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Abstract
Network embedding (NE) maps a network into a
low-dimensional space while preserving intrinsic
features of the network. Variational Auto-Encoder
(VAE) has been actively studied for NE. These
VAE-based methods typically utilize both network
topologies and node semantics and treat these two
types of data in the same way. However, the in-
formation of network topology and information of
node semantics are orthogonal and are often from
different sources; the former quantifies coupling re-
lationships among nodes, whereas the latter repre-
sents node specific properties. Ignoring this differ-
ence affects NE. To address this issue, we develop
a network-specific VAE for NE, named as NetVAE.
In the encoding phase of our new approach, com-
pression of network structures and compression of
node attributes share the same encoder in order to
perform co-training to achieve transfer learning and
information integration. In the decoding phase, a
dual decoder is introduced to reconstruct network
topologies and node attributes separately. Specifi-
cally, as a part of the dual decoder, we develop a
novel method based on a Gaussian mixture model
and the block model to reconstruct network struc-
tures. Extensive experiments on large real-world
networks demonstrate a superior performance of
the new approach over the state-of-the-art methods.

1 Introduction
Network embedding (NE) is to learn a low-dimensional dis-
tributed representation for each node in a network and at the
same time preserve the relationships among the nodes in the
network. The learned embedding can be applied to many ap-
plications, such as network classification and clustering.

Several different NE methods have been developed [Cui
et al., 2018], many of which exploit network topological
structures [Perozzi et al., 2014; Grover and Leskovec, 2016;
Wang et al., 2016a]. Semantics on nodes or node attributes
have also been introduced to supplement the topological
information to improve the quality of NE [Zhang et al.,
∗Corresponding author.

2018a]. The existing NE methods adopt techniques from
spectral optimization [Huang et al., 2017], random walk
[Yang et al., 2015; Pan et al., 2016], matrix factorization
[Yang et al., 2016] and Auto-Encoder (AE) [Liao et al., 2018;
Jin et al., 2018; Tao et al., 2019]. In particular, AE based
methods have attracted much attention lately because it can
well capture highly non-linear relationships in networks.

However, learning an embedding by incorporating network
topological and node semantic information altogether is non-
trivial, and the dimension of the combined data is much
higher than that of network topology alone. The encoders
used in AEs typically have discrete outputs and learn a func-
tion to directly map the data, making it difficult to deal with
high-dimensional data. To cope with this problem, Varia-
tional Auto-Encoder (VAE) [Kingma and Welling, 2014] has
been introduced by adding a priori constraint to the learning
of embedding. The encoder of VAE infers a posterior distri-
bution of continuous latent variables given the observed input,
instead of learning the discrete latent variables directly as did
in AE. As a result, it is more suitable for high-dimensional
and complex data such as networks. This advantage also mo-
tivates to employ VAE to learn embedding in attributed net-
works. For example, the method in [Kipf and Welling, 2016]
uses a graph convolutional network as a decoder to embed
an attribute network under the VAE framework. The method
in [Li et al., 2017] employs the doc2vec method to learn an
attribute vector representation, and then integrates it with the
network topology in the VAE framework. The method in [Pan
et al., 2019] proposes an adversarially regularized variational
graph autoencoder by considering the topological structure
and node semantics in networks.

Although these VAE methods have reasonable perfor-
mance, they still have serious drawbacks. They typically
use the same method to map the data of network topologies
and node attributes, i.e., they use the same generative mech-
anism, e.g. conventional neural networks, to reconstruct net-
work topologies and node attributes. It is critical to note that
network topologies and node attributes are completely differ-
ent types of data. The former reflects a coupling relationship
among nodes, whereas the latter represents independent node
semantics. They are generally produced by completely differ-
ent mechanism in nature. The existing VAE methods, as well
as many NE methods, do not differentiate these two types of
information, making them ineffective for many applications.
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To address this problem, we developed a new network-
specific VAE approach, named as NetVAE, for embedding at-
tribute networks. NetVAE uses a shared encoder to compress
altogether the information of network topology and informa-
tion of node attribute to derive an embedding. By using a
shared encoder, the information from two distinct sources can
have a joint embedding and share a joint training process so
as to perform a co-training for cross learning. In the process
of decoding, NetVAE uses a dual decoder with two differ-
ent generative mechanisms to reconstruct separately the net-
work topologies and node attributes. It has been argued that
a conventional fully connected neural network is suitable for
reconstruction of features of individual variables. We adopt
this scheme to reconstruct node attributes. To reconstruct net-
work topologies, we take advantages of the nonlinear, modu-
lar structures that the encoder implicitly extracts when com-
pressing the input network. To this end, we first introduce a
Gaussian mixture model (GMM) to make such latent modular
structures explicit, and then introduce a block model [Holland
et al., 1983], an excellent model for network topologies, to
directly exploit in the decoder such modular information for
structure reconstruction. We formalize the GMM and block
model as a neural network layer and integrate it into the VAE.
In short, we make the following contributions.

• We developed a network-specific VAE for embedding of
topological and attribute information of a network. This
is the first time that these two types of information are
processed differently in VAE for NE. We used the most
suitable mechanisms to reconstruct network structures
and node attributes separately.

• We introduced a GMM to make the nonlinear modular
structures extracted by the encoder explicit so that such
structures can be exploited in the decoder to improve
overall embedding quality.

• We also introduced a novel network generation mech-
anism that combines the popular block model for net-
works and the GMM. The method can not only describe
the inherent coupling relationship among nodes but also
preserve network module structures, which helps im-
prove the quality of embedding significantly.

• We formulated the GMM and the network generation
method as an equivalent neural network layer and in-
corporate it in the overall VAE architecture so that an
end-to-end training can be efficiently performed.

It is important to note that although our method was not orig-
inally designed for community detection, it can indeed be
adopted to find communities as a by-product. Note that the
dimension of the embedding does not necessarily have to be
the same as the number of the actual communities in the given
network, as long as the former is not smaller than the latter so
that no intrinsic network property is lost after compression.

2 The Method
Let G = (V ,E) be an undirected attribute network with n
nodes V = {v1,v2,...,vn} and e edges E= {eij} . The topo-
logical structures of G is specified by an adjacency matrix

A ∈ Rn×n, and node semantics are represented by an at-
tribute matrix X ∈ Rn×m of maximal m attributes. Given
a network, network embedding is to learn an l � n dimen-
sional vector ui ∈ Rl for each node vi based on A and X.

2.1 Overview of the Method
The NetVAE method for embedding of attribute networks has
two major components, a joint encoder and a dual decoder
(Figure 1). The joint encoder maps both network topologies
and node attributes jointly to derive the latent variables for
the embedding of the network. The dual decoder uses two
distinct generative methods to reconstruct network topologies
and node attributes separately (Figure 1).

In the encoder of NetVAE, we concatenate to the network
topologies and node attributes in a unified representation, and
then encode the combined data using a fully connected neural
network to learn the parameters, i.e., the mean and standard
deviation, of the normally distributed variables of the target
embedding. We then synthesize the latent variables of the
embedding by using the two parameters along with a Gaus-
sian noise.

In the decoder, we adopt two different methods to re-
generate network structures and node attributes. We employ a
fully connected neural network to reconstruct node attributes.
We introduce a new generative mechanism that explicitly ex-
ploits the nonlinear modular structures of the original net-
work. Note that the encoder, a neural network on its own,
is able to extract the nonlinear modular structures hidden in
the given network in such a way that nodes belonging to the
same network module tend to be grouped together in the em-
bedding. Such modular structures can be utilized to better
re-construct the network structures. To do so, we introduce
a Gaussian mixture model (GMM) to make the latent mod-
ular structures explicit in the embedding space and adopt a
method, based on the block model (i.e. a popular tool for de-
scribing network with communities), to exploit the modular
structures for reconstruction of network structures. We then
formalize the new generationve method as a neural network.
All of these components are then integrated under the frame-
work of VAE.

2.2 The Shared Encoder
We first concatenate the two types of observed data, data of
network topology in the adjacency matrix A and data of node
semantics in the attribute matrix X, into a unified represen-
tation U = [A,X], where the row vector ui contains the ad-
jacency list and attributes of node vi. We then use a fully-
connected neural network of three layers as the encoder to
map each node to a nonlinear low-dimensional latent embed-
ding space. In the first two layers of the encoder, the output
of the t-th layer (for t = 1 or 2) is defined as:

ĥ
(t)
i = f(W(t)ĥ(t−1)

i
+ b(t)) (1)

where ĥ
(0)
i = u

i
, W(t) and b(t) are the weights and bias of

the layers, and f(·) the activation function, such asReLU (·),
for layer t.

The outputs of the last or third layer of the encoder consist
of two parameters µi and σi of the normally distributed latent
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Figure 1: A sketch of NetVAE. The adjacency vector ai and attribute vector xi are concatenated into a unified representation ui which is then
feed into the shared encoder to derive the embedding variable zi. The decoder has two parts, a decoder for network structures and a decoder
for node attributes. The major innovation of NetVAE is in the decoder for network structures; see main text for detail.

variables of the embedding, which are calculated as follows,

µi = W(µ)ĥ
(2)
i + b(µ), σi = f(W(σ)ĥ

(2)
i + b(σ)) (2)

where W(µ) and b(µ) are the weights and biases of the last
layer for deriving µi, and W(σ) and b(σ) are that for σi.
Following the reparameterization scheme in [Kingma and
Welling, 2014], we use µi and σi as the mean and variance to
synthesize the latent variable zi of the embedding of node vi
as follows,

zi = µi + σi ◦ εi (3)
where εi is a noise sampled from the Gaussian distribution
N(0, I) with zero mean and an identity covariance matrix I,
and ◦ denotes the element-wise multiplication. Based on this
neural network structure, we map each node vi to a latent
variable zi in the low-dimensional embedding space.

To constrain the latent variable zi, as did in the original
VAE [Kingma and Welling, 2014], we also impose a prior
constraint, using the mean and variance of zi, to ensure the
target distribution of zi to be a Gaussian distribution, i.e., we
have the following constraint:

Lp = DKL

(
N(Z;µ, σ2)||N (Z; 0, I)

)
= 1

2

n∑
i=1

l∑
j=1

(
− log

((
σj

i

)2)
+
(
uj

i

)2
+
(
σj

i

)2 − 1
)

(4)
whereDKL is theKL divergence. Z, µ and σ are respectively
the variable sets of zi, µi and σi, l is the dimension of latent
variable zi, and uj

i
and σj

i
are the j-th elements of µi and

σi. This constraint will be added to the loss function as a
regularization term.

2.3 The Dual Decoder
Different from the shared encoder, the decoder is composed
of two distinct sub-decoders to reconstruct separately the net-
work topology and node attributes.

The Decoder for Reconstructing Network Structure
This is the core part of the dual decoder. We first discuss
the main idea and formalize it as a neural network. We then
introduce a neural network variant of the Gaussian Mixture
Model (GMM) to help integrate it into the VAE architecture.

The scheme for network reconstruction. Assume that there
are l network modules in the given network, and the nodes in
each module have the same link pattern, i.e., all nodes in the
same module share the same link probability when connect-
ing to the other nodes. (The number of modules can be also
smaller than the dimension of network embedding while we
make them equal here without loss of generality.) To be spe-
cific, let Γ=(γik)n×l be the distributions of the module labels
for the nodes in the network, where γik denotes the probabil-
ity that node vi belongs to the k-th module, and Φ= (φrs)l×l
be the distributions of the links across communities where φrs
denotes the link probability between any two nodes in com-
munities r and s, respectively, and φrs = φsr for undirected
networks. We first sample the module labels gi for every node
vi from a multinomial distribution with parameters γi, that is:

gi ∼Multinomial(γi) (5)
where γi=(γik)1×l denotes the probability distribution of the
label of node vi over the modules. Now consider the link be-
tween nodes vi and vj , which may follow a Bernoulli distri-
bution aij ∼ Bernoulli(φgigj ) with parameters φgigj . Es-
sentially, this is to generate the network links according to l
types of link patterns (each of which corresponding to a mod-
ule), and thus naturally describes the coupling relationship
between nodes in networks considering l network communi-
ties. Note that nodes with larger degrees are more likely to be
connected. We then use didjφgigj to describe the link proba-
bility between nodes vi and vj , where di is the degree of vi.
We then sample each link between vi and vj from a Bernoulli
distribution with parameters didjφgigj , defined as:

aij ∼ Bernoulli(didjφgigj ) (6)
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By considering the node degrees, (6) better describes the cou-
pling relationship between nodes coming from l communi-
ties. This matches well with the well-known stochastic block
model [Karrer and Newman, 2011], which could generate
networks with well-defined statistical properties.

Formulating network reconstruction in neural network. To
make the above network generative process suitable for inte-
gration into VAE, we formulate it as a layer of neural network.
For convenience, we use a l-dimension vector hi to represent
the module gi for node vi, where hir = 1 if r = gi, or 0, oth-
erwise, forming a module indicator matrix H = (hir)n×l for
all nodes. The probability that nodes vi and vj are connected
can then be revised to âij=di(hiΦhTj )dj , which can also be
written in matrix form as:

Â = B(HΦHT ) (7)

where B = (bij)n×n with bij = di × dj . Since B is a con-
stant matrix and H can be sampled from the multinomial dis-
tribution over Γ following formula (5), we can formulate (7)
as a layer of neural network by taking Φ as the weights of
the layer which are to be learned in training of the neural net-
work. We then sample the observed network topology A from
a Bernoulli distribution over Â, the likelihood of which can be
defined as: p

(
A|Â

)
=
∏
i<j

â
aij
ij (1− âij)1−aij . Since maxi-

mizing this likelihood is the objective of the network genera-
tive process, we can then take the negative log-likelihood as
the loss function of this layer of the neural network,

Lt = −
∑
i<j

(aij ln âij + (1− aij) ln (1− âij)) (8)

Converting latent variables to module memberships. This
new network structure reconstruction method must also spec-
ify the probabilities that a node is assigned to the l modules
(i.e. Γ ). Nevertheless, the encoder described above will in-
stead learn a set of embedding latent variables Z. We need
to convert the embedding variables into node module mem-
berships. To this end, we introduce a neural network varia-
tion of the GMM into VAE. Given the latent variables Z =
{z1, z2, ..., zn} and node module labels g = {g1, g2, ..., gn},
the log-likelihood under the GMM model can be defined as:

ln p(Z|θ) =
n∑
i=1

ln
∑
gi

π′kN(zi, gi|µ′k, σ′k) (9)

where π′k, µ′k and σ′k are the mixing coefficients, mean and
covariance for the k-th module in GMM. We use θ to denote
the set of all these parameters for convenience. By applying
Jensen’s inequality to (9), we derive a lower bound of the log
likelihood as ξ (θ):

ξ (θ) =

n∑
i=1

∑
gi

qi (gi) ln

(
π′kN(zi, gi|µ′k, σ′k)

qi (gi)

)
≤ ln p(Z|θ)

(10)
where the probability distribution qi (gi) in (10) can be freely
chosen. The equality holds when qi (gi) is equal to the real
posterior distribution. So we can derive it as follows:

qi (gi) = p (gi|zi, θ) = γi (11)

Ignoring the item that are not related to parameters θ and
marginalizing gi, ξ (θ) can be further written as:

ξ (θ) =
n∑
i=1

γik

c∑
k=1

π′kN (zi|µ′k, σ′k) (12)

To apply this lower bound to VAE, we introduce a layer of
neural network instead of traditional Bayes rules to calculate
the posterior distribution γi based on the latent variable zi,
that is:

γi = softmax(W(γ)zi + b(γ)) (13)

which serves as the E-step in the EM algorithm. Here, W(γ)

and b(γ) are the weights and biases in this neural network
layer. By setting the derivatives of ξ (θ) with respect to π′k,
µ′k and σ′k to zero, we estimate the parameters as follows:

π′k =
n∑
i=1

γik
n , µ

′
k =

∑n
i=1 γikzi∑n
i=1 γik

σ′k =
∑n

i=1 γik(zi−µ
′
k)(zi−µ

′
k)

T∑n
i=1 γik

(14)

which collectively serve as the M-step in the EM algorithm.
Next, to integrate this GMM model into the neural net-

work, we follow the technique proposed in [Zong et al., 2018]
and add the following energy term E(zi) to every node based
on the parameters in (14), i.e.,

E(zi) = −log(
c∑

k=1

π′k
exp(− 1

2 (zi − µ′k)
T
σ′
−1
k (zi − µ′k)√

|2πσ′k|
)

(15)
We further calculate the average energy of all the n nodes,

Lc =
1

n

n∑
i=1

E(zi) (16)

which is added to the loss function of VAE. By minimizing
the loss in training the neural network, we derive an accurate
γi to be used for reconstructing network structures.

The Decoder for Reconstructing Node Attributes
Besides network topology, we also need to reconstruct the
node attributes. To this end, we use the latent variable zi for
each node vi as the input to a fully connected neural network
to reconstruct node attributes. This is formulated in the same
way as in (1) for the encoder, but with increased dimensions
of the outputs layer by layer. We use the output of the last
layer as the final reconstructed node attributes, denoted as x̂i.
The loss or objective function of this decoder is

La =

n∑
i=1

`(x̂i, xi) (17)

where ` is the cross entropy between x̂i and xi.

2.4 The Unified Model and its Optimization
To sum up, the loss function of the whole NetVAE model is
defined as:

L = Lt + La + Lp + Lc (18)
The training process is to minimize the loss function of

a given network. The first two items, Lt in (8) and La in
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(17), are the reconstruction errors of the network structures
and node attributes, respectively. The third item, Lp in (4),
is a prior constraint item, which encourages the distributions
of the latent variables to match the prior distributions. The
last item, Lc in (16), is the average energy from introducing
GMM. The NetVAE can then be optimized via stochastic gra-
dient descent in back-propagation. The overall complexity of
this method is competitive with that of the original VAE.

3 Experimental Analysis
We validated and evaluated NetVAE on two widely used ap-
plications of network node classification and node clustering
(i.e., community detection). Here we also present the results
and an analysis to understand why the method works.

3.1 Experiment Setup
We used seven public datasets with varying sizes (Table
1). Among these datasets, Cornell, Texas, Washington and
Wisconsin (which are sub-datasets of WebKB) are webpage
datasets from four universities. Citeseer is a citation net-
work. UAI2010 contains articles information from Wikipedia
pages. Pubmed is a scientific publications dataset.

Datasets Cornell Texas Waton Wisin Cite UAI Pubmed
n 195 183 217 262 3,327 3,067 1,9717
e 304 328 446 530 4,732 45,006 44,338
m 1,588 1,498 1,578 1,623 3,698 4,973 500
c 5 5 5 5 6 19 3

Table 1: Statistics of the datasets used, where n, e, m and c de-
note the numbers of nodes, edges, attributes and categories. Wa-
ton, Wisin, Cite, UAI is short for Washington, Wisconsin, Citeseer,
UAI2010.

We compared NetVAE with two types of network embed-
ding methods. 1) Topology-based methods: DeepWalk [Per-
ozzi et al., 2014], Node2Vec [Grover and Leskovec, 2016]
and SDNE [Wang et al., 2016a]; and 2) Methods using both
topological and attribute information: TADW [Yang et al.,
2015], VGAE [Kipf and Welling, 2016], TriDNR [Pan et
al., 2016], SNE [Liao et al., 2018] and ARVGA [Pan et al.,
2019]. VGAE and ARVGA are both the VAE-based methods.

For fair comparison, we set the embedding dimension l =
64 for all methods and used the default values for the other
parameters of these methods. We also used the Tensorflow
deep learning tool with a learning rate of 0.001.

3.2 Node Classification
After network embedding was done, we applied the Lib-
SVM (SVM) and LibLINEAR (LINEAR) software packages
in Weka as the classifiers for all methods. We used 10-fold
cross-validation to train the classifier. Then, to measure the
result, we employed accuracy (AC) [Liu et al., 2012] as the
metric. NetVAE performs the best on 6 and 5 of the 7 net-
works using SVM and LINEAR respectively (Table 2). To
be specific, NetVAE on average outperformed the best base-
line method (i.e., TADW ) by 11.20% using SVM and 6.48%
using LINEAR. In particular, NetVAE performs better than
the other two VAE-based methods (i.e, VGAE and ARVGA)
which also use the topological and attribute information.

Packages Methods Datasets
Cornell Texas Waton Wisin Cite UAI Pubmed

SVM

DeepWalk 38.97 49.18 55.30 49.24 52.52 58.69 78.79
Node2Vec 35.90 50.27 47.47 46.56 61.63 61.95 80.30

SDNE 50.25 62.29 65.89 56.11 42.14 38.18 39.41
SNE 48.21 57.92 54.38 59.54 44.74 41.18 78.37

TriDNR 37.95 48.09 47.01 40.46 54.47 57.74 79.07
ARVGA 42.56 56.28 58.99 49.26 65.10 31.30 80.64
TADW 64.10 67.76 59.45 64.50 69.83 68.70 85.37
VGAE 45.13 55.00 54.38 53.82 68.97 32.21 85.42

NetVAE 78.46 85.25 82.03 83.59 71.62 73.65 83.53/3

LINEAR

DeepWalk 38.46 48.09 53.92 49.62 48.42 60.61 78.36
Node2Vec 37.95 50.27 45.62 46.94 52.44 60.38 81.08

SDNE 48.72 66.12 64.51 54.96 41.75 39.65 39.67
SNE 45.64 59.02 55.76 59.92 44.35 29.87 77.20

TriDNR 34.87 42.08 43.32 41.60 52.91 57.94 78.40
ARVGA 41.54 59.02 60.37 56.11 66.71 44.28 80.59
TADW 61.03 67.76 64.98 67.56 72.53 68.50 86.80
VGAE 45.64 51.91 54.84 54.49 69.25 50.78 87.81

NetVAE 72.30 80.87 77.88 80.15 69.95/2 71.21 82.17/3

Table 2: Comparison on node classification in terms of AC (%).

3.3 Node Clustering
Similarly, we adopted k-means for node clustering and AC
and NMI (normalized mutual information) [Liu et al., 2012]
as the metrics. Here NMI was used because it has been widely
adopted for node clustering. Our NetVAE method performs
the best on 5 of the 7 networks in AC, and 6 of the 7 networks
in NMI (Table 3). On average, NetVAE improved upon the
best baseline (i.e., TADW) by 6.10% in AC and 16.18% in
NMI. This further validate the effectiveness of NetVAE.

Metrics Methods Datasets
Cornell Texas Waston Wisin Cite UAI Pubmed

AC

DeepWalk 36.05 46.72 40.76 38.76 36.21 37.58 64.84
Node2Vec 33.85 47.54 37.33 49.62 40.76 36.74 66.76

SDNE 41.51 60.02 50.31 39.17 31.74 22.74 41.66
SNE 43.08 41.53 48.80 55.50 31.17 30.70 66.13

TriDNR 38.21 47.54 43.59 43.70 34.44 35.59 59.29
ARVGA 43.59 41.48 43.66 42.81 43.50 22.95 58.76
TADW 47.69 59.23 50.30 55.00 55.39 36.19 57.46
VGAE 36.72 48.35 43.73 43.28 55.46 21.22 58.64

NetVAE 56.13 58.85/3 60.71 66.83 61.12 38.07 62.22/4

NMI

DeepWalk 7.06 6.16 5.66 7.65 10.58 34.28 26.55
Node2Vec 6.65 4.49 2.94 7.86 12.99 33.87 25.02

SDNE 14.06 24.36 18.78 9.35 11.81 17.92 5.84
SNE 11.11 12.63 17.43 23.94 7.31 26.56 26.61

TriDNR 7.20 4.32 8.10 6.60 9.59 32.37 19.28
ARVGA 10.26 7.28 12.60 11.92 22.72 22.00 18.40
TADW 11.13 10.90 11.63 17.52 31.60 37.92 20.11
VGAE 7.77 8.52 9.03 9.31 27.93 19.57 17.83

NetVAE 33.60 35.87 37.19 44.73 34.59 41.92 26.15/3

Table 3: Comparison on node clustering in AC (%) and NMI (%).

Node clustering is also the so-called community detec-
tion problem. Here we further compare our method with
some existing methods that are specially designed for com-
munity detection on attribute networks, since NetVAE is also
community-specific. The methods that we compared in-
clude Block-LDA [Balasubramanyan and Cohen, 2011], SCI
[Wang et al., 2016b] and TLSC [Zhang et al., 2018b]. Net-
VAE performs the best on 5 and 6 of the 7 networks in terms
of AC and NMI respectively (Table 4). On average, NetVAE
improved upon the best baseline (i.e., TLSC) by 14.28% in
AC and 17.03% in NMI. The two types of comparisons vali-
date that we can derive better embedding by taking into con-
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Metrics Methods Datasets
Cornell Texas Waston Wisin Cite UAI Pubmed

AC

BDA 46.15 54.10 39.17 6.81 24.35 16.04 49.10
SCI 45.64 62.30 51.15 11.44 27.98 30.94 -

TLSC 47.69 65.02 51.61 13.16 35.74 29.37 61.38
NetVAE 56.13 58.85/3 60.71 66.83 61.12 38.07 62.22

NMI

BDA 6.81 4.21 3.69 5.01 2.42 5.70 6.58
SCI 11.44 17.84 12.37 17.03 4.87 24.80 -

TLSC 13.16 23.92 17.63 16.65 23.16 20.68 19.63
NetVAE 33.60 35.87 37.19 44.73 34.59 41.92 26.15

Table 4: Comparison on community detection in AC (%) and NMI
(%). BDA is short for Block-LDA. ‘-’ denotes run time> 100 hours.

sideration network modular structures, and the learning of
embedding can enhance community detection.

3.4 Why Our Approach Works
To have a deep understanding on why NetVAE works, we
examine two factors that have the greatest impact on the ef-
fectiveness and performance of NetVAE.

The Dual Decoder Architecture
In order to evaluate the effectiveness of the new dual decoder
architecture, we compare NetVAE with its variant OVAE that
uses a shared decoder using the fully connected neural net-
work architecture for reconstruction of both network struc-
tures and node attributes. When compared on the node clus-
tering task, NetVAE always outperforms OVAE (Table 5),
with an average improvements of 7.67% in AC and 6.52%
in NMI. This result revealed that by honoring the difference
between network structures and node attributes and their dif-
ferent contributions to forming network modules as well as
treating these two types of information in separate reconstruc-
tion processes, we are able to have better results.

Metrics Methods Datasets
Cornell Texas Waton Wisin Cite UAI Pubmed

AC OVAE 48.28 41.67 45.41 56.51 56.56 39.17 62.63
NetVAE 56.13 58.85 60.71 66.83 61.12 38.07 62.22

NMI OVAE 28.79 22.81 27.34 33.58 32.66 38.07 25.15
NetVAE 33.60 35.87 37.19 44.73 34.59 41.92 26.15

Table 5: Comparison of NetVAE and OVAE (with shared decoder)
on node clustering in terms of AC (%) and NMI (%).

Mechanism for Network Reconstruction
To analyze the factor, we compared the network structures
generated from NetVAE and that from its variant OVAE with
the shared decoder using neural networks. We reconstruct
the network using the method in [Wang et al., 2016a]. This
method calculates the cosine similarities between pairs of all
of the nodes in the embedding space, and ranks the node pairs
in a non-increasing order of similarity. It then selects the top
k node pairs as links in the reconstructed network, and uses
precision@k (i.e., the proportion of the actual edges in the
original network that appear in the k reconstructed edges) as
the metric. Here due to space limitation we show the results
on Citeseer alone (Figure 2(a)). As shown, the precision@k
of NetVAE is always higher than that of OVAE. The result
indicates that the network reconstruction depends on network
embedding in the VAE framework and a better reconstruction
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Figure 2: (a) Precision@k of NetVAE and OVAE on Citeseer. (b)
Node degree distributions of the original network and the networks
reconstructed by NetVAE and OVAE. The x-axes and y-axes are
logarithmic, showing that they all follow power-law distributions.

depends on a better embedding. This result may also be due
to the way that we take advantage of community-specific cou-
pling relationship among nodes in structure reconstruction.

We further analyzed the effectiveness of the new network
generation mechanism in NetVAE by testing if it could better
preserve the statistical properties of the original network. As
an example, we present the node degree distributions of the
original networks and of the networks reconstructed by Net-
VAE and OVAE (Figure 2(b)). As shown, the node degree
distributions of the network reconstructed by NetVAE match
better with the original network than that of OVAE.

4 Conclusion
We developed a novel network-specific variational autoen-
coder, called NetVAE, for embedding of attribute networks.
This is the first to distinguish these two types of informa-
tion of network topology and node attributes under the VAE
framework. NetVAE has three immanent features. First, it
uses a shared encoder to compress both network structures
and node attributes so that a co-training can be done in the
model fitting process to perform transfer learning between
network structures and node semantics. Second, it intro-
duces a dual decoding scheme to take a good advantage of
the difference between network structures and node seman-
tics as in reality these two types of information are often
drawn from different sources. The dual decoder has one de-
coder of fully connected neural network for reconstruction of
node attributes and another special neural network that incor-
porates a block model for exploiting network module struc-
tures and incorporates module-specific node coupling rela-
tionships. Third, a Gaussian mixture model is introduced be-
tween the shared encoder and the dual decoder, which assigns
nodes to network modules in the embedding space. The ex-
tensive experimental results demonstrated the superior per-
formance of the new approach over the existing methods.
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