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Abstract

In this paper, twin-systems are described to ad-
dress the eXplainable artificial intelligence (XAI)
problem, where a black box model is mapped to a
white box “twin” that is more interpretable, with
both systems using the same dataset. The frame-
work is instantiated by twinning an artificial neu-
ral network (ANN; black box) with a case-based
reasoning system (CBR; white box), and map-
ping the feature weights from the former to the
latter to find cases that explain the ANN’s out-
puts. Using a novel evaluation method, the effec-
tiveness of this twin-system approach is demon-
strated by showing that nearest neighbor cases can
be found to match the ANN predictions for bench-
mark datasets. Several feature-weighting methods
are competitively tested in two experiments, includ-
ing our novel, contributions-based method (called
COLE) that is found to perform best. The tests con-
sider the “twinning” of traditional multilayer per-
ceptron (MLP) networks and convolutional neural
networks (CNN) with CBR systems. For the CNNs
trained on image data, qualitative evidence shows
that cases provide plausible explanations for the
CNN’s classifications.

1 Introduction

The recent explosion in the use of Al for prediction and deci-
sion making in our daily lives has raised questions about the
ability of these systems to explain what they do [Ribeiro et
al., 2016]; this problem is especially evident in artificial neu-
ral networks (ANN). Although the problem of eXplainable Al
(XAI) is not new [Clancey, 1983], there is a renewed urgency
to solving this problem because of the emerging ubiquity of
these systems and new data regulations that encourage Al sys-
tems to explain their decisions (e.g., GDPR). This paper pro-
poses the twin-system approach to address the XAl problem,
in which a less interpretable system is mapped to one gener-
ally considered more interpretable, with both using the same
dataset. We demonstrate this twinning approach has potential
to help explain the decisions of “black box” Al systems. This
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Figure 1: Twin-System Example: A query to an ANN produces an
accurate, but unexplained prediction for a house price. The ANN is
twinned with a CBR system, allowing the latter to retrieve a near-
est neighbor case, using the ANN’s feature weights, to explain the
prediction.
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twin-system approach has some commonality with white box
testing [Pei et al., 20171, however the twin-system idea dif-
fers in its mapping of the ANN into a separate “twin” model
that is more interpretable.

ANN-CBR twins. Twin-systems are based on the premise
that if meaningful mappings can be computed from a black
box model to its white box “twin”, then we can understand
and explain the former using the latter. Whilst there are many
options for how different Al techniques could be twinned,
this paper explores the twinning of opaque ANN systems
with arguably more transparent case-based reasoning (CBR)
systems (i.e., ANN-CBR twins). CBR systems have qual-
itatively different interpretable properties to ANNs, as they
employ an intuitive reasoning from precedent or example
method based on similarity between cases, where these cases
can provide useful explanations for predictions [Cunningham
et al., 2003]. In an ANN-CBR twinning both systems work
from an identical dataset, and the ANN is analyzed to find
the feature weights that contributed to the outputs produced,
these are then used in the CBR system to retrieve cases which
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can explain the ANN’s outputs. Assessing the quality of ex-
tracted ANN feature weights has historically been a difficult
process [Shin er al., 2000; Olden et al., 2004], but here we
use a novel evaluation method that quantitatively measures
predictive agreement between the twinned systems (see Sec-
tion 3.1).

Explanation. In Al as in Psychology and Philosophy, there
is no agreed definition for the notion of “explanation” (see
e.g., [Sgrmo er al., 2005]), and a wider discussion of this is
not possible here. However, often a distinction is made be-
tween explanations that make the system more transparent
(by directly describing the reasoning/decision process of the
system that led to its outputs) or that justify the system (i.e., by
evidentially providing some basis for the system’s outputs).
The twin-system approach proposed here, is arguably, much
closer to justification than transparency (e.g., [Lipton, 2018]
calls it “post-hoc explanation by example”).

Paper outline. This paper explores ANN-CBR twinning
as a solution to the XAI problem, by comparatively test-
ing different feature-weighting schemes. In Section 2, pre-
vious approaches to twinning are reviewed. Section 3 de-
scribes the feature-weighting techniques tested (including
our novel method COLE) and the new evaluation method-
ology used. Sections 4 and 5 report two experiments testing
MLP-CBR and CNN-CBR twins, respectively, on benchmark
datasets. Section 6 concludes and considers future directions
for this approach (see code at https://github.com/EoinKenny/
Twin-Systems).

2 Prior Work

2.1 Artificial Neural Networks (ANN)

Biologically inspired, ANNs deal well with both structured
and unstructured data [Shin et al., 2000; Chen et al., 2018].
A division is often made between traditional multilayer per-
ceptron networks (MLPs), and the more recent deep learn-
ing models [such as, convolutional neural networks (CNNs)].
However, the non-linear nature of both types make them dif-
ficult to interpret and poor at explaining their outputs [Olden
and Jackson, 2002; Selvaraju et al., 2017]. MLPs trained on
tabular data have explicit input features, but their contribution
to outputs is opaque. Statistical methods based on sensitivity
analysis [Bai er al., 2011] have dominated attempts to ex-
plain how these systems operate, but we demonstrate here that
recent techniques developed specifically for ANNs are more
useful in twin-systems. CNNs can be even more opaque with
regards to their features and respective contributions to clas-
sifications. Attempts to improve the interpretability of CNNs
have largely focused on visualizing what specific neurons in
the network have learned (see e.g., [Zeiler and Fergus, 2014;
Erhan er al., 2009]). However, arguably, such visualizations
still have to be contextualized.

2.2 Case-Based Reasoning (CBR)

CBR is an Al technique that has been applied in a wide va-
riety of domains for many different tasks (e.g., diagnosis,
design, classification, recommendation, and law) [De Man-
taras et al., 2005; Bench-Capon, 2017]. CBR’s intuitive

method involves reasoning from example or precedent via
four main processing steps: retrieval, reuse, revise and re-
train. Accordingly, CBR systems can explain their outputs
using cases [Cunningham et al., 2003]. At its simplest, when
a query case is presented, the most similar cases to it are re-
trieved before being used directly (or adapted) to make a pre-
diction. Typically, the retrieval step finds cases by matching
the features of the query against the case base using k-nearest
neighbor (k-NN). Retrieval accuracy can heavily depend on
the weights given to these features, which reflect their im-
portance in the domain. For example, a CBR system pre-
dicting house prices might weight the location feature over
floorspace, because location is much more important for pre-
dicting the house price (see Fig. 1). So, the extraction of ac-
curate feature weights is a key step in twin-systems because
they determine the cases retrieved.

2.3 Twin-Systems

Hybrid systems typically combine several Al techniques to
meet a task requirement [Medsker, 2012]. For example,
Reategui et al. [1997] combined an ANN and CBR system
for medical diagnosis, where the ANN generated hypotheses
to direct the search for cases in a CBR system (for a recent
example using deep learning see Amin ef al. [2018]). How-
ever, these systems are not twin-systems in our sense, as the
motivation for combining techniques is to build a processing
pipeline to achieve some task, where each technique is typ-
ically insufficient on its own. Furthermore, the primary mo-
tivation is not explanation. In contrast, the twin-system idea
uses two models alongside one another where the purpose for
using both techniques is, specifically, explanation. In effect,
twin-systems are a distinct, special case of hybrid systems
(see Keane and Kenny [2019al, [2019b] for a survey and
definitions).

Previous Twin-Systems and MLPs

Examples of hybrid systems using MLPs exist that meet the
twin-system definition (see [Keane and Kenny, 2019a] for a
review). Shin et al. [2000] built MLP-CBR twins to test the
accuracy of different feature-weighting schemes, mapping
between the MLP and CBR systems to retrieve explanatory
cases using k-NN. They found that a weighted k-NN worked
better than an unweighted one, provided good explanatory
cases, and was more resilient in noisy feature spaces. This
work mainly explored global weighting methods, which as-
sume that the input space is isotropic, and use a single ubiq-
uitous feature-weight vector for each domain.

In contrast, Park er al. [2004] examined local weight-
ing by accounting for varying feature weights across the in-
stance space, but their solution cannot be applied to find post-
hoc explanations for standard MLPs. Nugent and Cunning-
ham [2005] used local-weighting methods by perturbing a
query to build a localized dataset, fitting a linear model to this
new data to approximate the MLP function locally, and then
using its coefficients to weight the CBR’s k-NN search. The
present paper builds on these previous efforts by consider-
ing the weighting of the entire training set and the individual
weighting of query instances (see Section 3).
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Recent Twin-Systems and Deep Learning

Beyond this earlier work, we have found few recent papers
that could be called twin-systems in deep learning. Here,
visual explanations are typically used such as activity max-
imization [Erhan et al., 20091, deconvolution [Zeiler and Fer-
gus, 2014], activation maps [Zhou et al., 2015], and saliency
maps [Bach er al., 2015]. However, recently k-NN has been
combined with CNNs using nearest neighbor approaches [Pa-
pernot and McDaniel, 2018; Sani et al., 2017], but they rely
on neuron activations to fit their k-NN “twins”, an approach
which we show is not always applicable (see Section 5).

Since the above approaches are often seen as compromis-
ing interpretability for accuracy, recent attempts have built
interpretability into the network itself using prototypes and
CBR ideas. Li et al. [2017] used an encoder to represent fea-
tures in the latent space and judged nearby cases via distance
metrics. However, a decoder is required for visualizing pro-
totypes as explanations, and although this solution performed
well on MNIST, it reportedly fails in more complex domains,
such as CIFAR-10 [Chen et al., 2018]. Chen et al. [2018]
expanded this work by allowing their prototypes to represent
parts of images, that were projected onto representations in
training data for visualization and explanation. These are
promising approaches, but at present are difficult to train,
achieve lower accuracy than standard models, and require
additional hyperparameters (e.g., number and size of proto-
types). In Expt. 2, we develop CNN-CBR twins in which
higher computational costs are avoided, and accuracy is main-
tained, while still finding plausible explanations (see Section
5).

3 Techniques for Extracting Feature Weights

In the above review, we saw that global and local tech-
niques are distinguished for extracting feature weights from
an ANN. Global techniques use a single weight-vector ubig-
uitously, whereas local techniques generate instance-specific
weight-vectors. In Expt. 1, we explore MLP-CBR twin-
systems by competitively testing seven different weighting
methods: three global and four local techniques (see Section
4). These methods represent the best techniques identified in
the literature. However, they have not all been comparatively
tested before.

Global Weighting Methods

All global weighting methods use the following formula
when calculating distances in k-NN searches:

n

Z |wg|Difference(xys, qr)? (1)
F=1

Distance(z, q) =

where |wy| is the absolute weight derived for feature f, x is
the feature f in training instance z, ¢y is the feature f in the
query instance ¢, and n is the total number of features. The
three global methods are:

Sensitivity (SENS). Used by Shin et al. [2000], this works
by setting a feature’s input to zero and measuring the differ-
ence between the network’s new and old predictions to gauge
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the feature’s importance. This technique has been found to be
very promising in their research.

. ) ©)

n

where S; is the sensitivity (feature weight) of input 4, PY is
the original prediction of the network, P* is the prediction
after said input is removed, L is the set of training data and n
the number of training set instances.

Perturbation (PTB). A popular method for extracting fea-
ture weights from MLPs [de Ofia and Garrido, 2014], the
method works by perturbing input features to observe the ef-
fect on the output. Previous work shows the optimal perturba-
tion range to be perhaps 20% [Bai et al., 2011], which we use.
This technique has not been tested in MLP-CBR systems, we
propose the following formulation to do so:

" oLy,
7ZJ*127§ »9) 3)

where W, represents the global weight of feature 4, o the per-
turbation range, n the number of training set instances, L the
training data, and ¢ a function returning the absolute summed
change in two predictions with a positive and negative pertur-
bation respectively to the feature 4 in instance L.

Connection Weights (CW). Advanced by Olden and Jack-
son [2002], as a possible improvement on Garson’s Algo-
rithm [Garson, 1991] (which considers the absolute values
of a network’s weights to derive feature weighting), this con-
siders if the network’s weights are positive or negative:
H
R;; = Z Wik Wi 4)
k=1
where I;; is the relative importance of the variable xz; with
respect to the output neuron j, H is the number of neurons
in the hidden layer, W is the connection weight between
the input neuron 4 and the hidden neuron %, and Wy is the
weight between the hidden neuron & and the output neuron j.

Local Weighting Methods

Of the four local methods, the first uses (1) but computes the
weight vector individually for each test instance. The last
three use a standard £-NN algorithm, but it is fit to a differ-
ent dataset of “contributions” to weight the search. The four
methods examined are described below.

Local Linear Model (LLM). This is a name we coin for
Nugent and Cunningham’s [2005] method for finding feature
weights from an MLP to inform case retrieval for explana-
tion. This method perturbs the features of a query randomly
to generate a new local dataset, the MLP is then used to gen-
erate labels for this new data. Using the new dataset a lin-
ear model is then built which works to approximate the MLP
function locally around the query. The linear model’s coef-
ficients are then used to weigh features in the k-NN search.
Recently, Ribeiro et al. [2016] generalized a similar approach
in Local Interpretable Model-Agnostic Explanations (LIME),
whose code library is used here to implement LLM. As LIME
is model agnostic, it can be applied to any classifier, so this
method could be used with other twinning options, other than
ANN-CBR twins (e.g., SVM-CBR twin-systems).

Si =

W; =
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Contributions Oriented Local Explanations (COLE: C-
LPR, C-IG, C-DeepLIFT). Our method COLE is based
on the premise that the contributions of features in a model’s
classification represent the most sensible basis to inform case-
based explanations. Consider a linear model f(Z) with n in-
put features and a weight vector @ € IR". The contribution
vector ¢ of an instance & is:

€= (x1.W01, T2 Wa... Ty W) 5)

where x;.w; calculates ¢; (i.e., the contribution of feature
1). Intuitively, it makes more sense to find explanatory cases
using ¢, rather than & or w, because ¢ more closely repre-
sents the final classification logic of f(Z) (as the final out-
put is typically influenced by > | ¢; + Bias). In f(Z), the
weights w are known, but in an MLP determining « is non-
trivial, and it is likely to mutate at every area of the input
space. To deal with this issue, we used saliency map tech-
niques, to heuristically estimate ¢ directly (avoiding the need
for ), as they have proven useful in deep learning [Lund-
berg and Lee, 2017]. These saliency map methods backprop-
agate contributions (usually from the output to input layer)
and, hence, can provide feature weights for finding explana-
tory cases using COLE in the context of MLP-CBR twins.
We used three saliency map techniques (see Algorithm 1):
Layer-wise Relevance Propagation (LRP) [Bach et al., 2015],
Integrated Gradients (IG) [Sundararajan er al., 2017] and
DeepLIFT [Shrikumar et al., 2017], which we denote as C-
LPR, C-IG and C-DeepLIFT to show they are COLE vari-
ants of these methods. Specifically, we used Epsilon-LRP (e-
LRP), a black reference point for IG, and a reference activa-
tion of zero for DeepLIFT. In Expt. 1 the contribution scores
for all the training and testing data were generated by attribut-
ing scores for the output classification neuron to the input-
layer features (see Algorithm 1); these were then used in a
k-NN classifier for the CBR system. The training and testing
instances are all individually weighted to represent the MLP
locally, enabling the weighted £-NN (i.e., the CBR system) to
find explanatory cases based on how discriminating the MLP
finds certain features.

3.1 Twin-Systems: Evaluation Methodology

In the present experiments, we want to find the best feature-
weighting method for MLP-CBR twin-systems. To meet this
aim, we developed a novel evaluation methodology that as-
sesses predictive agreement between the twinned systems.
This “agreement” score is calculated by dividing the num-
ber of agreed predictions on testing data from both models
by the number of test instances. As such, 0.0 and 1.0 repre-
sent zero and perfect agreement in the twin-system, respec-
tively. Note, this aim is different to determining whether the
system can deliver good explanatory cases (but, see Expt. 2
for some qualitative evidence). However, knowing the best
feature-weighting scheme clearly will enable better testing of
such explanatory capabilities in the future.

To evaluate the weighting, a situation is setup were an in-
crease in agreement between the systems will correlate with
an increase the fidelity of the extracted weighting. This
is done by making k-NN closely imitate the MLP decision
boundary, and then applying the extracted weighting from the
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Algorithm 1 COLE weighting
Input: train, training data; test, testing data; M LP, MLP
model; §(Z, MLP), function (e.g., DeepLIFT) returning a
2D array A € IR"™" of contributions for all input features to
all classification outputs of M L P for instance Z where m is
the number of neurons in the last layer, and n is the number
of features in the input layer.
Output: trainC, testC, the contributions of input features
to the training and testing data classifications of M LP, re-
spectively.

1: trainC,testC = emptyArray, emptyArray

2: for i = 0; to len(train) do

3:  tdx =0 //For Sigmoid Output

4:  if M LP.output Layer == SoftMax then
5: ide = M LP.predictClass(train[i))

6: endif

7: trainC.append(d(train[i|, M LP)[idz])

8: end for

9: for i = 0; to len(test) do
10:  idz =20
11:  if MLP.outputLayer == SoftMax then
12: ide = M LP.predictClass(test[i])
13:  endif
14:  testC.append(d(testli], M LP)[idx])

15: end for

16: return trainC,testC

MLP to the k-NN to complete the system mapping. In this sit-
uation a high agreement score will signify feature-weights of
high quality. Formally, the evaluation has the following steps:

1. Datasets with a large number of features are chosen such
that an unweighted k-NN (henceforth £-NN*) is found
to have relatively low accuracy on testing data.

2. An MLP trained on the same data is found to have su-
perior accuracy on the testing data (by finding good
weights in the feature space).

3. k-NN* is made to closely imitate the MLP decision
boundary by temporarily removing outlier cases (de-
fined here as training cases the MLP miss-classifies).

4. Feature weighting is extracted from the MLP and used in
the weighted £-NN. So, a high agreement score between
the weighted k-NN and MLP signifies that the extracted
MLP feature-weighting is of high fidelity.

In this situation, provided the weighting is credible, sim-
ilar cases will “cluster” together in a weighted k-NN and it
will closely mimic the MLP’s classifications (which our re-
sults confirm), and nearest neighbors will represent cases with
similar discriminating features used in a classification. In
this evaluation method, outliers were only removed to allow
a “clean” test of agreement and, by extension, the different
feature-weighting methods'.

'Both experiments were run with and without the outlier data
and, as expected, while overall agreement was worse with the out-
liers left in, there was no appreciable change to the rank ordering of
feature-weighting techniques.
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Dataset Task n k  k-NN*  PTB SENS CW  C-DeepLIFT C-IG C-LRP LLM
Connect-4 Multi. 126 5 0.812 0.861 0.849 N/A 1.000 1.000 1.000 0.834
Thyroid Disease =~ Multi. 21 5 0988 0974 0985 N/A 1.000 1.000  0.983 0.983
Nursery Multi. 27 1 0.790 0943 0966 N/A 1.000 1.000  0.999 0.878
Adult Census Binary 16 1 0987 0991 0.982 0.989 0.991 0989  0.990 0.990
Default of Credit. Binary 24 1 0971 0987 0.985 0.983 0.990 0989 0989 0.985
Bank Marketing ~ Binary 127 10 0936 0.939 0964 0.934 0.967 0964  0.960 0.934
Breast Cancer Binary 30 2 0.895 0947 0.877 0912 0.983  0.965 0.930 0.930
Mean Agreement 0911 0949 0.944 0.954 0.990 0987 0979 0.933

Table 1: Agreement scores in Expt. 1 for MLP-CBR twins across seven datasets, comparing unweighted k-NN* (the control) with seven
variants reflecting the different feature-weighting schemes (n is the number of features used).

4 Experiment 1: MLP-CBR Twins

In this experiment, we measure the agreement for MLP-CBR
twins using seven different feature-weighting methods for k-
NN compared to a baseline unweighted k-NN (k-NN*). The
aim being to discover the feature-weighting method that best
represents the MLP function for a given domain. In these
tests, were are only interested in mapping one system to the
other, irrespective of the data split, so cross-validation was
not used. The splits ranged from 10-33% for testing data and
were selected to challenge the unweighted k-NN* baseline.
Values for k were chosen to give the best general performance
across all weighting techniques, whilst trying to keep it as low
as possible.

4.1 Method: Architecture, Datasets and Procedure

All MLPs used had a single input, hidden, and output layer.
The hidden layer used ReLU activation functions and the out-
put used Sigmoid and SoftMax for binary and multi-class
classification, respectively. Seven popular datasets were se-
lected and modified as described above (comparable results
were found for five regression datasets, that are not reported
here). Thus, the MLP and CBR systems were tested on the
same datasets using eight different k-NN variants (k-NN*
and the seven weighting methods described above). The Con-
nection Weights (CW) method was an exception as it was
not developed originally for SoftMax outputs, so its average
agreement is over four datasets rather than seven (see Table
1). The measure is the agreement in predictions between the
model-pairs (see Section 3.1). The CBR system is a retrieval-
only system (there is no adaptation) that simply uses k-NN to
find cases from which predictions are derived.

4.2 Results and Discussion

Table 1 summarizes the agreement scores for all tests in
Expt. 1. Overall, a feature-weighted k-NN does better than an
unweighted k-NN* (Mean Agreement = 0.91). Moreover, the
local weighting methods (C-DeepLIFT, C-1G, C-LPR, and
LLM) do better on average (Mean Agreement = 0.93-0.99)
than global methods (PTB, SENS, CW; Mean Agreement =
0.94-0.95). Within the local methods, the contribution-based
methods (i.e., C-DeepLIFT, C-IG, C-LPR) generally do bet-
ter than the non-contribution LLM method, the former often
achieving perfect agreeemnt with the MLP, with C-DeepLIFT
being the best of all these methods (Mean Agreement = 0.99).

However, LLM is model agnostic (whereas the other local
methods are not), meaning it may have wider applicability in
other twin-systems. Finally, it should be noted that the multi-
class classification problems achieve higher mean agreement
scores than binary ones when using the contribution meth-
ods. This is possibly due to additional weight parameters in
the SoftMax layer allowing for greater discretization of the
classes, as the saliency map techniques used to realize COLE
here utilize these weight values when calculating contribution
scores.

5 Experiment 2: CNN-CBR Twins

This experiment tests the prediction agreement for a deep
learning model (a CNN) twinned with a CBR system us-
ing a control, k-NN*, and a weighted k-NN computed from
the best contributions-based method found in Expt.1 (i.e., C-
DeepLIFT; see Section 4.2).

5.1 Method: Architecture, Datasets and Procedure

All CNN models used had three convolutional layers with two
max pooling layers following the first two convolutions. The
models then contained three fully-connected (FC) layers, the
last of these being a SoftMax output. Consequently, the first
FC layer represents the latent features extracted by the CNN,
analogous to the input features of the MLPs tested in Expt. 1.
The exception to this is the final test which used the Incep-
tionResNetV2 CNN. This model was used for feature extrac-
tion, so a standard three-layer MLP could be trained on these
extracted features to discriminate the classes.

When using a CNN for image classification, the pixel
space is transformed into a convolutional output before be-
ing used for classification. Formally, let the transformation

be X — C € R"*% where the image tensor X is trans-
formed into a new representation C' of the image, where h, w,
and d represent the height, width and number of feature maps,
respectively. After this a CNN will typically consist of a FC
or global average pooling (GAP) layer. Either way, let the
next layer be a vector representation & € IR™ of the image,
where 7 is the number of latent features. Provided there are
no more layers before the SoftMax output, computing contri-
bution scores can be trivially done by multiplying the feature
activations generated for a specific instance in & € IR" by the
weight connecting them to the predicted class output node.
In this situation, we can examine the activation map of the
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Dataset n k  k-NN* C-DeepLIFT
MNIST 128 1 0.9962 0.9999
MNIST-Fashion 128 1 0.9517 0.9992
CIFAR-10 128 1 0.8107 0.9972
CIFAR-10 1000 1 0.7832 0.9999
CIFAR-10* 1000 1 0.7048 0.9838
Mean Agreement 0.84932 0.996

Table 2: Agreement scores in Expt. 2 for CNN-CBR twins using
three datasets across five tests, comparing unweighted k-NN* (con-
trol) and C-DeepLIFT (n is again the number of features; CIFAR-
10* uses transfer learning implemented with InceptionResNetV2).

class and it’s discriminating features [Zhou er al., 2015] (see
Fig. 2b).

However, when using additional FC layers as we do here,
it is necessary to follow the process outlined in Expt. 1
where contribution scores are generated using (for example)
DeepLIFT by attributing scores from the output classification
neuron to the feature layer # € IR". In Expt. 2, the control k-
NN* used neuron activations from & to retrieve cases and the
weighted &£-NN used contributions from & with C-DeepLIFT.
Selvaraju et al. [2017] proposed a solution to interpretability
with multiple FC layers by generalizing the class activation
maps (discussed by Zhou er al. [2015]) into more CNN archi-
tectures, such as those with several FC layers. However, this
solution does not focus on the use of CBR or twin-systems to
explain outputs.

Three popular image datasets were selected and modified
as described earlier (see Section 3.1). We compared fitting
k-NN with activations in the latent feature layer ¥ € IR"
as a control (i.e., k-NN¥*), and the contributions derived by
C-DeepLIFT for the same layer. The first four tests used a
CNN trained locally and the last used a pre-trained (on Im-
ageNet) CNN InceptionResNetV2 for prior feature extraction
to train a standard MLP. This final model was chosen because
it is among the most complex, publicly available CNN models
(572 layers), and allows tests using image transfer learning.
The agreement measure used is the same as Expt. 1. Finally,
as before, the CBR systems were retrieval-only systems using
variants of k£-NN.

5.2 Results and Discussion

Table 2 summarizes the agreement scores for all the tests
made in Expt. 2. Overall, the k-NN using the contribu-
tion scores (i.e., C-DeepLIFT) did markedly better than the
baseline k-NN*. Furthermore, the mean agreement for C-
DeepLIFT in CNN-CBR twins was very high (0.996 out of
1.0). Notably, the agreement scores decrease in k-NN* as
complexity of the task increases, particularly in InceptionRes-
NetV2, which is a model designed to discriminate between a
large number of classes with large number of features; hence
it is not surprising that more intricate weighting details are
required for mapping accurately between the systems. How-
ever, if the CNN parameters had been fined-tuned to CIFAR-
10, it is likely agreement would be closer to 1.0 for both k-
NN* and C-DeepLIFT. Lastly, echoing Expt. 1, the SoftMax
outputs here achieve very high mean agreement, suggesting
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6

— Ground Truth: 0 —_—

Prediction: 0

L——————— Ground Truth: 4 —————
Prediction: 4

Query

(a)

Ground Truth: 6
Prediction: 0

Ground Truth: 4
Prediction: 4

Figure 2: (a) shows the MNIST CNN from Expt. 2 miss-classifies
a query of “6” as “0”. Nearest neighbors from the CBR-twin show
the model was trained on data labelled as a “0” but looking like “6”.
(b) shows a correctly classified “4” and its nearest neighbors, FAMs
highlight the most discriminating feature used during classification.
Red signifies areas of high activation for the feature.

that they may always be the optimal choice, even in a binary
classification domain when Sigmoid is typically used.

5.3 Qualitative Evidence

The focus here is on finding the best feature-weighting meth-
ods for ANN-CBR twin-systems rather than assessing the ex-
planatory value of retrieved cases for users. However, CNNs
are often “visually explained” when they are applied to im-
age datasets, mainly because people have sufficient expertise
to evaluate the image-predictions made. Fig. 2 shows some of
the explanatory cases retrieved from queries to the CNN-CBR
twin-system from Expt. 2, trained on the MNIST dataset, us-
ing C-DeepLIFT to weight the k-NN search.

Fig. 2a shows a miss-classification by the CNN, where an
image of a “6” is categorized as a “0”, along with the three
nearest neighbors found to explain this prediction. Note these
are all cases of a “0”, but resemble a “6”, making the miss-
classification of the CNN reasonable. Fig. 2b shows a correct
classification of a “4” by the CNN, along with the three ex-
planatory, nearest-neighbor cases. These images also have a
feature activation map (FAM)? showing the most discriminat-
ing feature across the cases. Interestingly, these FAMs show
that the presence of a gap across the top of the number “4”
is the primary feature making it a “4”. Note, the nearest-
unlike-neighbor found is the class “9” (using the CBR twin),
showing the importance of the “link” in discriminating it as
a “4”. Fig. 3 shows some results for CNN-CBR twins on the
CIFAR-10 dataset. So, twin-systems potentially provide jus-
tification, scrutability and transparency for the operations of
the CNN (as defined by [Tintarev and Masthoff, 20071).

“These FAMs resemble the class activation maps of Zhou et
al. [2015]. However, here FAMs show the most discriminating
feature for a query rather than the whole class. These are com-
puted by multiplying the activations of the convolutional output
C € R™% 9 by the weights W € IR"™*9 connecting them to
the feature contributing most to the classification. The resulting ma-
trix M € IR"®¥ is then summed along d into M € IR"™*) and
up-sampled to the original image size before being superimposed.
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Nearest Neighbors of Query

Figure 3: A correctly classified query of a car from the CNN trained
locally with n = 1000 in Expt. 2. Again the nearest neighbors are
shown above, with a FAM of the most discriminating feature used
in the classification of the query shown below, which reassuringly
remains comparably consistent across the four cases regardless of
the car’s orientation.

5.4 Computational Costs

To answer concerns about the computational costs of these
methods, it should be said that Algorithm 1 took ~ 40 sec-
onds to run Expt. 1 with Connect-4 (67, 557 training and test-
ing instances with n = 126), whilst in Expt. 2 it took ~ 6613
seconds for CIFAR-10 (60, 000 training and testing instances
with n =1000). The experiments used a MacBook Pro; pro-
cessor: 2.9 GHz Intel Core i5; memory: 16 GB 2133 MHz
LPDDR3. Hence, the costs of deriving the weights for the
k-NN are quite modest. Moreover, this initial computation is
only required once, subsequent queries took < 30 seconds to
derive a single query’s weighting and < 0.05 seconds to find
explanatory cases for both tabular and image data.

6 Conclusions and Future Work

This paper offers four novel contributions. First, a descrip-
tion of the twin-system framework for XAI where opaque Al
black boxes are explained by interpretable white boxes. Sec-
ond, a promising demonstration of this framework, twinning
ANNs and CBR systems for case-based explanation. Third,
the identification of the best feature-weighting techniques for
such ANN-CBR twin-systems (testing both MLP-CBR and
CNN-CBR twins) using a novel evaluation method and show-
ing that our contribution-based method, COLE, does best
(using DeepLIFT). Finally, qualitative evidence shows that
CNN-CBR twins provide very plausible visual explanations
on benchmark image datasets (regardless of the number of
FC layers in the model, a point of importance in image trans-
fer learning [Zhang et al., 2018]). For future research, user
studies assessing the explanatory value of the cases retrieved
are planned, alongside generalizing COLE to be applicable
to any machine learning model beyond just ANNs (e.g., for
SVM-CBR twin-systems).
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