ(·) and the
affinity is computed via

Wij =

{
exp(−‖gθ(xi)−gθ(xi)‖

2
2

2σ2 ), xi,xj are connected.
0, otherwise.

(12)

3.3 Network Architecture and Training
In this section, we elaborate on the structure and training
procedure of our multi-view spectral clustering network. As
shown in Fig. 2, the proposed MvSCN consists of two steps
involving two networks. The first network learns affinity for
each view using a SiameseNet. The second one passes the
raw data of each view into an embedding orthogonal space
and further projects the view-specific representations into a
common space. Note that, these two networks are with only
one difference. To be specific, the second one replaces the
output layer of the first network with a fully connected layer
consisting of c neurons which is followed by the orthogonal
layer, where c is the cluster number. More details of the used
networks have been presented in the supplementary materials.

We train our network in a coordinate descent fashion which
alternates between the orthogonalization and the gradient
steps. More specifically,

• Orthogonalization steps: to optimize the orthogonal
layer, we use the Cholesky decomposition as shown in
Eq. 9 and obtain the orthogonal representations for each
view accordingly. Note that, we do not require the or-
thogonality of cross-batch data points and the Cholesky
decomposition cannot guarantee this too. However, the
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batch size is usually set to a large number to achieve
smooth orthogonalization results.
• Gradient step: for a batch of data, the standard back-

propagation is applied to optimize the parameters of the
embedding network with the fixed orthogonal layer.

Once our MvSCN achieves convergence, we obtain the fi-
nal representation by concatenating all view-specific repre-
sentation together and employ k-means to separate these data
into different clusters.

4 Experiment
In this section, we evaluate the performance of the proposed
MvSCN. In details, we compare it with 10 state-of-the-art
clustering methods including the single view methods: Spec-
tral clustering (SC) [Ng et al., 2002], low rank representation
(LRR) [Liu et al., 2013], SpectralNet [Shaham et al., 2018]
and the multi-view clustering methods: DCCA [Andrew et
al., 2013], DCCAE [Wang et al., 2015], DiMSC [Cao et al.,
2015], LMSC [Zhang et al., 2017], MvDMF [Zhao et al.,
2017], SwMC [Nie et al., 2017], BMVC [Zhang et al., 2018].
For the single-view clustering methods, we report their re-
sults by concatenating the feature vectors corresponding to all
views. To further investigate the contributions of components
in the proposed model, we define the following three alter-
native baselines: 1) MvSCN1: which uses the k-NN graph
to compute the affinity matrix W. 2) MvSCN2: which uses
the raw data without data preprocess by the auto-encoder. 3)
MvSCN3: which discards the L2.

All the experiments are implemented using
Keras+Tensorflow on a standard Ubuntu-16.04 OS with
an NVIDIA 1080Ti GPU. The experiment code will be soon
released on Github. In addition, due to space limitation, we
provide the full performance comparisons of our method
on the supplementary material (https://www.dropbox.com/s/
48akm1iutn67bdi/SupplementaryMaterial.pdf?dl=0).

4.1 Experiment Setting
We carry out experiments on four popular multi-view datasets
including:
• Noisy MNIST1: We adopt the setting used in [Wang et

al., 2015]. Specifically, we use the original dataset as the
view 1, and randomly select within-class images to add
additive noisy as the view 2. Thus, we obtain a bi-view
dataset consisting of 70K samples for each view.
• Caltech101-20 (A subset of Caltech1012): The dataset

consists of 2386 images of 20 subjects. We follow the
setting used in [Zhao et al., 2017] to extract six hand-
crafted features as six views, including Gabor feature,
Wavelet Moments, CENTRIST feature, HOG feature,
GIST feature and LBP feature.
• Reuters3: We use a subset of the Reuters database

which consists of the English version and the transla-
tions in four different languages, i.e., French, German,

1http://ttic.uchicago.edu/∼wwang5/dccae.html, createMNIST.m
2http://www.vision.caltech.edu/Image Datasets/Caltech101/
3https://archive.ics.uci.edu/ml/datasets.html

Spanish and Italian. The used subset consists of 18758
samples from 6 classes.

• NUS-WIDE-OBJ4 : This dataset consists of 30K im-
ages distributed over 31 classes. We use five features
provided by NUS, i.e., Color Histogram, Color Mo-
ments, Color Correlation, Edge Distribution and wavelet
texture.

For a comprehensive investigation, we adopt Accuracy
(ACC), normalized mutual information (NMI), and F-
measure (F-mea) to evaluate all the tested methods. A higher
value indicates a better performance for all metrics.

4.2 Comparisons with State of the Arts
In this section, we compare the proposed MvSCN with
10 state-of-the-art clustering methods on four real-world
datasets. To boost the performance and reduce the compu-
tational cost, we use a pretrained auto-encoder [Shaham et
al., 2018] to reduce the dimensionality for all tested meth-
ods. In addition, we use 10K samples randomly selected
from Noisy MNIST, Reuters and NUSWIDEOBJ in exper-
iments since most of the baselines are inefficient to handle
large-scale dataset. For a fair comparison, we randomly split
the dataset into two partitions with equal size, one partition
is used to tune parameters for all the methods and the other
partition is used for evaluation.

Table 1 shows the quantitative comparison with 10
state-of-the-art methods on four datasets. Note that, as
DCCA/DCCAE can only handle bi-view dataset, we report
their performance on the best two views accordingly. From
Table 1, one could observe that our MvSCN outperforms the
compared methods in terms of most the evaluation metrics.
Specifically our model achieves 99.18% on Noisy MNIST,
which is the best performance to the best of our knowledge.
Moreover, our model outperforms compared methods with
a large margin on Caltech101-20. Similarly we can see
that our method outperforms other methods on Reuters and
NUSWIDEOBJ in most cases and LMSC achieves a com-
petitive result in terms of NMI.

4.3 Influence of Parameters
In this section, we investigate the influence of the parameters
λ and k of our method. To be specific, MvSCN controls the
within-view loss L1 and between-view loss L2 using λ, and
uses the neighborhood size k to determine the ground-truth
and the connectivity of the affinity W. We conduct the exper-
iment on the Caltech101-20 dataset. As shown in Fig. 3(a),
one could see that ACC and NMI firstly increase until about
5 × 10−5 and then decline with increasing λ. Regarding the
parameter k, ACC and NMI of our method almost remain
unchanged as shown in Fig. 3(b). In addition, we also in-
vestigate the performance w.r.t. training epochs in Fig. 3(c).
As shown, the loss consistently decreases with more training
epochs, which declines quickly in the first 30 epochs. Re-
garding ACC and NMI, they first remarkably increase in the
first 30 epochs, and then increase smoothly and slowly.

4http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Noisy MNIST Caltech101-20 Reuters NUSWIDEOBJ
Methods ACC F-mea NMI ACC F-mea NMI ACC F-mea NMI ACC F-mea NMI

SC 66.26 66.42 61.36 42.50 34.15 62.41 45.94 38.17 22.26 15.32 10.33 15.58
LRR 56.96 55.06 65.84 39.15 29.83 59.53 41.52 27.26 26.37 13.94 10.73 14.16
SpectralNet 84.68 82.21 90.14 51.05 36.91 64.55 46.64 29.45 24.66 15.38 11.52 15.19
DCCA 95.50 95.46 89.47 42.83 37.60 62.03 29.40 25.54 6.73 16.00 8.83 11.34
DCCAE 94.92 94.87 88.45 44.76 38.87 61.19 30.28 25.21 8.87 14.76 8.55 11.65
DiMSC 47.24 50.25 34.84 21.46 16.59 24.70 40.50 37.38 13.51 9.28 7.49 7.53
LMSC 66.88 66.79 61.94 38.14 30.06 57.02 40.06 33.20 28.89 15.40 12.14 16.30
MvDMF 75.26 75.00 67.12 35.96 26.23 47.25 45.78 24.93 24.69 12.04 7.49 7.53
SwMC 98.98 98.96 97.14 49.87 35.53 62.32 32.84 20.59 23.00 13.84 4.53 9.58
BMVC 90.40 85.98 93.47 36.55 25.70 56.19 46.96 34.82 22.10 14.12 9.95 12.57

MvSCN1 98.12 98.08 95.63 50.38 42.01 67.10 31.02 13.58 5.46 16.08 9.67 15.24
MvSCN2 70.24 65.54 77.88 53.98 40.59 59.37 - - - 16.24 11.13 13.54
MvSCN3 84.08 81.97 89.77 45.26 36.06 63.88 47.84 40.86 25.14 13.64 9.42 14.39
MvSCN 99.18 99.16 97.76 58.84 44.30 68.55 48.86 43.45 26.75 16.56 12.02 16.73

Table 1: Clustering performance comparison using Noisy MNIST and Caltech101-20 datasets.
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Figure 3: (a): The influence of λ. (b): The influence of k. (c): The influence of training epoch w.r.t. the loss and clustering performance on
Noisy MNIST, where the left y-axis denotes the normalized loss and the right y-axis corresponds to the clustering performance.

5 Conclusion
In this paper, we proposed a deep multi-view clustering
method, termed as multi-view spectral clustering network
(MvSCN) which could be the first deep multi-view spectral
clustering. Thanks to the collaboration of the within-view
invariance, the between-view consistency, the nonlinear em-
bedding network, and the orthogonal layer, MvSCN could
learn a common space in which a discriminative representa-
tion is obtained to facilitate the clustering performance. Ex-
tensive experiments have shown the efficacy of MvSCN com-
pared to 10 state-of-the-art clustering methods on four chal-
lenging datasets. In this work, the orthogonal layer is de-
signed to solve the gradient back-propagation problem and
trivial solution caused by cooperation of matrix decomposi-
tion and neural network. In the future, we plan to investigate
the possibility and solution of implementing the constraints
such as low-rankness as a neural model.
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