
Learning to Learn Gradient Aggregation by Gradient Descent

Jinlong Ji1 , Xuhui Chen1,2 , Qianlong Wang1 , Lixing Yu1 and Pan Li1∗
1Case Western Reserve University

2Kent State University
{jxj405, qxw204, lxy257, pxl288}@case.edu, xchen2@kent.edu

Abstract
In the big data era, distributed machine learning
emerges as an important learning paradigm to mine
large volumes of data by taking advantage of dis-
tributed computing resources. In this work, mo-
tivated by learning to learn, we propose a meta-
learning approach to coordinate the learning pro-
cess in the master-slave type of distributed sys-
tems. Specifically, we utilize a recurrent neural net-
work (RNN) in the parameter server (the master)
to learn to aggregate the gradients from the work-
ers (the slaves). We design a coordinatewise pre-
processing and postprocessing method to make the
neural network based aggregator more robust. Be-
sides, to address the fault tolerance, especially the
Byzantine attack, in distributed machine learning
systems, we propose an RNN aggregator with ad-
ditional loss information (ARNN) to improve the
system resilience. We conduct extensive experi-
ments to demonstrate the effectiveness of the RNN
aggregator, and also show that it can be easily gen-
eralized and achieve remarkable performance when
transferred to other distributed systems. Moreover,
under majoritarian Byzantine attacks, the ARNN
aggregator outperforms the Krum, the state-of-art
fault tolerance aggregation method, by 43.14%. In
addition, our RNN aggregator enables the server
to aggregate gradients from variant local models,
which significantly improve the scalability of dis-
tributed learning.

1 Introduction
With the onset of the big data era, governments, companies
and research institutions for the first time have the oppor-
tunity to gain deep insight into their problems and develop
better solutions by leveraging massive available data [Dean
et al., 2012; Chen et al., 2017]. However, developing ma-
chine learning algorithms to analyze a huge amount of data
usually requires intensive computing resources, which may
not be provided by any single user. Moreover, the massive
data are typically generated by multiple parties and stored

∗Contact Author

in a geographically distributed manner. Such scenarios with
distributed computing power and datasets have spurred the
study of distributed machine learning techniques, such as
multi-agent optimization [Nedic and Ozdaglar, 2009], multi-
party learning [Hamm et al., 2016], and federated learning
[Konečnỳ et al., 2016].

The most typical distributed machine learning paradigm
is the master-slave pattern, and has been adopted in many
industrial-level applications [Abadi et al., 2016; Chen et al.,
2018b]. Particularly, each worker (the slave) in the system is
a computing node, which has access to its own share of the
data. All workers learn parallelly and only send their local
model information (e.g., gradients of the model) to a param-
eter server, which can significant reduce the communication
cost, while the parameter server (the master) aggregates all
the received information with hand-designed methods so as to
update the global model. This training procedure is applica-
ble to a rich diversity of machine learning algorithms, such as
linear regression/classification, support vector machine and
deep neural network.

As mentioned above, the aggregation method plays a vital
role in the distributed learning process. So far, the aggrega-
tion methods are linear combination like averaging [Polyak
and Juditsky, 1992] and its variants [Zhang et al., 2015;
Lian et al., 2015]. However, it still requires study on how
to make the aggregators more robust in distributed learning.
Particularly, distributed systems are vulnerable to computing
error from the workers, especially when adversarial attackers
compromise one or more computing nodes to launch Byzan-
tine attacks. In such scenarios, the distributed learning pro-
cess may not converge and the system may crash [Blanchard
et al., 2017]. In addition, traditionally, in master-slave type of
distributed machine learning systems, the linear combination
aggregator in the parameter server can only work when all
workers hold the same local model. However, in many dis-
tributed systems, the workers may vary in computing power
and memory, and hence can only afford models of different
complexities. Therefore, the current aggregators impede the
large-scale implementation of distributed machine learning.

In this paper, we take the learning to learn approach to co-
ordinate the distributed learning among the workers. Particu-
larly, Learning to learn is a meta-learning strategy [Thrun and
Pratt, 1998], where the abstract knowledge extracted from the
learning (or optimization) process can enable fast and effi-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2614

cient learning. We develop a deep meta-learning aggregation
method for distributed machine learning. Specifically, we
model the aggregation process in distributed learning as a ma-
chine learning task. Then we use a recurrent neural network
(RNN) to aggregate the gradients collected from the workers.
To learn this neural network based aggregator, we choose to
optimize it along the horizontal direction (i.e., the number of
steps) of the distributed learning process. To make the aggre-
gator robust, we design a coordinatewise preprocessing and
postprocessing method. Once the aggregator is well-trained,
it makes decisions on how to aggregate the scattered local
gradients by the information learned from its previous opti-
mization process. Moreover, in order to address the Byzan-
tine attacks, we improve the RNN aggregator with additional
loss information to make the system robust and stable.

The contributions of our work are summarized as follows:
• To the best of our knowledge, this is the first study

proposing a learning to learn approach to coordinate a
distributed learning process. Instead of adopting a pre-
defined deterministic aggregation rule, we model the ag-
gregating process as a learning problem and utilize a re-
current neural network to optimize it. In addition, we
design a preprocessing and postprocessing method to en-
hance the stability of the optimization process. We also
investigate the robustness and stability of distributed
learning, and propose an improved RNN aggregator with
additional information loss to address the fault tolerance
issues, especially Byzantine attacks.
• The experiment results demonstrate that the proposed

RNN aggregators outperforms the classical averaging
aggregator by a large margin on both the MNIST and
the CIFAR-10 datasets. Our experiments also demon-
strate that the proposed aggregators can be easily gener-
alized and achieves remarkable performance when trans-
ferred to other distributed systems with different learn-
ing models and different datasets, respectively. In ad-
dition, compared to the state-of-the-art fault tolerance
algorithm Krum, the proposed ARNN aggregator shows
its competitive performance and outperforms Krum in
the majoritarian Byzantine attacks.
• The empirical results prove that the proposed scheme

enables the aggregator to utilize abstract information
across variant local learning models, which significantly
improve the scalability of the traditional distributed
learning system.

The rest of the paper is organized as follows. In the next
section, we briefly introduce the most related works. Then we
detail the design of recurrent neural network based aggregator
and its variant, RNN aggregator with additional loss informa-
tion. After that, we evaluate the performance of the proposed
RNN aggregator through extensive experiments. Finally, we
conclude the paper.

2 Related Works
2.1 Learning to Learn
The idea of learning to learn was inspired by psychology
studies [Ward, 1937], where researchers discovered that the

human beings are born to be able to learn new skills via pre-
vious learning experiences. The idea of learning to learn
has been widely explored in various machine learning sys-
tems such as meta-learning, life-long learning and contin-
uous learning, as well as many optimization problems, in-
cluding learning to optimize hyperparameters [Maclaurin et
al., 2015], learning to optimize neural networks [Ge et al.,
2017] and learning to optimize loss functions [Houthooft et
al., 2018].

Particularly, learning to learn provides an efficient ap-
proach to designing learning systems through learning. For
instances, Bengio et al. proposed learning local Hebbian up-
dates by gradient descent [Bengio et al., 1992], which uti-
lizes supervised learning to learn unsupervised learning al-
gorithms. Moreover, learning to learn by gradient descent
by gradient descent [Andrychowicz et al., 2016] and learning
to learn without gradient descent by gradient descent [Chen
et al., 2016] employ supervised learning at the meta level
to learn supervised learning algorithms and Bayesian opti-
mization algorithms, respectively. In this paper, motivated by
these previous works, we utilize supervised learning at the
meta level to learn an aggregation method for distributed ma-
chine learning.

2.2 Aggregation Methods
The study of aggregation methods has drawn intensive at-
tention from researchers in machine learning. For example,
some researchers study the aggregation of gradients with re-
duced communication and computation costs [Chen et al.,
2018a], and some others focus on accelerating the conver-
gence process [Tsitsiklis et al., 1986]. There are also some
works that develop aggregation schemes aiming to improve
the stability and robustness of the learning process [Scardovi
and Leonard, 2009]. Note that most aggregation methods are
pre-defined and deterministic, and hence are difficult to be
generalized. They are also generally sensitive to errors in the
learning system.

In this work, we propose a deep meta-learning system, i.e.,
an RNN aggregator that can achieve better optimization per-
formance compared with existing deterministic approaches
like the averaging aggregator, as proposed by [Konečnỳ et al.,
2015]. We also address the fault tolerance issue, especially
Byzantine attacks, in the proposed RNN aggregator. More-
over, our proposed aggregation method can work across dif-
ferent local models, which enables distributed learning sys-
tems to scale.

3 Distributed Machine Learning Model
In this section, we present the master-slave type of distributed
learning system, and introduce a general learning algorithm
based on distributed gradient descent.

As shown in Figure 1, a distributed learning system is
composed of a parameter server S and a group of workers
{W1,W2, · · · ,WM}. Distributed machine learning can ac-
count for a variety of learning problems, including in feder-
ated learning [Konečnỳ et al., 2016] and multi-party learning
[Hamm et al., 2016], where each workerWm can only access
its own dataset xm, and parallel train on a large-scale dataset,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2615

1

Workers

.

.
w1 wm wM

Data

Shards m M

Figure 1: The architecture of the master-slave type of distributed
learning system.

where each workerWm, an individual computing unit, is as-
sociated with a specific shard of data xm.

The objective of distributed machine learning is to let the
M workers solve the following problem in a distributed and
collaborative fashion :

min
θ∈Rd

L(θ) :=
∑

m∈M
Lm(θ,xm),

where θ ∈ Rd is the shared global model, and L and
{Lm,m ∈ M} are objective functions with M :=
{1, 2, · · · ,M}. Specifically, Lm is computed by the worker
Wm as follows,

Lm(θ,xm) :=
∑

xi∈xm

`m(θ, xi),

where `m is the loss function (e.g., hinge loss or cross-entropy
loss) and xm is the data shard that the workerWm can access.
Generally, a learning model is determined by the structure of
the model and the corresponding paramters. In the follow-
ing, we will slightly abuse the notation of θ as the parameter
vector of the model.

Note that most learning algorithms are based on a common
optimized method called stochastic gradient descent (SGD).
Here, we introduce the distributed SGD algorithm for dis-
tributed learning system [Rajkumar and Agarwal, 2012]. Par-
ticularly, all the workers jointly learn a common model itera-
tively. In tth iteration, the parameter server S broadcasts the
current global model θt to the workers. Then, each worker
Wm computes its local gradient based on its own data shard
and uploads it to the server S . Once S receives the gradients
from all the workers, it updates the common global model by
aggregating all the gradients via an aggregation function A.
We summarize the distributed SGD algorithm by two main
steps in each iteration t :

• Local gradient calculation: each worker Wm calcu-
lates the local gradient gtm based on the current global
model θt and its local data shard xm, i.e.,

gtm =
∂

∂θtLm(θt,xn).

• Global gradients aggregation: the server S aggregates
the gradients received from all the workers and updates
the global model :

θt+1 = θt − γt · A(gt1, gt2, · · · , gtM),

where γt is the step size.

Noticeably, in the literature, the aggregation rule A is typi-
cally averaging [Polyak and Juditsky, 1992] and its variants
[Zhang et al., 2015; Lian et al., 2015; Tsitsiklis et al., 1986].

4 Learning to Learn Gradients Aggregation
by Gradient Descent

In this section, we model the gradients aggregation in dis-
tributed machine learning as a learning problem and develop
an deep neural network aggregator.

4.1 Recurrent Neural Network Based Aggregator
Motivated by the idea of learning to learn, instead of hand-
designed aggregation methods, our goal is to develop a learn-
ing based aggregator that is able to learn at the meta-level to
aggregate the information received from the workers in dis-
tributed learning.

To achieve this goal, we consider directly parameterizing
the aggregation process as a learning model A with φ being
its parameter vector. The aggregator A learns from the pa-
rameter server’s aggregation experiences and updates itself.
Thus, in the tth iteration, the aggregator works as follows:

1. The aggragatorA at the parameter server S takes the up-
loaded gradients (gt1, · · · , gti , · · · , gtM) as input, which
we denote by gtW .

2. Given the internally stored hidden knowledge ht and
the current parameter vector φ, which was learned from
the past learning experiences, A(φ, gtW) outputs its pre-
dicted global model θt+1.

3. The aggregator A updates its internally stored hidden
state to obtain ht+1.

We summarize the process in the tth iteration as follows:

ht+1,θ
t+1 = A(ht, g

t
W ,φ).

We notice that this procedure can easily map onto a re-
current neural network (RNN), which learns to utilize its in-
ternal memory to store information about previous processes
and function evaluations, and learns to access this memory to
produce current output. To address the gradients vanishing or
exploding issues when dealing with long sequential data, in
this paper, we apply two popular and efficient variants of the
standard RNN, RNN with Long Short-Term Memory units
(LSTM) [Hochreiter and Schmidhuber, 1997] and RNN with
Gated Recurrent units (GRU) [Chung et al., 2014] .

Subsequently, we can formulate the proposed aggregation
procedure as :

ht+1,θ
t+1 = ARNN(ht, g

t
W ,φ),

where ARNN(·) represents the aggregation method at the pa-
rameter server S , and the φ represents all the parameters in
the RNN network.

4.2 Distributed Learning with an RNN Aggregator
With the RNN aggregatorARNN, the distributed learning pro-
cess discussed before works as follows:

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2616

t-2 t-1 t

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Worker

Worker

Worker

.
.
.

.
.
.

RNN

Aggregator

w1

wm

wM

Figure 2: The computational graph used for computing the gradient
of the RNN aggregator.

• Local gradient calculation:

gtm =
∂

∂θtLm(θt,xn),

• Global gradients aggregation:

ht+1,θ
t+1 = ARNN(ht, g

t
W ,φ).

Therefore, the objective of a distributed learning with the
RNN aggregator is to find φ∗:

φ∗ = argmin
φ
LRNN(θ

t,xn,φ)

Loss Function
A common loss function that is usually used is the loss of the
final iteration T :

LRNN(θ
t,xn,φ) = E

∑
m∈M

Lm(θt,xn,φ). (1)

The objective function in the Equation (1) depends only on
the parameters in the final iteration. In order to efficiently
train the aggregator ARNN (φ), it is convenient to have an
objective that depends on the entire trajectory of optimization
for some horizon T . Thus, we employ the same loss function
as that in previous works [Andrychowicz et al., 2016], which
is :

LRNN(θ
t,xn,φ) = E

∑
m∈M

T∑
t=1

Lm(θt,xn,φ)

We minimize the value of LRNN(θ
t,xn,φ) using gradient de-

scent on φ. ∂LRNN/∂φ is estimated based on the compu-
tational graph in Figure 2 with Back-propagation Through
Time (BPTT). Note that the solid edges in the graph allow
the gradients to flow along, while the dashed edges drop the
gradients on them.

Preprocessing and Postprocessing
The magnitudes of the aggregator’s inputs and outputs may
vary dramatically among the workers because their data
shards can be very different. However, neural networks usu-
ally work robustly only for inputs and outputs that are neither
very small nor very large. Therefore, we rescale the inputs
and outputs of the aggregator using suitable constants, which

are shared across all iterations and workers, so as to efficiently
train a stable aggregator.

In particular, we first develop an algorithm to preprocess
the aggregator’s inputs. Since the input gradients group gtW
are from several workers, we design a coordinatewise gra-
dients rescaling method to eliminate significant differences
among the local gradients.

Recall that the aggregator’s input gtW is defined as follows:

gtW := {gt1, gt2, · · · , gtM}

=


gt1,1 gt2,1 · · · gtM,1

gt1,2 gt2,2 · · · gtM,2
...

...
...

...
gt1,d gt2,d · · · gtM,d


= {gt∗,1, gt∗,2, · · · , gt∗,d}T ,

where d is the dimension of gtm. We conduct the following
preprocessing:

Ai = ‖gt∗,i‖2

gtm,i :=
gtm,i

Ai

Then we also rescale gtm,i as:

gtm,i :=

{
gtm,i if |gtm,i| ≥ e−p
e−p otherwise

}
,

where p > 0 is a control parameter to disregard very small
gradients.

On the other hand, we rescale the output of the aggregator
as follows:

θt+1
i := θt+1

i ·Ai.

4.3 RNN Aggregator with Additional Loss
Information

As discussed in the previous section, in a large-scale dis-
tributed machine learning system, some workers may have
computing errors. What is worse, adversarial attackers may
compromise one or more workers and upload forged mislead-
ing gradients to hamper the learning process. To address these
issues, we utilize additional information to improve the effi-
ciency and robustness of the RNN aggregator.

We sample nr(nr � nmb) data drawn from a public train-
ing dataset, where nmb is the training batch size of worker
Wm, and then calculate additional loss information fmr =
1
nr

∑nr

i=1 `m(xi; g
t
m) for each worker. This additional loss

information fmr can help estimate the descendant of the local
gradient gtm.

In particular, as shown in Figure 3, in the tth iteration, the
parameter sever S takes local gradient gtm and its correspond-
ing additional loss information as input data from workerWm

to train the RNN aggregator ARNN.

5 Experiments
In this section, we evaluate the performance of the proposed
RNN aggregator and RNN aggregator with additional loss in-
formation (ARNN aggregator).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2617

Worker Worker Worker

.

w1 wm wM

RNN Aggregator RNN

Output

Figure 3: RNN aggregtor with additional loss information.

5.1 Experiments Setup
We conduct experiments on two image classification tasks:
handwritten digits classification on MNIST dataset and ob-
ject recognition on CIFAR-10 dataset. We equally divide the
training datasets into 10 subsets and assign each subset to an
individual worker.

In all experiments, both the RNN aggregators and ARNN
aggregators use two-layer LSTMs (or GRUs) with 20 hid-
den units in each layer and they are trained with BPFT. The
optimization process is performed by using ADAM. In addi-
tion, we use early stopping to avoid overfitting while training
the aggregators. After some fixed number of learning steps,
we freeze the aggregator’s parameters and evaluate its perfor-
mance. We pick the best aggregator according to its perfor-
mance on validation data and report its performance.

5.2 Performance on MNIST and CIFAR-10
In Figure 4, we compare the learning curves for different ag-
gregators, including RNN aggregator with LSTM units, RNN
aggregator with GRU units, ARNN aggregator with LSTM
units, ARNN aggregator with GRU units and classical aver-
aging aggregators. In the MNIST task, the base network in
each worker is multiple layer perceptrons (MLP) with one
hidden layer of 20 units using a sigmoid activation func-
tion. Meanwhile, in the CIFAR-10 task, each worker holds a
model, including two convolutional layers with max pooling
followed by a fully-connected layer. In general, we find that
the performance of the LSTM network is similar to GRU net-
work in RNN aggregators, as well as in ARNN aggregators.
Therefore, in the following, we only investigate the LSTM
based aggregators. In addition, both the RNN aggregators
and ARNN aggregators outperform the current state-of-the-
art averaging aggregator, and ARNN aggregators are more
efficient than the RNN aggregators.

5.3 Generalization Performance
An efficient and effective aggregation method should be able
to work on different distributed learning systems. Thus, it
is important to consider the generalization performance of
the proposed aggregators. Specifically, we take LSTM based
RNN aggregators as an example and investigate the general-
ization performance of the proposed scheme in Figure 5.

Generalization Performance on Different Models
We apply the LSTM-based RNN aggregator trained from a
system with the previous setting to other distributed systems
with different worker models. The modifications of the work-
ers’ local models are (1) 40 units: an MLP using one hidden

Figure 4: Performance among RNN aggregators, ARNN aggrega-
tors and averaging aggregator.

Figure 5: Generalization Performance of LSTM-based RNN aggre-
gator. Left: Generalized to different models. Right: Generalized to
different datasets.

layer of 40 units with the sigmoid activation function, (2) 2
hidden: an MLP using two hidden layers, each of which has
20 units with the sigmoid function, and (3) ReLU: an MLP
using one hidden layer of 20 units with the ReLU activation
function. As shown in the left plot of Figure 5, the learning
cures demonstrate that our learned LSTM-based RNN aggre-
gator works well on these generalization tasks. The RNN
aggregator still outperforms the averaging aggregator in (1)
and (2), and has competitive performance in (3).

Generalization Performance on Different Datasets
We apply the LSTM-based RNN aggregator trained from
a system with the previous setting, and transfer it to other
datasets. We utilized two modified datasets CIFAR-2 and
CIFAR-5. (For example, the CIFAR-2 dataset only contains
data corresponding to 2 of the labels.) The learning curves
are shown in the right plot of Figure 5 demonstrate that our
learned LSTM-based RNN aggregator works well on trans-
ferring among the disjoint subset of the data, and they can
compete with classic averaging aggregation rules.

5.4 Fault Resilience

Distributing a computation over a group of nodes may induce
a high risk of failure due to unreliable communication and
erroneous computation. In this section, we investigate the
fault resilience of RNN aggregators and the improved ARNN
aggregators under Byzantine attack, where attackers compro-
mise the workers and actively upload forged gradients [Xie et

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2618

Figure 6: Performance Comparisons among LSTM aggregator, av-
eraging aggregator and Krum aggregator under Byzantine attack.

al., 2018] to jeopardize the distributed learning process1.
We compare our RNN aggregator and ARNN aggrega-

tor with the averaging aggregator and the Krum aggregator,
which is a state-of-art error tolerant aggregation algorithm
[Blanchard et al., 2017], in distributed learning systems with
10 honest workers, 3 out of 10 Byzantine workers, and 7 out
of 10 Byzantine workers. As shown in Figure 6, the averaging
aggregator is unable to tolerant any Byzantine attack. When
only a few computing nodes are Byzantine workers, the RNN
aggregator and ARNN aggregator have slightly better perfor-
mance than the Krum aggregator. When Byzantine workers
dominate the honest workers, the Krum aggregator and RNN
aggregator cannot resist the attackers and the learning system
crashes. However, the ARNN aggregator still works well and
outperforms the Krum by 43.14%. The reason behind this is
that the Krum aggregates the reliable gradients only and fil-
ters our the outlier gradients, which will be fooled by the at-
tackers and filter out the correct gradients when the attackers
take the majority. In contrast, the ARNN aggregator utilizes
the additional loss information to learn which of the gradients
are from the honest participants and aggregates them only.

5.5 System Scalability
In this section, we discuss the performance of RNN aggre-
gator collecting gradients from variant local models. We set
up 4 distributed learning systems with different types of local
models: an MLP with 1 hidden layer of 20 nodes and sigmoid
activation function, an MLP with 1 hidden layer of 40 nodes
and sigmoid activation function, an MLP with 2 hidden lay-
ers of 20 nodes and sigmoid activation function, and an MLP
with 1 hidden layer of 20 nodes with ReLU activation func-
tion. Each system has 10 workers. We randomly choose 3
workers from each system and send the gradients to RNN ag-
gregator to update an MLP with 1 hidden layer of 20 nodes
and sigmoid activation function.

We demonstrate the learning curves of 4 distributed learn-
ing systems in Figure 7 and find that the RNN aggregator can

1In the case of unreliable communications, local gradients may
be lost during transmissions, which can be considered equivalent to
the scenario that the parameter server receives zero gradients. In
the case of erroneous computations, the parameter server receives
incorrect gradients from workers. Both cases can be included by the
Byzantine attacks. Therefore, in this paper, we focus on evaluating
the Byzantine attack tolerance of the proposed RNN aggregator and
ARNN aggregator.

Figure 7: Performance of RNN aggregator across different learning
models.

efficiently utilize gradients from different local models to im-
prove the global learning model’s performance. Therefore,
our proposed RNN aggregator can easily improve the scal-
ability of distributed machine learning systems by involving
workers with different types of local learning models. Mean-
while, the experiment also demonstrates that the RNN aggre-
gator is not only able to coordinate workers in one distributed
system, but also it can work hierarchically and be used to
manage multiple distributed systems. For instance, the RNN
aggregator may work as an assistant to utilize information
from other distributed learning systems to improve its own
learning performance. Note that the ARNN aggregator would
obtain the same performance as the RNN aggregator since it
mainly differs in the resilience to Byzantine attackers.

6 Conclusions
In this work, different from traditional linear combination
aggregation methods, we attempt an alternative approach,
learning to learn, to coordinate the master-slave type of dis-
tributed learning process. Specifically, we model the gradi-
ents aggregating process at the parameter server as a learning
task, which enables us to utilize the recurrent neural network
to learn to aggregate the gradients. In addition, we improve
the RNN aggregator with additional loss information to ad-
dress fault tolerance issues, especially Byzantine attacks, in
the distributed machine learning system.

The results on the MNIST and CIFAR datasets show that
our proposed aggregation methods can outperform classic av-
eraging aggregation method, and Krum, the state-of-the art
fault resilience aggregation method. Moreover, the RNN ag-
gregator is the first to utilize gradients from variant models to
increase the distributed learning performance.

References
[Abadi et al., 2016] Martı́n Abadi, Paul Barham, Jianmin

Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. Tensorflow: a system for large-scale machine learn-
ing. In OSDI, volume 16, pages 265–283, 2016.

[Andrychowicz et al., 2016] Marcin Andrychowicz, Misha
Denil, Sergio Gomez, Matthew W Hoffman, David Pfau,
Tom Schaul, Brendan Shillingford, and Nando De Freitas.
Learning to learn by gradient descent by gradient descent.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2619

In Advances in Neural Information Processing Systems,
pages 3981–3989, 2016.

[Bengio et al., 1992] Samy Bengio, Yoshua Bengio, Jocelyn
Cloutier, and Jan Gecsei. On the optimization of a synap-
tic learning rule. In Preprints Conf. Optimality in Artifi-
cial and Biological Neural Networks, pages 6–8. Univ. of
Texas, 1992.

[Blanchard et al., 2017] Peva Blanchard, Rachid Guerraoui,
Julien Stainer, et al. Machine learning with adversaries:
Byzantine tolerant gradient descent. In Advances in Neural
Information Processing Systems, pages 119–129, 2017.

[Chen et al., 2016] Yutian Chen, Matthew W Hoffman, Ser-
gio Gómez Colmenarejo, Misha Denil, Timothy P Lilli-
crap, Matt Botvinick, and Nando de Freitas. Learning to
learn without gradient descent by gradient descent. arXiv
preprint arXiv:1611.03824, 2016.

[Chen et al., 2017] Xuhui Chen, Jinlong Ji, Kenneth Loparo,
and Pan Li. Real-time personalized cardiac arrhythmia de-
tection and diagnosis: A cloud computing architecture. In
2017 IEEE EMBS International Conference on Biomed-
ical & Health Informatics (BHI), pages 201–204. IEEE,
2017.

[Chen et al., 2018a] Tianyi Chen, Georgios B Giannakis,
Tao Sun, and Wotao Yin. Lag: Lazily aggregated gradi-
ent for communication-efficient distributed learning. arXiv
preprint arXiv:1805.09965, 2018.

[Chen et al., 2018b] Xuhui Chen, Jinlong Ji, Changqing
Luo, Weixian Liao, and Pan Li. When machine learn-
ing meets blockchain: A decentralized, privacy-preserving
and secure design. In 2018 IEEE International Conference
on Big Data (Big Data), pages 1178–1187. IEEE, 2018.

[Chung et al., 2014] Junyoung Chung, Caglar Gulcehre,
KyungHyun Cho, and Yoshua Bengio. Empirical evalua-
tion of gated recurrent neural networks on sequence mod-
eling. arXiv preprint arXiv:1412.3555, 2014.

[Dean et al., 2012] Jeffrey Dean, Greg Corrado, Rajat
Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew
Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large
scale distributed deep networks. In Advances in neural in-
formation processing systems, pages 1223–1231, 2012.

[Ge et al., 2017] Rong Ge, Jason D Lee, and Tengyu Ma.
Learning one-hidden-layer neural networks with land-
scape design. arXiv preprint arXiv:1711.00501, 2017.

[Hamm et al., 2016] Jihun Hamm, Yingjun Cao, and
Mikhail Belkin. Learning privately from multiparty data.
In International Conference on Machine Learning, pages
555–563, 2016.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[Houthooft et al., 2018] Rein Houthooft, Richard Y Chen,
Phillip Isola, Bradly C Stadie, Filip Wolski, Jonathan
Ho, and Pieter Abbeel. Evolved policy gradients. arXiv
preprint arXiv:1802.04821, 2018.

[Konečnỳ et al., 2015] Jakub Konečnỳ, Brendan McMahan,
and Daniel Ramage. Federated optimization: Distributed
optimization beyond the datacenter. arXiv preprint
arXiv:1511.03575, 2015.

[Konečnỳ et al., 2016] Jakub Konečnỳ, H Brendan McMa-
han, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for
improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[Lian et al., 2015] Xiangru Lian, Yijun Huang, Yuncheng Li,
and Ji Liu. Asynchronous parallel stochastic gradient for
nonconvex optimization. In Advances in Neural Informa-
tion Processing Systems, pages 2737–2745, 2015.

[Maclaurin et al., 2015] Dougal Maclaurin, David Duve-
naud, and Ryan Adams. Gradient-based hyperparame-
ter optimization through reversible learning. In Inter-
national Conference on Machine Learning, pages 2113–
2122, 2015.

[Nedic and Ozdaglar, 2009] Angelia Nedic and Asuman
Ozdaglar. Distributed subgradient methods for multi-agent
optimization. IEEE Transactions on Automatic Control,
54(1):48–61, 2009.

[Polyak and Juditsky, 1992] Boris T Polyak and Anatoli B
Juditsky. Acceleration of stochastic approximation by
averaging. SIAM Journal on Control and Optimization,
30(4):838–855, 1992.

[Rajkumar and Agarwal, 2012] Arun Rajkumar and Shivani
Agarwal. A differentially private stochastic gradient de-
scent algorithm for multiparty classification. In Artificial
Intelligence and Statistics, pages 933–941, 2012.

[Scardovi and Leonard, 2009] Luca Scardovi and
Naomi Ehrich Leonard. Robustness of aggregation
in networked dynamical systems. In Robot Communica-
tion and Coordination, 2009. ROBOCOMM’09. Second
International Conference on, pages 1–6. IEEE, 2009.

[Thrun and Pratt, 1998] Sebastian Thrun and Lorien Pratt.
Learning to learn: Introduction and overview. In Learn-
ing to learn, pages 3–17. Springer, 1998.

[Tsitsiklis et al., 1986] John Tsitsiklis, Dimitri Bertsekas,
and Michael Athans. Distributed asynchronous deter-
ministic and stochastic gradient optimization algorithms.
IEEE transactions on automatic control, 31(9):803–812,
1986.

[Ward, 1937] Lewis B Ward. Reminiscence and rote learn-
ing. Psychological Monographs, 49(4):i, 1937.

[Xie et al., 2018] Cong Xie, Oluwasanmi Koyejo, and In-
dranil Gupta. Zeno: Byzantine-suspicious stochastic gra-
dient descent. arXiv preprint arXiv:1805.10032, 2018.

[Zhang et al., 2015] Sixin Zhang, Anna E Choromanska, and
Yann LeCun. Deep learning with elastic averaging sgd.
In Advances in Neural Information Processing Systems,
pages 685–693, 2015.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2620

