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Abstract
Deep convolutional neural networks (DCNN) with
manifold embedding have achieved considerable
attention in computer vision. However, prior arts
are usually based on the neighborhood-based graph
modeling only the pairwise relationship between
two samples, which fail to fully capture intra-class
variations and thus suffer from severe performance
loss for noisy data. While such intra-class vari-
ations can be well captured via sophisticated hy-
pergraph structure, we are motivated and lead a
hypergraph induced Convolutional Manifold Net-
work (H-CMN) to significantly improve the repre-
sentation capacity of DCNN for the complex data.
Specifically, two innovative designs are provides:
1) our manifold preserving method is implemented
based on a mini-batch, which can be efficiently
plugged into the existing DCNN training pipelines
and be scalable for large datasets; 2) a robust hyper-
graph is built for each mini-batch, which not only
offers a strong robustness against typical noise, but
also captures the variances from multiple features.
Extensive experiments on the image classification
task on large benchmarking datasets demonstrate
that our model achieves much better performance
than the state-of-the-art.

1 Introduction
Deep learning models with convolutional neural networks
have been widely applied to various classification problems
such as image classification [He et al., 2016], action recog-
nition [Simonyan and Zisserman, 2014; Wang et al., 2015a]
and object tracking [Han et al., 2017]. A typical CNN adopts
the softmax loss to train a classification model, which can
well discriminate the inter-class samples. However, when
facing the data with large intra-class variations, the perfor-
mance of the traditional CNN models degenerates dramati-
cally. The center loss [Wen et al., 2016a] made an attempt to
leverage the prior of data distribution to enforce the deep fea-
tures from the same class to have small intra-class variance,
which assumes that the data follows Gaussian distributions.

∗Corresponding Author

Figure 1: The proposed model adopts hypergraph to refine the deep
features, where a group of samples from the same class such as
Horse or Plane are distributed smoothly on the hypergraph.

However, for many real-world problems, the Gaussian as-
sumption usually does not hold. A more natural thought is to
adopt manifold data preserving techniques [Gao et al., 2013;
Rifai et al., 2011] to address the robustness issue for the noisy
data in real applications.

Despite the exciting progress, incorporating manifold pre-
serving method into deep models still remains as an open
problem. In [Yuan et al., 2015], researchers [Yuan et al.,
2015] adopt manifold learning as a base unit plugged into
a deep architecture, which indeed works but suffers from a
huge computational burden. While Graph Regularized Deep
Neural Network (GR-DNN) [Yang et al., 2017] endues the
traditional Deep Auto-Encoder with the ability to preserve
the local geometric structure of the data. Multi-Manifold
Deep Metric Learning (MMDML) [Lu et al., 2015] trans-
forms multiple sets of nonlinear transformations to a shared
feature subspace to maximize the manifold margin of differ-
ent classes. Manifold Regularized Deep Neural Networks
(MRDNN) [Tomar and Rose, 2014] attempts to make the as-
sociated techniques preserve the underlying manifold based
relationships amongst speech feature vectors.

The previous methods are usually applied to image /speech
datasets of the small or middle sizes, since the graph con-
struction is intractable for the large-scale data. Thus, how to
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embed the data correlations into the training pipeline of deep
learning is still an open problem. Specifically, the existing
methods usually adopt the neighborhood-based graph to pre-
serve the structure of the data, which is sensitive to noise and
performs worse when facing the badly corrupted noisy data.
That may be the reason that previous method can not well ex-
plore the real-world data, and only limited improvements are
achieved in practical applications. We note that compared
with the neighborhood-based graph, the robust graph con-
struction methods such as low-rank graph [Liu et al., 2013]
or `1-graph [Elhamifar and Vidal, 2013] needs more compu-
tational resources. Therefore, these robust graphs cannot be
applied to deep learning models. The manifold-based robust
deep learning can be further boosted by exploring more about
the local structure of data.

In this paper, we propose a hypergraph induced Convolu-
tional Manifold Networks (H-CMN). The main difference be-
tween our model and the previous methods lies in that ours
can scale to the large-scale datasets such as ImageNet and
at the same time gain more robustness on the noisy data by
introducing the hypergraph learning into deep learning train-
ing pipeline. Besides, our model simultaneously captures the
variations of multiple deep features by constructing a hyper-
graph on each mini-batch iteration of the training pipeline.
Figure 1 shows the motivation of our model.

The highlights of our proposed H-CMN model are summa-
rized as follows:

• Our model is flexible and efficient for the large-scale
dataset such as ImageNet by constructing a hypergraph
in each mini-batch.

• The constructed hypergraph is not only robust to the
noise, but also able to simultaneously capture the vari-
ations of multiple deep features.

• The extensive experiments on large-scale datasets val-
idate the superior performance of the proposed model
over the state-of-the-arts. In particular, the performance
is significantly improved for noisy data.

2 Hypergraph Induced Manifold Networks
We assume a training dataset of N samples, X ={
x

1
,x

2
, · · · ,x

i
, · · · ,x

N

}
, where xi is the i-th sample with

the class label, Ri, and N is the number of samples.

2.1 Manifold Loss Based on Hypergraph
We propose to adopt a hypergraph to represent the local
neighborhood structure for the samples in each mini-batch,
where each hyperedge in the hypergraph can link more than
two vertices [Agarwal et al., 2005]. Thus, the high-order rela-
tionships of the data are effectively modeled by a hypergraph.
Hypergraph has been applied to various tasks such as image
retrieval [Huang et al., 2010] and attribute predicting [Huang
et al., 2015] and hyperspectral image classification [Gao et
al., 2014].

Suppose a hypergraph G = (V,E,W) is composed of a
vertex set V , a hyperedge set E, and a weights matrix of
hyperedges W, where the weight of a hyperedge e is rep-
resented as w(e). A hypergraph can be represented by an

incidence matrix H indicating whether a vertex is connected
by a corresponding hyperedge, or not. The widely used bi-
nary incidence matrix is defined as: H(v, e) = 1 if v ∈ e;
otherwise H(v, e) = 0. Based on the incidence matrix H and
hyperedge weights W, the edge degree of each hyperedge e
is defined as δ(e) =

∑
e∈EH(v, e).

By incorporating a hypergraph, the proposed manifold loss
is defined as

JQ(f) =
N∑
i=1

N∑
j=1

Aij ||fQ(xi)−fQ(xj)||2, (1)

where fQ(xi) is the CNN deep feature of the i-th sample,
which is directly related to the learned filters (Q) and Aij
is the similarity between two samples xi and xj , which is
defined as

Aij =

{ ∑
e∈E|(i,j)∈e

w(e)
δ(e)

0

when e exist
otherwise

, (2)

where w(e) is the hyperedge weight and δ(e) is the edge de-
gree of the hyperedge e.

By minimizing the manifold loss, the deep features can
reflect the local neighborhood structure of the data samples
within each hyperedge.

2.2 Manifold-aware Training Loss
Our proposed model combines the manifold loss and the soft-
max loss, resulting in the following training loss:

Jγ,ρ(θ,Q) = 1
N

N∑
i=1

L(Ri, fQ(xi))+
γ
2‖θ‖

2

+ ρ
N2

N∑
i=1

N∑
j=1

Aij ||fQ(xi)−fQ(xj)||2,
(3)

where the first component is the softmax loss, designed to
enlarge the inter-class differences. θ denotes the weight ma-
trix in the last fully connected (FC) layer. γ is the weight
decay coefficient. The second component is the manifold
loss, which is particularly designed for large intra-class varia-
tions. ρ is the regularization parameter to trade-off two train-
ing losses.

For the DCNN-based deep learning models 1, the deep fea-
tures are passed to the last Fully Connected (FC)-layer for the
label prediction. For simplicity, we assume the CNN model
has one FC-layer. fQ(xi) is the deep features of xi, belong-
ing to the Ri-th class and Q is the filter weights, and θ is the
weights matrix in the last FC layer. The softmax metric for
the predicted probability of the Ri-th class is defined as

L(Ri, fQ(xi)) = − log
eθ
T
Ri
fQ(xi)+bRi

P∑
j=1

eθ
T
j fQ(xj)+bj

, (4)

1In this paper, the typical DCNN-based deep learning models in-
clude VGG [Simonyan and Zisserman, 2015], GoogLeNet [Szegedy
et al., 2016] , WideResNet [Zagoruyko and Komodakis, 2016] and
a light weight CNN–MobilNet [Howard et al., 2017].
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Figure 2: One example of hypergraph construction procedure

where P is the number of data classes and θj is the j-th column
of the weights matrix.

By minimizing the manifold aware training loss, our pro-
posed H-CMN model learns the deep features, which not only
reflect the simultaneous variances of multiple deep features
on the manifold, but also enlarges the inter-class separability
using the label supervisory information.

3 Fast Hypergraph Construction
3.1 The Main Idea
The manifold loss is identical to the manifold regulariza-
tion [Belkin et al., 2006; He and Niyogi, 2003], which
has been widely used in semi-supervised learning. How-
ever, how to embed manifold into a deep learning model is
still an open problem that remains unsolved before our work.
For deep learning model usually involves the large-scale
dataset, it is intractable to directly adopt the existing hyper-
graph construction methods for hyperedge generation. To this
end, both the neighborhood-based approach and the recent
proposed representation-based approach [Liu et al., 2017;
Wang et al., 2015b; Zhang et al., 2017] usually generate a
set of hyperedges using the entire training set, which doesn’t
easily scale up for the large-scale data.

The training procedure of the deep learning model usu-
ally depends on the mini-batch Stochastic Gradient Descent
(SGD) approach. For computational efficiency, it is crucial
to embed a hypergraph into the SGD iterations. Therefore,
we construct multiple class-specific feature buffers to store a
small number of samples for each iteration, and then gener-
ate the hypergraph of the data using the samples in the feature
buffers for reflecting the local neighborhood structure.

3.2 Mini-Batch Based Data Reconstruction
In the following, we give the details of how to construct a hy-
pergraph for deep learning. Figure 2 gives a simple illustra-
tion of our proposed hypergraph construction procedure. For
designing an efficient hypregraph construction to make the
traditional SGD work, we construct multiple class-specific
feature buffers for only storing the previous samples from
the mini-batches of the last iterations. These chosen sam-
ples share the same class label. We assuming that the training
set contains P classes of the samples, we construct P feature

buffers with k0 size for storing a small number of samples in
the training set.

Since the SGD training strategy optimizes the training loss
in each mini-batch, we take one sample xi from the cur-
rent mini-batch, and combine it into the corresponding class-
specific feature buffer. Then, xi is taken as the center ver-
tex and its k-nearest-neighbors from the corresponding class-
specific feature buffer are chosen for further processing to
generate one hyperedge of a hypergraph.

Note that xi may also be involved in the other hyperedges,
whose center vertex is the k-nearest-neighbor of xi. Fur-
thermore, for the k-nearest-neighbor xj of xi is taken as the
center vertex to generate the correlated hyperedges by recon-
structing xj by its the k-nearest-neighbors chosen from the
corresponding class-specific feature buffer and xi. As a re-
sult, k+1 hyperedges are generated to capture the local neigh-
borhood structures between xi and its k-nearest-neighbors
from the corresponding class-specific feature buffer.

To generate a noise-resistant hyperedge set, we take center
vertex and reconstruct it by its k-nearest-neighbors as

min
cp

∥∥X∗pcp−xp∥∥2 + λ‖cp‖2, (5)

where xp is the center vertex. X∗p is the data matrix of the
k-nearest-neighbors of xp. cp is the coefficients vector of the
centroid vertex. λ is the regularization parameter to tradeoff
between the data reconstruction term and the regularization.

The first term is the data reconstruction term, which repre-
sents center vertex as the linear combination of its k-nearest-
neighbors. The second term is the `2-norm regularization,
which has the following two advantages: (1) It makes the lin-
ear regression problem non-singular even if (X∗p)

T (X∗p) is
not invertible for the case when the number of the nearest
neighbors is much less than the number of the data samples.
(2) It is suitable to choose the correlated samples as the ver-
tices of each hyperedge, which has a group selection effect
for the highly-correlated data.

Eq. (5) has the closed-form solution, which is derived as

cp =
(
(X∗p)

T
(X∗p) + λI

)−1
(X∗p)

Txp. (6)

Each entry in the coefficient matrix is obtained for modu-
lating the data affinity. Here, each column of the coefficient
matrix naturally characterizes how other samples contribute
to the reconstruction of a given sample. Note that the noise
component is separated from the original data and the clean
data is represented as the linear combination of its k-nearest
neighbors. The derived coefficients are robust to noise, while
reflecting the local manifold structures of the data.

3.3 Fast Hyperedge Generation
To effectively capture the grouping and discriminative struc-
tures of the data, we only preserve those coefficients over a
given threshold and make the coefficients under this thresh-
old be zeros. Furthermore, the incidence relation between a
hyperedge and its vertices, is defined as [Liu et al., 2017]:

H(vj , ep) =

{
1 if cpj ≥ τ
0 otherwise

, (7)
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where ep is the hyperedge associated with the center vertex
xp, and cpj is the j-th coefficient of associated with xp and τ
is the given threshold.

Hyperedge weighting is crucial for the learning task. We
sum all the coefficients of vertices within a hyperedge as the
hyperedge weight, which is defined as

w[ep] =
∑

(p,j)∈ep

|cpj |. (8)

For each sample in the current mini-batch, we repeat the
aforementioned procedure to generate a set of hyperedges for
the current mini-batch iteration. After finishing a mini-batch
iteration, the samples in the current mini-batch is added to
the corresponding queue of the class-specific feature buffer.
Thus, the hypergraph construction is effectively embedded
into each mini-batch-based SGD iteration.

The computational complexity of hypergraph construction
is O(dk2N ), where d is the data dimensionality, k is the
neighborhood size parameter, and N is the number of sam-
ples. Since the neighborhood size is usually very small, the
computation of the hypergraph construction is tractable for
the SGD iterations.

4 Model Training
To embed the manifold loss into the CNN training, it is crucial
to compute the manifold loss using the mini-batch for each
iteration. In this article, we suppose the mini-batch size isM .

4.1 Computation of Manifold Loss
As shown in Eq. 3, the key step of computing the mani-
fold loss is to measure the similarity Aij between two ver-
tices vi(xi) and vi(xj), decided by the averaged neighboring
affinities close to them, which is further affected by the hy-
peredges sharing two common vertices (vi and vi).

After a set of the hyperedges are generated for each mini-
batch, the number of the hyperedges is k + 1 for each sam-
ple in the current mini-batch. Thus, it is computationally
tractable to visit each hyperedge to find whether the cor-
responding hyperedge contains two common samples. The
aforementioned procedure is repeated to compute the mani-
fold loss of mini-batch.

4.2 Update Rules
The update of the filter weights and the weights of the last
FC-layer are iteratively processed. In each iteration, the filter
weights and the weights of the last FC-layer are updated using
mini-batch. Let the size of a mini-batch be M , Equre 3 is
reformulated as

Jλ,ρ(θ,Q) = 1
M

M∑
i=1

L(Yi, fQ(xi))+
τ
2‖θ‖

2

+ρ
M∑
i=1

M∑
j=1

Aij ||fQ(xi)−fQ(xj)||2
. (9)

For the FC-layer, the weights matrix is updated by

θ(t+1) = θ(t) − µ(t) ∂Jγ,ρ(θ,Q)

∂θ
, (10)

Algorithm 1 Training of convolutional manifold networks
Input: The training set of the samples X
Parameter: Initialized filter weights Q in the convolution
layers, the weights matrix θ in the last FC-layer and the itera-
tion number t = 0
Output: The optimized parameters Q and θ

1: while not converged do
2: Step 1: t=t+1.
3: Step 2: Compute the joint loss, Jγ,ρ(θ,Q).
4: Step 3: Update θ(t+1) according to Eq. 10.
5: Step 4: Update Q(t+1) according to Eq. 11.
6: end while

where µ is the learning rate and t is the iteration number.
The filter weights for the convolutional layers, Q, is up-

dated by

Q(t+1) = Q(t) − µ(t) ∂Jγ,ρ(θ,Q)
∂Q − µ(t) ρ

M
∂f
∂Q

M∑
i=1

(f (t)(xi)− f
(t)(xj)) ·Aij

, (11)

where Aij can be efficiently computed by the hypergraph
construction for the current mini-batch iteration.

Algorithm 1 lists the main procedure of our proposed H-
CMN model. For the convergence of this iterative algorithm,
because the computation of the manifold loss does not hurt
the convergence of the training pipeline of the typical CNN,
our model can be effectively trained using the SGD approach.

5 Experiments and Discussions
We used the typical DCNN as the backbone to train our model
by SGD with only a small amount of parameter increase
compared to the base model. In our experiments, VGG [Si-
monyan and Zisserman, 2015], WideResNet [Zagoruyko and
Komodakis, 2016], GoogLeNet [Szegedy et al., 2016] and
MobilNet [Howard et al., 2017] are chosen. For clarification,
we refer to our method by adopting the VGG, GoogleNet
and WideResNet and MobilNet as backbone as H-CMNV, H-
CMNG, H-CMNW and H-CMNM, respectively, where the
feature buffer size is set to 100 and the neighborhood size
parameter is set to 10. The compared deep learning models
were trained on the 4 GPUs (Titan XP), which have 3.20G
HZ and 12G memory. The mini-batch size is set to 150.

Furthermore, we compared our model to the state-of-
the-art methods: Center loss [Wen et al., 2016b] and
the typical CNN model: VGG [Simonyan and Zisserman,
2015], GoogleNet [Szegedy et al., 2016] and WideRes-
Net [Zagoruyko and Komodakis, 2016]. For fair compar-
isons, we use the default parameter settings such as the learn-
ing rate in their base model from all the compared methods.
In our experiments, the number of the epochs for our model
is set to be 180. Then, we run 5 times and report the Mean
values and standard deviations (Std)

To understand how robust hypergraph affects the per-
formance of deep learning model, we also used the
neighborhood-based graph instead of a hypergraph to pre-
serve the pairwise relationship between two deep features,
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(a) (b) (c) (d)

Figure 3: The classification results over different parameters. (a) the trade-off parameter ρ, the `2-norm regularization parameter λ and the
weight decay coefficient γ; (b) the threshold parameter τ ; (c) the neighborhood size k; (d) the size of feature buffer k0.

where each sample is directly linked to its k-nearest-
neighbors. For clarity, we refer to the deep learning model
using neighborhood-based graph as Gr-CNN.

For other deep manifold methods without open source
code, they are not tested in following experiments. Note that
Gr-CNN have a similar concept as other deep manifold meth-
ods, which thus can be used to validate our superior perfor-
mance over conventional ones in the field.

5.1 Parameter Setting

Our model has four essential parameters: (1) the `2-norm reg-
ularization parameter λ of ridge regression, (2) the trade-off
parameter ρ between the softmax loss and the manifold loss,
(3) the weight decay coefficient γ, and (4) the threshold pa-
rameter τ of the hyperedge generation. For the threshold pa-
rameter τ , we set the threshold parameter as the function of
the largest coefficient of centroid sample, i.e., τ = τ s(cmax),
where cmax is the largest coefficient of the centroid sample.
In addition, (1) the size of feature buffer k0 and (2) the neigh-
borhood size k are also two issues that affect the performance.

We conducted the classification experiments on the
CIFAR-10 natural image dataset [Krizhevsky, 2009] to an-
alyze how these parameters affect the classification perfor-
mance. Figure 3 shows the results under different parameter
values.

From Figure 3, we have the following observations:
As the trade-off parameter ρ increases, the performance in-

creases accordingly. When ρ is larger than 300, the perfor-
mance becomes stable.

The performance increases as the `2-norm regularization
parameter λ increases. The performance becomes stable
when λ is larger than 500.

When the weight decay coefficient γ is ranged from 200 to
600, the performance becomes stable. For a small or a large
parameter value, the performance degenerate slightly.

As the threshold parameter τ of hyperedge generation in-
creases, the performance increases accordingly. When τ s is
larger than 70% of the largest coefficient, the performance
degenerates with a small gradient.

When the neighborhood size k is larger than 5, the perfor-
mance is fairly stable. The experimental results shows that
our model is insensitive to the large neighborhood sizes.

Noise ratio 0 10% 30% 50%

VGG 96.6 (0.1) 94.7 (0.1) 89.7 (0.2) 87.6 (0.3)
H-CMNV 97.1 (0.2) 95.3 (0.1) 93.6 (0.1) 90.4 (0.3)
GoogLeNet 96.5 (0.2) 94.8 (0.2) 90.1 (0.3) 87.9 (0.1)
H-CMNG 97.2 (0.3) 95.7 (0.1) 93.3 (0.2) 91.2 (0.3)
WideResNet 97.2 (0.1) 94.1 (0.2) 90.7 (0.3) 88.3 (0.3)
H-CMNW 98.2 (0.0) 97.3 (0.1) 94.2 (0.1) 93.8 (0.2)
Center Loss 97.3 (0.3) 95.3 (0.2) 91.3 (0.1) 89.5 (0.3)
Gr-CNN 97.6 (0.0) 95.1 (0.1) 92.3 (0.2) 90.6 (0.3)

Table 1: Classification accuracy (%) on SVHN (Mean ± Std)

Noise ratio 0 10% 30% 50%

VGG 93.6 (0.0) 90.3 (0.2) 87.8 (0.1) 84.2 (0.1)
H-CMNV 94.5 (0.2) 93.1 (0.1) 90.9 (0.0) 88.8 (0.3)
GoogLeNet 94.1 (0.2) 91.2 (0.3) 88.4 (0.1) 85.3 (0.4)
H-CMNG 95.1 (0.3) 93.8 (0.2) 92.0 (0.2) 90.5 (0.1)
WideResNet 94.5 (0.3) 90.3 (0.4) 88.6 (0.2) 85.2 (0.3)
H-CMNW 96.8 (0.2) 94.8 (0.1) 93.2 (0.3) 91.9 (0.2)
Center Loss 94.9 (0.3) 91.6 (0.2) 89.4 (0.2) 86.7 (0.3)
Gr-CNN 95.6 (0.2) 92.8 (0.1) 90.1 (0.3) 87.6 (0.2)

Table 2: Classification accuracy (%) on CIFA-10 (Mean ± Std)

Noise ratio 0 10% 30% 50%

VGG 73.5 (0.2) 70.4 (0.3) 67.1 (0.1) 64.5 (0.3)
H-CMNV 75.2 (0.2) 73.4 (0.1) 70.5 (0.0) 68.9 (0.2)
GoogLeNet 77.6 (0.4) 74.2 (0.2) 71.3 (0.0) 69.8 (0.3)
H-CMNG 80.5 (0.1) 78.9 (0.1) 76.8 (0.0) 74.5 (0.2)
WideResNet 77.3 (0.2) 75.3 (0.3) 73.1 (0.2) 70.4 (0.2)
H-CMNW 81.3 (0.2) 80.4 (0.2) 78.3 (0.0) 76.9 (0.1)
Center Loss 78.5 (0.3) 77.4 (0.3) 75.9 (0.2) 71.7 (0.4)
Gr-CNN 79.6 (0.3) 78.9 (0.2) 76.1 (0.3) 73.2 (0.2)

Table 3: Classification accuracy (%) on CIFA-100 (Mean ± Std)

As the size of feature buffer k0 increases, performance in-
creases slightly. However, the difference of the performance
is small for different buffer sizes, since k0 is larger than 100.
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Noise ratio 0 10% 30% 50%

MobileNet 70.8 (0.4) 68.1 (0.3) 64.1 (0.3) 58.3 (0.4)
H-CMNM 72.9 (0.2) 71.9 (0.3) 70.8 (0.1) 68.8 (0.4)
Center Loss 69.5 (0.5) 66.8 (0.4) 64.3 (0.5) 60.2 (0.4)
Gr-MNet 72.0 (0.3) 70.2 (0.4) 66.4 (0.2) 62.1 (0.5)

Table 4: Classification accuracy (%) on ImageNet (Mean ± Std)

Dataset SVHN CIFAR10 CIFAR100 ImageNet

VGG 0.0323 0.0285 0.0366 N/A
H-CMNV 0.1126 0.0749 0.1254 N/A
GoogLeNet 0.2857 0.2413 0.2352 N/A
H-CMNG 0.6028 0.6213 0.6128 N/A
WideResNet 0.3877 0.3998 0.2363 N/A
H-CMNW 1.1174 1.1164 1.0357 N/A
Center Loss 0.3934 0.3808 0.2385 0.8956
Gr-CNN 0.3364 0.4130 0.3490 N/A
MobilNet N/A N/A N/A 0.9010
H-CMNM N/A N/A N/A 2.3012
Gr-MNet N/A N/A N/A 1.0164

Table 5: The training time (s) of one iteration on each dataset

Dataset SVHN CIFAR10 CIFAR100 ImageNet

VGG 0.006 0.012 0.012 N/A
H-CMNV 0.007 0.016 0.015 N/A
GoogLeNet 0.025 0.067 0.065 N/A
H-CMNG 0.032 0.074 0.073 N/A
WideResNet 0.61 0.53 0.59 N/A
H-CMNW 0.63 0.73 0.63 N/A
Center Loss 0.66 0.62 0.61 0.003
Gr-CNN 0.73 0.71 0.77 N/A
MobilNet N/A N/A N/A 0.004
H-CMNM N/A N/A N/A 0.005
Gr-MNet N/A N/A N/A 0.004

Table 6: The test time (s) of one image on each dataset

5.2 Image Classification on Corrupted Data
The robustness to noise is crucial for deep features. To know
how noise affects the performance, we conducted the clas-
sification experiments on the corrupted datasets, where the
Gaussian noise is added to each image, x; that is, x̃ = x+αn,
where α is the noise ratio ranging from 10% to 50% with an
interval of 20%, and n is the noise following a standard Gaus-
sian distribution.

In our experiments, the SVHN digit dataset [Netzer et
al., 2012] and CIFAR-10 and CIFAR-100 natural image
datasets [Krizhevsky, 2009] are added to Gaussian noise for
classification tasks. Tabs. 1-3 list the classification results.

As shown in Tables 1-3, our model obtains the best classifi-
cation performance on the clean data (Noise ratio =0), which
outperforms center loss and the typical DCNN-based learn-
ing model (H-CMNV>VGG, H-CMNG>GoogLeNet and H-
CMNW>WideResNet). Specifically, for the corrupted data
(Noise ratio 6= 0), our model significantly outperforms the

compared methods. For VGG, GoogLeNet and WideResNet,
the performance is degraded dramatically on the corrupted
data. Note that Gr-CNN is competitive, but it is still inferior
to our method (H-CMNW).

5.3 Experiments on ImageNet
Finally, we conducted the classification experiments on the
Large-scale ImageNet dataset. We used a light weight Mobil-
Net [Howard et al., 2017] as the backbone to train our model.
Again, we refer to our method implemented on MobilNet as
H-CMNM, where the feature buffer size is set to 64 and the
neighborhood size parameter is set to 10. Furthermore, we
replaced the Gr-CNN framework by using MobilNet as the
backbone, which is referred to as Gr-MNet. Table 4 lists the
results on ImageNet.

As shown in Table 4, our model (H-CMNM) obtains the
best classification performance for both the clean data (Noise
ratio = 0) and corrupted data (Noise ratio 6= 0), which signif-
icantly outperforms center loss, MobilNet and Gr-MNet.

5.4 Running Time
Compared to the typical DCNN-based learning models, our
model needs additional time for the construction of a hyper-
graph to model the correlations of the intra-class data but with
a significant performance improvement. To observe how the
hypergraph construction affects the computation efficiency,
we list the average running time of the compared methods in
Tables 5 and 6.

As shown in Tables 5 and 6, compared with the typical
DCNN models (VGG, GoogLeNet, WideResNet and Mobil-
Net) and Center loss, the training time of our model is nearly
tripled and test time is almost equivalent, which is acceptable
for most practical applications.

6 Conclusion
We have proposed a novel manifold embedding deep learning
model, which has the following two merits: (1) Our model
is scalable for the large data such as ImageNet to preserve
the local manifold structure of the data. (2) Our model con-
structs a robust hypergraph based on a mini-batch, which can
not only be robust to noise, but also capture the simultane-
ous variants of multiple deep features. Currently, our model
is only designed for handling Gaussian noise. For many real-
world problems, the data may be deviated from noise beyond
Gaussian, we will extend our work to other type of noises
such as Laplace noise in the future work.
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