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Abstract
Extreme classification seeks to assign each data
point, the most relevant labels from a universe of
a million or more labels. This task is faced with
the dual challenge of high precision and scalabil-
ity, with millisecond level prediction times being
a benchmark. We propose DEFRAG, an adaptive
feature agglomeration technique to accelerate ex-
treme classification algorithms. Despite past works
on feature clustering and selection, DEFRAG dis-
tinguishes itself in being able to scale to millions of
features, and is especially beneficial when feature
sets are sparse, which is typical of recommendation
and multi-label datasets. The method comes with
provable performance guarantees and performs ef-
ficient task-driven agglomeration to reduce feature
dimensionalities by an order of magnitude or more.
Experiments show that DEFRAG can not only re-
duce training and prediction times of several lead-
ing extreme classification algorithms by as much as
40%, but also be used for feature reconstruction to
address the problem of missing features, as well as
offer superior coverage on rare labels.

1 Introduction
The task of taking assigning data points, one or more labels
from a vast universe of millions of labels is often referred to
as the extreme classification problem. Although reminiscent
of the classical multi-label learning problem, the emphasis on
addressing extremely large label spaces distinguishes extreme
classification. Recent advances in extreme classification have
allowed problems such as ranking, recommendation and re-
trieval to be viewed and formulated as multi-label problems,
indeed with millions of labels.

This focus on extremely large label sets has given us state-
of-the-art methods for product recommendation [Jain et al.,
2016], search advertising [Prabhu et al., 2018], and video
recommendation [Weston et al., 2013], as well as led to ad-
vances in our understanding of scalable optimization [Prabhu
et al., 2018], and distributed and parallel processing [Yen et
al., 2017; Babbar and Schölkopf, 2017]. Recent advances
have utilized a variety of techniques – label embeddings, ran-
dom forests, binary relevance, which we review in §3.

Nevertheless, extreme classification algorithms continue to
face several challenges that we enumerate below.

1. Precision: data points often have very few labels rele-
vant to them (e.g. of the millions of products on sale,
very few products would interest any given customer).
It is challenging to accurately identify these few relevant
labels among the millions of irrelevant ones.

2. Prediction: for use in live recommendation systems, ex-
tremely rapid predictions are expected, typically within
milliseconds. This often restricts the algorithmic tech-
niques that can be used, to computationally frugal ones.

3. Processing: extreme classification datasets often con-
tain millions of data points, each represented as a
million-dimensional vector itself. It is challenging to of-
fer scalable training on such large datasets.

4. Parity: huge label sets exhibit power-law behavior with
most labels being rare i.e. relevant to very few data
points. This causes algorithms to focus only on popular
labels, neglecting the vast majority of rare ones. How-
ever, this is detrimental for recommendation outcomes.

1.1 Our Contributions
In this work, we develop the DEFRAG method and variants
to address these specific challenges for a large family of al-
gorithms. Our contributions are summarized below.

1. We propose the DEFRAG algorithm that accelerates ex-
treme classification algorithms by performing efficient
feature agglomeration on datasets with millions of fea-
tures. DEFRAG performs agglomeration by construct-
ing a balanced hierarchy which offers faster and better
agglomerates than traditional clustering methods.

2. We show that DEFRAG provably preserves the perfor-
mance of several extreme classification algorithms.

3. We exploit DEFRAG’s agglomerates in a novel manner
to develop the REFRAG algorithm to address the parity
problem by performing efficient label re-ranking. This
vastly improves the coverage of existing algorithms by
accurately predicting extremely rare labels.

4. We develop the FIAT algorithm to perform scalable
feature imputation which preserves prediction accuracy
even when a large fraction of data features are removed.
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5. We perform extensive experimentation on large-scale
datasets to establish that DEFRAG not only offers sig-
nificant reductions in training and prediction times, but
that it does so with little or no reduction in precision.

2 Problem Formulation and Notation
The training data will be provided as n labeled data points
(xi,yi), i = 1, . . . , n where xi ∈ Rd is the feature vector and
yi ∈ {0, 1}L is the label vector. There may be several (upto
L) labels associated with each data point. Extreme classi-
fication datasets exhibit extreme sparsity in feature and label
vectors. Let d̂ denote the average number of non-zero features
per data point and L̂ denote the average number of active la-
bels per data point. §6 shows that d̂� d and L̂� L. We will
denote the feature matrix using X =

[
x1, . . . ,xn

]
∈ Rd×n

and the label matrix using Y =
[
y1, . . . ,yn

]
∈ {0, 1}L×n.

Let F = {F1, . . . , FK} denote any K-partition of the fea-
ture set [d] i.e. Fi ∩ Fj = ∅ if i 6= j and

⋃K
k=1 Fk = [d]. Let

dk := |Fk| denote the size of the kth cluster. For any vector
z ∈ Rd, let zj denote its jth coordinate. For any set Fk ∈ F ,
let zFk := [zj ]

>
j∈Fk ∈ Rdk denote the (shorter) vector con-

taining only coordinates from the set Fk.
Feature Agglomeration. This involves creating clusters of
features and then summing up features within a cluster. If F
is a partition of the features [d], then for every cluster Fk ∈ F ,
we create a a single “super”-feature. Thus, given a vector
z ∈ Rd, we can create an agglomerated vector z̃[F ] ∈ RK

(abbreviated to just z̃ for sake of notational simplicity) with
just K features using the clustering F . The kth dimension of
z̃ will be z̃k =

∑
j∈Fk zi for k = 1, . . . ,K . The DEFRAG

algorithm will automatically learn relevant feature clustersF .

3 Related Works
We discuss relevant works in extreme classification and scal-
able clustering and feature agglomeration techniques here.
Binary Relevance. Also known as one-vs-all methods,
these techniques, for example DiSMEC [Babbar and
Schölkopf, 2017], PPDSparse [Yen et al., 2017], and
ProXML [Babbar and Schölkopf, 2019], learn L binary clas-
sifiers: for each label l ∈ [L], a binary classifier is learnt
to distinguish data points that contain label l from those that
do not. Binary relevance methods offer some of the high-
est precision values among extreme classification algorithms
[Prabhu et al., 2018]. However, despite advances in parallel
training and active set methods, they still incur training and
prediction times that are prohibitive for most applications.
Label/Feature Embedding. These techniques project fea-
ture and/or label vectors onto a low dimensional space i.e.
xi 7→ x̂i,yi 7→ ŷi where x̂i, ŷi ∈ Rp, p � min {d, L} us-
ing random or learnt projections. Prediction and training is
performed in the low dimensional space Rp for speed. These
methods SLEEC [Bhatia et al., 2015], AnnexML [Tagami,
2017] and LEML [Yu et al., 2014] offer strong theoretical
guarantees, but are usually forced to choose a moderate value
of p to maintain scalability. This often results in low precision
values and causes these methods to struggle on rare labels.

+ + + + +

𝐹1 𝐹3 ⋯ 𝐹𝐾𝐹2

𝒛 ∈ ℝ𝑑

෤𝒛 ℱ ∈ ℝ𝐾 𝐾

𝑑

ℱ = 𝐹1, … , 𝐹𝐾

Figure 1: An illustration of the feature agglomeration process.

Data Partitioning. These techniques learn a decision tree
over the data points which are hierarchically clustered into
several leaves, with the hope that the similar data points, i.e.
those with similar label vectors, end up in the same leaf. A
simple classifier (usually constant) performs label prediction
at a leaf. These methods PfastreXML [Jain et al., 2016],
FastXML [Prabhu and Varma, 2014] and CRAFTML [Sib-
lini et al., 2018] offer fast prediction times due to prediction
being logarithmic in number of leaves in a balanced tree.

Label Partitioning. These methods instead learn to orga-
nize labels into (overlapping) clusters, using hierarchical par-
titioning techniques. Prediction is done by taking a data point
to one or more of the leaves of the tree and using a simple
method such as 1-vs-all among labels present at that leaf.
These methods PLT [Jasinska et al., 2016], Parabel [Prabhu
et al., 2018], LPSR [Weston et al., 2013] offer fast prediction
times due to the tree structure, as well as high precision by
using a 1-vs-all classifier at the leaves, as Parabel does.

Large Scale (Feature) Clustering. Clustering, as well as
feature clustering and agglomeration, are well-studied topics.
Past works include techniques for scalable balanced k-means
using alternating minimization techniques SCBC [Banerjee
and Ghosh, 2006] and BCLS [Liu et al., 2017], scalable spec-
tral clustering using landmarking LSC [Chen and Cai, 2011],
and scalable information-theoretic clustering ITDC [Dhillon
et al., 2003]. We do compare DEFRAG against all these al-
gorithms. These algorithms were chosen since they were able
to scale to at least the smallest datasets in our experiments.

4 DEFRAG: aDaptive Extreme FeatuRe
AGglomeration

We now describe the DEFRAG method, discuss its key ad-
vantages and then develop the REFRAG method for rare la-
bel prediction and the FIAT method for feature imputation.
Recall from §2 that given a K-partition F of the features [d],
feature agglomeration takes each cluster Fk ∈ F and agglom-
erates all features j ∈ Fk by summing up their feature values.

Given a dataset with d-dimensional features, DEFRAG
first clusters these features into balanced clusters, with each
cluster containing, say no more than d0 features. Suppose this
process results in K clusters. DEFRAG then uses feature ag-
glomeration (see §2 and Figure 1) to obtain K-dimensional
features for all data points in the dataset which are then used
for training and testing.
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Algorithm 1 DEFRAG: Make-Tree

Input: Feature set S ⊆ [d], representative vectors zi ∈ Rp

for each feature i ∈ S, maximum leaf size d0
Output: A tree with each leaf having upto d0 features

1: if |S| ≤ d0 then
2: n← Make-Leaf(S) // No need to split
3: else
4: n← Make-Internal-Node()
5: {S+, S−} ← Balanced-Split(S,

{
zi, i ∈ S

}
)

// Balanced k-means or nDCG split
6: n+ ← Make-Tree(S+,

{
zi, i ∈ S+

}
, d0)

7: n− ← Make-Tree(S+,
{
zi, i ∈ S−

}
, d0)

8: n.Left-Child← n+

9: n.Right-Child← n−
10: end if
11: return Root node of this tree n

DEFRAG first creates a representative vector for each fea-
ture j ∈ [d] and then performs hierarchical clustering on
them (see Algorithm 1) to obtain feature clusters. At each
internal node of the hierarchy, features at that node are split
into two children nodes of equal sizes by solving either a
balanced spherical 2-means problem or else by minimizing
a ranking loss like nDCG [Prabhu and Varma, 2014] which
we call DEFRAG-N (please see the full version for details).
This process is continued till we are left with less than d0 fea-
tures at a node, in which case the node is made a leaf. We now
discuss two methods to construct these representative vectors.
DEFRAG-X. This variant clusters together co-occurrent
features e.g. j, j′ ∈ [d] where data points with a non-zero (or
high) value for feature j also have a non-zero (or high) value
for feature j′. DEFRAG-X represents each feature j ∈ [d] as
an n-dimensional vector pj = [x1

j , . . . ,x
n
j ]> ∈ Rn, i.e. as a

list of values that feature takes in all data points.
DEFRAG-XY. This variant clusters together co-predictive
features e.g. j, j′ ∈ [d] where data points where feature j is
non-zero have similar labels as data points where feature j′

is non-zero. To do so, DEFRAG-XY represents each feature
j ∈ [d] as an L-dimensional vector qj =

∑n
i=1 x

i
jy

i ∈ RL,
essentially as a weighted aggregate of the label vectors of data
points where the feature j is non-zero.

4.1 Advantages of DEFRAG
DEFRAG suits high-dim., sparse data better than dimension-
ality reduction techniques like PCA or random projection.

1. Applying feature agglomeration to a vector involves
summing up the coordinates of that vector and is much
cheaper than performing PCA or a random projection.

2. Linear projections densify vectors and so methods like
LEML and SLEEC are compelled to use a small embed-
ding dimension (≈ 500) for sake of scalability which
leads to information loss. Feature agglomeration, how-
ever, does not densify vectors: if a vector x ∈ Rd has
only s non-zero coordinates, then for any feature K-
clustering F , the vector x̃[F ] ∈ RK cannot have more
than s non-zero coordinates. This allows DEFRAG to

operate with relatively large values of K (e.g. K = d/8
is default in our experiments as we set d0 = 8) with-
out worrying about memory or time issues. DEFRAG
thus offers mildly agglomerated vectors which preserve
much of the information of the original vector, yet offer
speedups due to the reduced dimensionality.

3. Feature agglomeration has an implicit weight-tying ef-
fect: a linear model learnt over the agglomerated fea-
tures effectively places the same weight over all features
belonging to a cluster Fk ∈ F . This reduces the capacity
of the model and can improve generalization error.
§5 shows that feature agglomeration using a feature cluster-

ing F with small clustering error provably preserves the per-
formance of all linear models. Specifically, for every model
w ∈ Rd over the original vectors, there must exist a model
w̃ ∈ RK over the agglomerated vectors such that for any vec-
tor x ∈ Rd, we have w>x ≈ w̃>x̃[F ]. Thus, similar 1-vs-all
models, trees and label partitions can be learnt over x̃[F ]. We
note that all algorithms discussed in §3 ultimately use just
linear models as components (e.g. binary relevance methods
learn L linear classifiers – one per label, embedding methods
learn linear projections, data and label partitioning methods
learn linear models to split internal tree nodes, etc.).
Task adaptivity. DEFRAG-XY takes into account labels
in its feature representation which makes it task-adaptive as
compared to dimensionality reduction or clustering methods
like k-means, PCA which do not take consider labels. Indeed,
we will see that on many datasets, DEFRAG-XY outperforms
DEFRAG-X which also does not take labels into account.
Novelty, Speed and Scalability. Hierarchical feature ag-
glomeration is novel in the context of extreme classification
although hierarchical data partitioning (Parabel) and hierar-
chical label partitioning (PfastreXML) have been success-
fully attempted before. The representative vectors created
by DEFRAG are themselves sparse and hierarchical feature
agglomeration offers speedy feature clustering. DEFRAG’s
overhead on the training process is thus, very small.

Time Complexity. Let nnz(X) = n · d̂ be the number
of non-zero elements in the feature matrix X . Computing
the feature representations pj , j ∈ [d] takes O (nnz(X))
time. The total time taken to perform balanced spherical 2-
means clustering for all nodes at a certain level in the tree
is O (nnz(X)) as well. Since DEFRAG performs balanced
splits, there can be at most O (log d) levels in the tree, thus
giving us a total time complexity of O (nnz(X) log d).

4.2 FIAT: Feature Imputation via AgglomeraTion
Co-occurrence based feature imputation is popularly used to
overcome the problem of missing features. However, this be-
comes prohibitive for extreme classification settings since the
standard co-occurrence matrix C = XX> is too dense to
store and operate. We exploit the feature clusters offered by
DEFRAG to create a scalable co-occurrence based feature
imputation algorithm FIAT. For any feature cluster Fk ∈ F
let XFk ∈ Rd×n denote the matrix with only those rows that
belong to the cluster Fk. Given this, we compute a pseudo
co-occurrence matrix CF =

∑K
k=1 XFkX

>
Fk
∈ Rd×d.
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Note that CF has a block-diagonal structure and has only
upto d2

K non-zero entries where K is the number of clusters.
Thus, it is much cheaper to store and operate. Given a fea-
ture vector x ∈ Rd that we suspect has missing features, we
perform feature imputation on it by simply calculating CFx.

4.3 REFRAG: REranking via FeatuRe
AGglomeration

Algorithms frequently neglect rare labels (that occur in very
few data points) in favor of popular ones [Wei and Li, 2018].
To address this, we propose an efficient re-ranking solution
based on the pseudo co-occurrence matrix CF described ear-
lier. First compute the matrix product CFXY > ∈ Rd×L.
The lth column of this matrix l ∈ [L] can be interpreted as
giving us a prototype data point ξl ∈ Rd for the label l.

These prototypes can be used to get the affinity score of a

test data point xt to a label l ∈ [L] as e−
γ
2 ·‖xt−ξl‖22 . Once

a base classification algorithm such as Parabel or DiSMEC
has given scores for the test point xt with respect to various
labels, instead of predicting the labels with the highest scores
right-away, we combine the classifier scores with these affin-
ity scores and then make the predictions. We note that a sim-
ilar approach was proposed by [Jain et al., 2016] who did
achieve enhanced performance on rare labels.

However, whereas their method requires an optimization
problem to be solved to obtain the prototypes, we have a
closed form expression for prototypes in our model given the
efficiently computable pseudo co-occurrence matrix CF .

Due to lack of space, further algorithmic details as well as
proofs of theorems in §5 are presented in the full version of
the paper available at the URL given below.

Full Version Link: http://arxiv.org/abs/1905.11769

5 Performance Guarantees
In this section we establish that DEFRAG provably preserves
the performance of extreme classification algorithms. For any
vector v ∈ Rp we will utilize the orthogonal decomposition
v = v‖ + v⊥ where v‖ is the component of v along the all-
ones vector 1p = (1, . . . , 1) ∈ Rp and v⊥ is the component
orthogonal to it i.e. 1>p v

⊥ = 0. At the core of our results is
the following lemma. Given a real valued matrix Z ∈ Rd×p

for some p > 0 and a K-partition F of the feature set [d], we
will let Zk ∈ Rdk×p denote the matrix formed out of the rows
of the matrix that correspond to the partition Fk.
Lemma 1. Given any matrix Z ∈ Rd×p and any K-
partition F = {F1, . . . , FK} of [d], suppose there exist vec-
tors µ1, . . . ,µK ∈ Rp such that Zk = 1dk(µk)>+∆k where
1dk := (1, . . . , 1)> ∈ Rdk , then for every w ∈ Rd and every
k ∈ [K], there must exist a real value cw,k ∈ R such that

(wFk − cw,k · 1dk)>ZkZ
>
k (wFk − cw,k · 1dk) ≤

∥∥∆>k w
⊥
Fk

∥∥2
2
.

Lemma 1 will be used to show below that, if a group of
features is “well-clustered”, then it is possible to tie together
weights corresponding to those features in every linear model.
Theorem 2. Upon executing DEFRAG-X with a feature ma-
trix X = [x1, . . . ,xn] and label matrix Y = [y1, . . . ,yn],

suppose we obtain a feature K-partition F = [F1, . . . , FK ]
with errk denoting the Euclidean clustering error within the
kth cluster, then for any loss function `(·) that is L-Lipschitz
and for every linear model w ∈ Rd, there must exist a model
w̃ ∈ RK such that for all subsets of data points S ⊆ [n],√∑

i∈S
(`(w>xi;yi)− `(w̃>x̃i;yi))

2 ≤ L·
K∑

k=1

∥∥w⊥Fk∥∥2·errk.

To simplify this result, let w0 = maxk∈[K]

∥∥w⊥Fk∥∥22 ≤
maxk∈[K] ‖wFk‖

2
2 (since cluster sizes dk are typically small,

w0 is small too) and use the fact that errk ≥ 0 to get√∑
i∈S

(`(w>xi;yi)− `(w̃>x̃i;yi))
2 ≤ L · w0 ·

K∑
k=1

errk.

In the full version, we show that DEFRAG-XY preserves
the performance of label clustering methods such as Parabel.
A few points are notable about the above results.
Uniform Model Preservation. Theorem 2 guarantees that
if the clustering error is small (and DEFRAG does minimize
clustering error), then for every possible linear model w ∈ Rd

over the original features xi, we can learn a model w̃ ∈ Rd

over the agglomerated features x̃i such that both models be-
have similarly with respect to any Lipschitz loss function.
Note that Theorem 2 holds simultaneously for all linear mod-
els w, and is thus, agnostic to the algorithm used to learn w.
Classifier Preservation. Most leading algorithms (Parabel,
DiSMEC, PfastreXML, PPDSparse, SLEEC) construct clas-
sifiers by learning several linear models using hinge loss, ex-
ponential loss etc. which are Lipschitz. By preserving the
performance of all such individual linear models, DEFRAG
preserves the overall performance of these algorithms too.
Note that Theorem 2 holds uniformly over all subsets S ⊆ [n]
of data points, which is useful since these algorithms often
learn several linear models on various subsets of the data.
Graceful Adaptivity. Suppose for a model w, the weights
within a cluster Fk are similar i.e. wFk ≈ w · 1dk , w ∈ R.
Then this implies w⊥Fk ≈ 0 and the contribution of this cluster
to the total error will be very small. This indicates that if some
of the original weights are anyway tied together, DEFRAG
automatically offers extremely accurate reconstructions.

6 Experimental Results
We studied the effects of using DEFRAG variants with sev-
eral extreme classification algorithms, as well as compared
DEFRAG with other clustering algorithms. Our implemen-
tation of DEFRAG is available at the URL given below.

Code Link: https://github.com/purushottamkar/defrag/
Datasets and benchmark implementations. All datasets,
train-test splits, and implementations of extreme classifica-
tion algorithms were sourced from the Extreme Classification
Repository [Bhatia et al., 2019]. Implementations of clus-
tering algorithms were sourced from the respective authors
whenever possible. For SCBC, LSC and ITDC, public imple-
mentations were not available and scalable implementations
were created in the Python language.
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Method LMI Bal. Ent. Time P1(%) P3(%) P5(%)
(min)

EURLex-4K
ITDC 0.47 Inf 0.87 0.7 73.85 59.63 49.19
SCBC 0.39 321 0.75 0.55 71.96 59.50 49.41
LSC 0.60 130 0.93 5.7 71.44 58.68 48.71
BCLS 0.50 Inf 0.91 2.5 74.14 60.96 50.53
DEFRAG-X 0.37 1.11 0.99 0.03 78.97 65.68 54.46

Wiki10-31K
ITDC 0.52 Inf 0.88 23 82.03 69.72 60.07
DEFRAG-G 0.46 1.08 0.99 0.48∗ 82.72 69.62 60.23
DEFRAG-X 0.36 1.08 0.99 0.45 84.99 73.47 63.91

Table 1: A comparison of DEFRAG with other clustering algo-
rithms on clustering quality (definitions of clustering metrics in full
version), as measured by loss of mutual information (LMI), balance
factor, normalized entropy, clustering time, and classification per-
formance when the Parabel algorithm was executed upon agglom-
erated features given by the clustering algorithms. BCLS, LSC and
SCBC could not scale to Wiki10. A balance factor of Inf indicates
the presence of an empty cluster. DEFRAG not only outperforms
other clustering algorithms in terms of clustering quality and classi-
fication accuracy, but offers clustering times that can be an order of
magnitude smaller. DEFRAG-G denotes the DEFRAG-X algorithm
executed on word features learnt by the GloVe algorithm [Penning-
ton et al., 2014]. DEFRAG could not be outperformed by carefully
crafted word vector representations like GloVe either.
∗The clustering time for DEFRAG-G does not include time taken to
extract (dense) GloVe word features from raw text.

Hyperparameters. If available, hyperparameter settings
recommended by authors were used for all methods. If un-
available, a fine grid search was performed over a reasonable
range to offer adequately tuned hyperparameters to the meth-
ods. DEFRAG had its only hyperparameter, the max size of
a feature cluster d0 (see Algorithm 1), fixed to 8.

Comparison with other clustering methods. Table 1
compares DEFRAG with other clustering algorithms on clus-
tering quality, execution time and classification performance
(please see the full version for definitions of clustering met-
rics). Features were agglomerated according to feature clus-
ters given by all algorithms and Parabel was executed on
them. DEFRAG handily outperforms all other methods.

Dataset-wise and method-wise performance. Table 3
presents the outcome of using DEFRAG with several lead-
ing algorithms on 8 datasets. On Wiki10 and Delicious,
DEFRAG-XY+Parabel offers the best overall performance
across all methods. More generally, the table shows 21 in-
stances, across the 8 datasets, of how DEFRAG performs
with various algorithms. In 3 of these instances, DEFRAG
outperforms the base method (EURLex-PPDSparse, Wiki10-
Parabel and Delicious-Parabel), in 7 others, DEFRAG lags
by less than 2.5%, in 8 others, it lags by less than 5%. Only
in 3 cases is the lag > 5%. DEFRAG variants do seem to
work best with the Parabel method.

Trade-offs offered by DEFRAG. It is easy to see that if
we create a small number of clusters K, by setting d0 to be
a large value, then the agglomerated vectors will be lower
dimensional and as such, offer faster training/prediction and
smaller model sizes. However this may cause a dip in predic-
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Figure 2: Trade-offs offered by DEFRAG variants. The maximum
size of clusters in DEFRAG variants d0 was changed among the val-
ues 32, 16, 8 (default), and 4. The plots show how this affects pre-
diction accuracy, training/test time and model sizes. The black line
shows Parabel’s default performance with the black triangle marking
its model size, test time etc. Aggressive clustering (e.g. d0 = 32)
gives faster training/prediction times and smaller model sizes but
also some drop in accuracy. DEFRAG-X3 and DEFRAG-XY3 refer
to an ensemble of 3 independent realizations of DEFRAG (please
see the full version for more details and additional trade-off plots.

Method P1 P3 P5 N1 N3 N5

Wiki-10K

PfastReXML‖ 19.02 18.34 18.43 19.02 18.49 18.52
REFRAG 20.56 19.51 19.26 20.56 19.74 19.54

Delicious-200K

PfastReXML‖ 3.15 3.87 4.43 3.15 3.68 4.06
REFRAG 7.34 8.05 8.66 7.34 7.86 8.27

Table 2: REFRAG with propensity scored metrics. N1,3,5 refer to
propensity weighted nDGG@k. ‖Values from [Bhatia et al., 2019].

tion accuracy. Figure 2 shows that DEFRAG variants offer
attractive trade-offs in this respect.
Rare-label prediction with REFRAG. Table 2 shows that
REFRAG offers much better propensity-weighted metrics
[Jain et al., 2016] (which down-weigh popular and empha-
size rare labels) than PfastreXML which also attempts label
re-ranking. Figure 3 shows that REFRAG achieves much
better coverage (3.85) than Parabel (1.23) on Delicious and
in general, predicts rare labels far more accurately. Figure 3
also shows that FIAT offers resilience to feature erasures.
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Figure 3: REFRAG offers far superior coverage of rare labels than Parabel on Wiki10 and Delicious datasets. Please see the full version
for definitions of coverage and other details. In the last two plots, a fraction of features was randomly erased from the feature vectors of all
test data points. The FIAT algorithm is more robust to such erasures than the default Parabel algorithm. The gap between FIAT and Parabel
widens as erasures become more common. Please see the full version for more details and plots.

Total Train Test Model
Method P1(%) P3(%) P5(%) Time Time Time Size

(hr) (hr) (ms) (GB)

EURLex-4K
PfastReXML 70.41 59.22 50.56 0.07 0.07 1.26 0.26
DEFRAG-X 68.50 56.57 47.78 0.05 0.05 1.55 0.19

SLEEC 72.96 56.03 45.49 0.06 0.06 1.62 0.70
DEFRAG-X 67.89 51.55 42.04 0.03 0.03 1.05 0.31

Dismec 82.85 70.37 58.69 0.04 0.04 1.1 0.08
DEFRAG-X 79.12 66.39 54.97 0.02 0.02 0.5 0.02

PPDSparse 72.90 57.1 45.8 0.010 0.010 0.03 0.01
DEFRAG-X 71.40 57.9 47.4 0.006 0.006 0.05 0.01

Parabel 82.28 68.81 57.58 0.010 0.010 0.73 0.03
DEFRAG-X 78.97 65.68 54.46 0.009 0.008 0.59 0.01

DEFRAG-XY 79.23 65.77 54.65 0.009 0.008 0.59 0.01

ProXML‡ 83.40 70.90 59.10 - - - -

Wiki10-31K
PfastReXML 75.67 64.55 57.35 0.27 0.27 11.94 1.12
DEFRAG-X 69.79 58.54 52.52 0.14 0.13 11.74 0.80

SLEEC 84.28 72.05 61.80 0.38 0.38 6.00 3.9
DEFRAG-X 83.87 70.35 59.76 0.17 0.17 3.50 2.0

Dismec 84.12 74.71 65.94 1.48 1.48 42 7.1
DEFRAG-X 82.30 72.14 63.78 0.66 0.65 15 1.5

PPDSparse 74.68 60.03 49.12 0.59 0.59 2.2 0.04
DEFRAG-X 63.55 50.42 41.20 0.50 0.50 3.7 0.03

Parabel 84.19 72.46 63.37 0.13 0.13 2.04 0.18
DEFRAG-X 84.99 73.47 63.91 0.10 0.09 1.46 0.14

DEFRAG-XY 85.08 73.76 64.06 0.11 0.09 1.47 0.14

Amazon-670K
PfastReXML 36.90 34.22 32.10 5.70 5.70 6.10 10.98
DEFRAG-X 32.67 30.27 28.40 2.70 2.69 7.21 9.40

SLEEC 32.48 28.87 26.31 2.22 2.22 1.43 8.0
DEFRAG-X 31.40 28.04 25.69 1.63 1.63 1.62 4.2

Parabel 44.92 39.77 35.98 0.24 0.24 0.81 1.94
DEFRAG-X 42.71 37.71 33.93 0.23 0.21 0.76 1.68

DEFRAG-XY 42.62 37.72 33.94 0.23 0.21 0.77 1.66

DiSMEC § 44.70 39.70 36.10 - - - -
ProXML‡ 43.50 38.70 35.30 - - - -

Total Train Test Model
Method P1(%) P3(%) P5(%) Time Time Time Size

(hr) (hr) (ms) (GB)

AmazonCat-13K
PfastReXML 85.56 75.19 62.84 11.66 11.66 0.54 19.02
DEFRAG-X 84.71 73.48 61.19 7.01 7.00 0.53 16.17

Dismec† 93.80 79.07 64.05 6.68 6.68 1.45 6.0
DEFRAG-X 89.39 74.90 60.67 4.19 4.18 0.89 1.1

Parabel 93.06 79.15 64.51 0.43 0.43 0.62 0.61
DEFRAG-X 91.70 77.25 62.79 0.44 0.40 0.57 0.39

DEFRAG-XY 92.36 78.20 63.55 0.43 0.40 0.58 0.38

Delicious-200K
Parabel 46.86 40.08 36.70 5.33 5.33 2.22 6.36

DEFRAG-X 47.23 40.53 37.19 3.23 3.16 1.05 4.83
DEFRAG-XY 47.61 40.90 37.66 3.34 3.12 1.06 4.76

PfastReXML‖ 41.72 37.83 35.58 - - - -
DiSMEC § 45.50 38.70 35.50 - - - -

WikiLSHTC-325K
PfastReXML 58.47 37.70 27.57 11.23 11.23 2.66 14.20
DEFRAG-X 50.86 32.08 23.40 6.03 6.03 2.14 12.82

Parabel 65.04 43.24 32.05 0.58 0.58 0.91 3.09
DEFRAG-X 59.49 39.25 29.20 0.56 0.50 0.79 2.50

DEFRAG-XY 61.38 40.42 29.99 0.54 0.50 0.78 2.44

PPDSparse‖ 64.08 41.26 30.12 - - - -
DiSMEC § 64.40 42.50 31.50 - - - -
ProXML‡ 63.60 41.50 30.80 - - - -

Wikipedia-500K∗

Parabel 68.70 49.57 38.64 5.13 5.13 3.11 5.68
DEFRAG-X 65.15 44.96 34.85 3.27 3.14 1.62 5.25

DEFRAG-XY 64.73 44.79 34.76 3.31 3.20 1.62 5.22

DiSMEC § 70.20 50.60 39.70 - - - -
ProXML‡ 69.00 49.10 38.80 - - - -

Amazon-3M∗

Parabel 47.42 44.66 42.55 3.14 3.14 0.73 31.43
DEFRAG-X 45.68 42.85 40.76 2.93 2.83 0.66 25.34

DEFRAG-XY 45.11 42.36 40.30 2.87 2.80 0.63 25.22

PfastReXML‖ 43.83 41.81 40.09 - - - -

Table 3: DEFRAG’s performance when used with various extreme classification algorithms. “Total time” for DEFRAG includes cluster-
ing=train time. On EURLex, Wiki10 and Delicious, DEFRAG actually achieves better classification accuracy than the base classifier itself
(bold items). DEFRAG allows expensive 1-vs-all methods like DiSMEC and PPDSparse to be executed in a scalable manner with training
time reductions of upto 40% on AmazonCat and model size reductions of upto 20% on WikiLSHTC. Precision values on certain datasets are
being reported for sake of easy comparison. These were not obtained in our experiments and are being sourced from original publications:
§[Babbar and Schölkopf, 2017], ‡[Babbar and Schölkopf, 2019], ‖[Bhatia et al., 2019].
∗ For all but Wiki-500K and Amazon-3M, DEFRAG was executed in an ensemble of 3 independent realizations (details in the full version).
† Except for DiSMEC on AmazonCat (which required 12 cores to execute scalably), all times are reported on a single core.
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