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Abstract
Reinforcement learning algorithms rely on explo-
ration to discover new behaviors, which is typically
achieved by following a stochastic policy. In con-
tinuous control tasks, policies with a Gaussian dis-
tribution have been widely adopted. Gaussian ex-
ploration however does not result in smooth trajec-
tories that generally correspond to safe and reward-
ing behaviors in practical tasks. In addition, Gaus-
sian policies do not result in an effective explo-
ration of an environment and become increasingly
inefficient as the action rate increases. This con-
tributes to a low sample efficiency often observed
in learning continuous control tasks. We introduce
a family of stationary autoregressive (AR) stochas-
tic processes to facilitate exploration in continuous
control domains. We show that proposed processes
possess two desirable features: subsequent pro-
cess observations are temporally coherent with con-
tinuously adjustable degree of coherence, and the
process stationary distribution is standard normal.
We derive an autoregressive policy (ARP) that im-
plements such processes maintaining the standard
agent-environment interface. We show how ARPs
can be easily used with the existing off-the-shelf
learning algorithms. Empirically we demonstrate
that using ARPs results in improved exploration
and sample efficiency in both simulated and real
world domains, and, furthermore, provides smooth
exploration trajectories that enable safe operation
of robotic hardware.

1 Introduction
Reinforcement Learning (RL) is a promising approach to
solving complex real world tasks with physical robots, sup-
ported by recent successes [Andrychowicz et al., 2018;
Kalashnikov et al., 2018; Haarnoja et al., 2018]. Exploration
is an integral part of RL responsible for discovery of new
behaviors. It is typically achieved by executing a stochas-
tic behavior policy [Sutton and Barto, 2018]. In continuous
control domain, for instance, policies with a parametrized
Gaussian distribution have been commonly used [Schulman
et al., 2015; Mnih et al., 2016; Schulman et al., 2017;

Haarnoja et al., 2018]. The samples from such policies are
temporally coherent only through the distribution mean. In
most environments this coherence is not sufficient to provide
consistent and effective exploration. In early stages of learn-
ing in particular, with randomly initialized policy parame-
ters, exploration essentially relies on a white noise process
around zero mean. In environments where actions represent
low-level motion control, e.g. velocity or torque, such ex-
ploration rarely produces a consistent motion that could lead
to discovery of rewarding behaviors. This contributes to low
sample efficiency of learning algorithms [Wawrzynski, 2015;
Hoof et al., 2017; Plappert et al., 2018]. For real world

robotic applications a short reaction time is often desirable,
however, as action rate increases, a white noise exploration
model becomes even less viable, effectively locking the robot
in place [Plappert et al., 2018]. In addition, temporally in-
coherent exploration results in a jerky movement on physical
robots leading to hardware damage and safety concerns [Pe-
ters and Schaal, 2007].

In this work we observe that the parameters of policy distri-
bution typically exhibit high temporal coherence, particularly
at higher action rates. Specifically, in the case of Gaussian
policy distribution, the action can be represented as a sum
of deterministic parametrized mean and a scaled white noise
component. The mean part typically changes smoothly be-
tween subsequent states. It is the white noise part that results
in inconsistent exploration behavior. We propose to replace
the white noise component with a stationary autoregressive
Gaussian process that has stationary standard normal distri-
bution, while exhibiting temporal coherence between subse-
quent observations. We derive a general form of these pro-
cesses of an arbitrary order and show how the degree of tem-
poral coherence can be continuously adjusted with a scalar
parameter. We demonstrate an advantage of higher orders
processes compared to the first order ones used in prior work.
Further, we propose an agent’s policy structure that directly
implements the autoregessive computation in such processes.
Temporal action smoothing mechanism therefore is not hid-
den from the agent but is made explicit through its policy
function. In order to achieve this, we require a fixed length
history of past states and actions. However, the set of re-
sulting history-dependent policies contains the set of Markov
deterministic policies, and those contain the optimal policies
in many tasks [Puterman, 2014, Section 4.4]. We find that,
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in practical applications, the search for such optimal policies
can be more efficient and safe in a space of history-dependent
stochastic policies with special structure, compared to con-
ventional search in a space of Markov stochastic policies.

Empirically we show that proposed autoregressive policies
can be used with off-the-shelf learning algorithms and result
in superior exploration and learning in sparse reward tasks
compared to conventional Gaussian policies, while achieving
similar or slightly better performance in tasks with dense re-
ward. We also show that the drop in learning performance
due to increasing action rate can be greatly mitigated by in-
creasing the degree of temporal coherence in the underlying
autoregressive process. In the real world robotic experiments
we demonstrate that the autoregressive policies result in a
smoother and safer movement. 1

2 Related Work
The problem of exploration in Reinforcement Learning has
been studied extensively. One approach has been to mod-
ify the environment by changing its reward function to make
it easier for an agent to obtain any rewards or to encourage
the agent to visit new environment states. This approach in-
cludes work on reward shaping [Ng et al., 1999] and auxiliary
reward components such as curiosity [Oudeyer et al., 2007;
Pathak et al., 2017; Burda et al., 2018]. Note that regard-
less of chosen reward function temporally consistent behav-
ior would still be beneficial in most tasks as it would dis-
cover rewarding behaviors more efficiently. A randomly ini-
tialized agent is unaware of the reward function and for ex-
ample will not exhibit curiosity until after some amount of
learning, which already requires visiting new states and dis-
covering rewarding behaviors in the first place.

A second approach, particularly common in practical
robotic applications, has been to directly enforce temporal
coherence between subsequent motion commands. In the
most simple case a low-pass filter is applied, e.g. the agent
actions are exponentially averaged over the fixed or infinite
length window [Benbrahim and Franklin, 1997]. A similar
alternative is to employ a derivative control where agent’s ac-
tions represent higher order derivatives of the control signal
[Mahmood et al., 2018a]. Both of these approaches corre-
spond to acting in a modified MDP with different state and
action spaces and result in a less direct connection between
agent’s action and its consequence in the environment, which
can make the learning problem harder. They also make the
process less observable unless the agent has access to the his-
tory of past actions used in smoothing and to the structure
of a smoothing mechanism itself, which is typically not the
case. As in the case with modified reward function, the opti-
mal policies in the new MDP generally may not correspond
to the optimal policies in the original MDP.

A third approach has been to learn parameters of prede-
fined parametrized controllers, such as motor primitives, in-
stead of learning control directly in the actuation space [Pe-
ters and Schaal, 2008]. This approach is attractive, as it al-
lows to ensure safe robot behavior and often results in an eas-
ier learning problem [ Hoof et al., 2017]. However, it requires

1See accompanying video at https://youtu.be/NCpyXBNqNmw

expert knowledge to define appropriate class of controllers
and limits possible policies to those, representable within the
selected class. In complex tasks [Andrychowicz et al., 2018;
Kalashnikov et al., 2018] it may be non-trivial to design a
sufficiently rich primitives set.

Several studies have considered applying exploration noise
to policy distribution parameters such as network weights and
hidden units activations. Plappert et al. [2017] applied Gaus-
sian exploration noise to policy parameters at the beginning
of each episode, demonstrating a more coherent and efficient
exploration behavior compared to only adding Gaussian noise
to the action itself. Fortunato et al. [2017] similarly ap-
plied independent Gaussian noise to policy parameters, where
the scale of the noise was also learned via gradient descent.
Both of these works demonstrated improved learning perfor-
mance compared to baseline Gaussian action space explo-
ration, in particular in tasks with sparse rewards. Our ap-
proach is fully complimentary to auxiliary rewards and para-
metric noise ideas, as both still rely on exploration noise in the
action space in addition to other noise sources and can benefit
from consistent and temporally smooth exploration trajecto-
ries provided by our method.

In the context of continuous control deep RL our work is
most closely related to the use of temporally coherent Gaus-
sian noise during exploration. Wawrzynski [2015] used mov-
ing average process for exploration where temporal smooth-
ness of exploration trajectories was determined by the in-
teger size of an averaging window. They showed that
learning with such process results in a similar final perfor-
mance as with standard Gaussian exploration, while provid-
ing smoother behavior suitable for physical hardware appli-
cations. Hoof et al. [2017] proposed a stationary first order
AR exploration process in parameters space. Lillicrap et al.
[2015] and Tallec et al. [2019] used Ornstein–Uhlenbeck
(OU) process for exploration in off-policy learning. The lat-
ter work showed that adjusting process parameters according
to the time step duration helps to maintain exploration perfor-
mance at higher action rates. It can be shown that in a discrete
time form OU process is a first order Gaussian AR process,
which makes it a particular case of our model. AR processes
derived in this work generalize the processes used in these
studies, providing a wider space of possible exploration tra-
jectories. In addition, the current work proposes policy struc-
ture that directly implements autoregressive computation, in
contrast to the above studies, where the agent was unaware
of the noise structure. Due to this explicit policy formulation,
autoregressive exploration can be used in both, on-policy and
off-policy learning.

Autoregressive architectures have been proposed in the
context of high-dimensional discrete or discretized continu-
ous action spaces [Metz et al., 2017; Vinyals et al., 2017]
with regression defined over action components. The objec-
tive of such architectures was to reduce dimensionality of the
action space. In contrast, we draw on autoregressive stochas-
tic processes literature, and define regression over time steps
directly in a multidimensional continuous action space with
the objective of enforcing temporally coherent behavior.
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3 Background
3.1 Reinforcement Learning
Reinforcement Learning (RL) framework [Sutton and Barto,
2018] describes an agent interacting with an environment
at discrete time steps. At each step t the agent receives
the environment state st ∈ S and a scalar reward signal
rt ∈ R. The agent selects an action at ∈ A according
to a policy defined by a probability distribution π(a|s) :=
P
{
at = a|st = s

}
. At the next time step t + 1 in part

due to the agent’s action, the environment transitions to a
new state st+1 and produces a new reward rt+1 accord-
ing to a transition probability distribution p(s′, r|s, a) :=
Pr
{
st+1 = s′, rt+1 = r|st = s, at = a

}
. The objective of

the agent is to find a policy that maximizes the expected
return defined as the future accumulated rewards Gt :=∑∞
k=t γ

k−trk+1, where γ ∈ [0, 1] is a discount factor. In
practice, the agent observes the environment’s state partially
through a real-valued observation vector ot.

3.2 Autoregressive Processes
An autoregressive process of order p ∈ N (AR-p) is defined
as

Xt =
∑p
k=1 φkXt−k + Zt, (1)

where φk ∈ R, k = 1, . . . , p are real coefficients, and
Zt is a white noise with zero mean and finite variance,
Zt ∼ WN(0, σ2

Z), σ
2
Z <∞.

An autoregressive process {Xt} is called weakly station-
ary, if its mean function µX(t) = E[Xt] is independent of
t and its covariance function γX(t + h, t) = cov(Xt+h, Xt)
is independent of t for each h. In the future we will use the
term stationary implying this definition. The process (1) is
stationary if the roots Gi, i = 1, . . . , p (possibly complex) of
its characteristic polynomial

P (z) := zp −
p∑
i=1

φiz
p−i

lie within a unit circle, e.g. |Gi| < 1, i = 1, . . . , p (see e.g.
[Brockwell et al., 2002, Section 3.1]).

An autocovariance function γk is defined as γk =
cov(Xt, Xt−k), k = 0,±1,±2, . . .. From definition, γ0 =
var(Xt) = σ2

X . For a stationary AR-p process a linear system
of Yule-Walker equations holds:

γ1
γ2
γ3
...
γp

 =


γ0 γ1 . . . γp−1
γ1 γ0 . . . γp−2
γ2 γ1 . . . γp−3
...

...
. . .

...
γp−1 γp−2 . . . γ0




φ1
φ2
φ3
...
φp


and

γ0 =

p∑
i=1

φiγi + σ2
Z .

(2)

The system (2) has a unique solution with respect to the
variables {γk}, k = 0, . . . , p.

4 Stationary Autoregressive Gaussian
Processes

In this section we derive a family of stationary AR-pGaussian
processes for any p ∈ N, such thatXt ∼ N (0, 1) ∀t, meaning
Xt has a marginal standard normal distribution at each t. We
also show how the degree of temporal smoothness of trajec-
tories formed by subsequent observations of such processes
can be continuously tuned with a scalar parameter.
Proposition 4.1. For any p ∈ N and for any αk ∈ [0, 1),
k = 1, . . . , p consider a set of coefficients

{φ̃k}pk=1 = (−1)k+1
∑

1≤i1<i2···<ik≤p

αi1αi2 . . . αik . (3)

The Yule-Walker system (2) with coefficients {φ̃k} has a
unique solution with respect to (γ̃0, γ̃1, . . . , γ̃p, σ̃

2
Z), such that

γ̃0 = 1 and σ̃2
Z > 0. Furthermore, the autoregressive process

Xt =

p∑
k=1

φ̃kXt−k + Zt

Zt ∼ N (0, σ̃2
Z),

(4)

is a stationary Gaussian process with zero mean and unit
variance, meaning Xt ∼ N (0, 1) ∀t.

Proof. The proof follows from the observation that {φ̃k}
are coefficients of a polynomial P (z) = (z − α1)(z −
α2) . . . (z − αp) with roots {αk} that all lie within a unit
circle. Since P (z) is a characteristic polynomial of a pro-
cess (4), the process is stationary. The existence of a unique
solution to the system (2) with γ̃0 = 1, σ̃2

Z > 0 follows
from the observation that for any σ̃2

Z > 0 the system (2)
has a unique solution with respect to (γ̃0, γ̃1, . . . , γ̃p), while
it is homogeneous with respect to (γ̃0, γ̃1, . . . , γ̃p, σ̃

2
Z). The

result then follows from observing that γ̃0 > 0, and scal-
ing the solution (γ̃0, γ̃1, . . . , γ̃p, σ̃

2
Z) by 1/γ̃0. A complete

proof can be found in Supplementary Materials A available
at https://bit.ly/2BQqWMx.

Corollary 4.1.1. For any p ∈ N and for any α ∈ [0, 1) let
{Xt} be the autoregressive process:

Xt =

p∑
k=1

φ̃kXt−k + Zt

φ̃k = (−1)k+1

(
p

k

)
αk

Zt ∼ N (0, σ̃2
Z),

(5)

where
(
p
k

)
= p!

k!(p−k)! is a binomial coefficient, σ̃2
Z is a solu-

tion to the system (2) with {φk = φ̃k}pk=1 and γ0 = 1. Then
Xt ∼ N (0, 1) ∀t.

Proof. Set αk = α ∀k in (3) and apply Proposition 4.1.

An example of a third order process AR-3 defined by (4) is
given in Supplementary Materials B.

Proposition 4.1 allows to formulate stationary autoregres-
sive processes of an arbitrary order p for arbitrary values
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Figure 1: Realizations of processes (5) for different p and α and the
same set of 3 random seeds.

αk ∈ [0, 1), k = 1, . . . , p, such that the marginal distribu-
tions of realizations of these processes are standard normal at
each time step. This gives us great flexibility and power in
defining properties of these processes, such as the degree of
temporal coherence between process realizations at various
time lags. If we were to use these processes as a source of
exploration behavior in RL algorithms, this flexibility would
translate into a flexibility in defining the shape and smooth-
ness of exploration trajectories. Note, that the process (4)
trivially generalizes to a vector form by defining Zt a multi-
variate white noise with a diagonal covariance.

Autoregressive processes in the general form (4) possess a
number of interesting properties that can be utilized in rein-
forcement learning. However, for the purposes of the discus-
sion in the following sections, from now on we will consider
a simpler subfamily of processes, defined by (5). Notice, that
α = 0 results in φ̃k = 0 ∀k, and Xt becomes a white Gaus-
sian noise. On the other hand, α→ 1 results in σ2

Z → 0, and
Xt becomes a constant function. Therefore, tuning a single
scalar parameter α from 0 to 1 continuously adjusts tempo-
ral smoothness of Xt ranging from white noise to a constant
function. Figure 1 shows realizations of such processes at dif-
ferent values of p and α. The realizations are initialized from
the same set of 3 random seeds for each p, α pair.

5 Autoregressive Policies
In continuous control RL a policy is often defined as a
parametrized diagonal Gaussian distribution:

pθ(at|st) = N (µθ(st), σ
2
θ(st) · I), (6)

where st is a state at time t, µθ(st) and σ2
θ(st) are vectors

parametrized by deep neural networks. The actions, sampled
from such distribution, can be represented as at = µθ(st) +
σθ(st)εt, where εt ∼ N (0, I) is a white Gaussian noise. We
propose to replace εt with observations of an AR-p process
{Xt} defined by (5) for some p ∈ N and α ∈ [0, 1):

at = µθ(st) + σθ(st)Xt. (7)
Both εt and Xt follow marginal standard normal distribution
at each step t, therefore such substitution does not change
the network output to noise ratio in sampled actions, how-
ever for α > 0 the sequence {Xt} possesses temporal coher-
ence and can provide a more consistent exploration behavior.

We would like to build an agent that implements stochastic
policy with samples, defined by (7). From definition (5) of
the process {Xt}, (7) can be expanded as

at = µθ(st) + σθ(st)

p∑
k=1

φ̃kXt−k + σθ(st)σ̃Zεt,

εt ∼ N (0, I).

(8)

From (7) also, Xt = (at − µθ(st))/σθ(st) ∀t, hence (8) can
be rewritten as

at = µθ(st) + σθ(st)

p∑
k=1

φ̃k
at−k − µθ(st−k)

σθ(st−k)
+

+ σθ(st)σ̃Zεt,

εt ∼ N (0, I).

(9)

Denote fθ,t =
∑p
k=1 φ̃k

at−k−µθ(st−k)
σθ(st−k)

the auto-regressive
”history” term in (9). Note that fθ,t is a function of past p
states and actions, fθ,t = f({st−k, at−k}pk=1, θ). Then at
follows the distribution:

at ∼ N (µθ(st) + σθ(st)fθ,t, σ
2
θ(st)σ̃

2
Z · I),

φ̃k, σ̃
2
Z are defined by (5).

(10)

In order to implement such action distribution, we need to
define a history-dependent policy π(at|st, hpt ), where hpt =
(st−p, at−p, . . . , st−1, at−1) is a history of past p states and
actions. In general, history-dependent policies do not induce
Markov stochastic processes, even if the environment tran-
sition probabilities are Markovian [Puterman, 2014, Section
2.1.6]. However when the dependence is only on a history of
a fixed size, such policy induces a Markov stochastic process
in an extended state space, where states are defined as pairs
(hpt , st). In order to be able to lean on existing theoretical re-
sults, such as Policy Gradient Theorem [Sutton et al., 2000],
and to use existing learning algorithms, we will talk about
learning policies in this extended MDP.

More formally, let M = (S,A, P (·|a, s), r(s, a)) be a
given MDP with S and A denoting state and action sets, and
P and r denoting transition probability and reward functions
respectively. Let p be an arbitrary integer number. We define
a modified MDP M̃p = (S̃, Ã, P̃ (·|a, s̃), r̃(s̃, a)) with the el-
ements S̃ = {S × A}p × S, where {C}p denotes Cartesian
product of set C with itself p times, Ã = A, and P̃ and r̃
defined as follows:

∀s̃, s̃′ ∈ S̃ :

s̃ = (s1, a1, . . . , sp, ap, sp+1), ak ∈ A, sk ∈ S ∀k
s̃′ = (s′1, a

′
1, . . . , s

′
p, a
′
p, s
′
p+1), a

′
k ∈ A, s′k ∈ S ∀k

P̃ (s̃′|a, s̃) =


P (s′p+1|a, sp+1), if s′k = sk+1, k ≤ p

a′k = ak+1, k < p
a′p = a

0 otherwise

r̃(s̃, a) = r(sp+1, a)
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In other words, transitions in a modified MDP M̃p cor-
respond to transitions in the original MDP M with states
in M̃p containing also the history of past p states and ac-
tions in M . The interaction between the agent and the en-
vironment, induced by M̃p, occurs in the following way.
At each time t the agent is presented with the current state
s̃t = (st−p, at−p, . . . , st−1, at−1, st). Based on this state and
its policy, it chooses an action at from the setA and sends it to
the environment. Internally, the environment propagates the
action at to the original MDP M , currently in state st, which
responds with a reward value rt+1 and transitions to a new
state st+1. At this moment, the MDP M̃p transitions to a new
state s̃t+1 = (st−p+1, at−p+1, . . . , st, at, st+1) and presents
it to the agent together with the reward rt+1. Let s0 be an
element of the set of the initial states of M . A corresponding
initial state of M̃p is defined as s̃0 = (s0, a0, . . . , s0, a0︸ ︷︷ ︸

p repetitions

, s0),

where a0 is any element of an action set A, for example zero
vector in the case of continuous space. The particular choice
of a0 is immaterial, since it does not affect future transitions
and rewards (more details in Supplementary Materials F).
We define an autoregressive policy (ARP) over M̃p as:

∀s̃t = (st−p, at−p, . . . , st−1, at−1, st) :

πθ(at|s̃t) = N (µθ(st) + σθ(st)fθ(s̃t), σ
2
θ(st)σ̃

2
ZI),

fθ(s̃t) =

p∑
k=1

φ̃k
at−k − µθ(st−k)

σθ(st−k)
,

φ̃k, σ̃
2
Z are defined by (5),

(11)

where µθ(·) and σθ(·) are parametrized function approxima-
tions, such as deep neural networks. For notation brevity,
we omitted dependence of policy πθ on {φ̃k} and σ̃Z , since
these values are constant once the autoregressive model {Xt}
is selected. In this parametrization, µθ(st−k), k = 0, . . . , p
should be thought of as the same parametrized function µθ(·)
applied to different parts of the state vector s̃t, therefore each
occurence of µθ(·) in (11) contributes to the gradient w.r.t.
parameters θ. Similarly, each occurence of σθ(·) contributes
to the gradient w.r.t. θ. Note, that including history of states
and actions does not affect the dimensionality of the input to
the function approximations, as both µθ(·) and σθ(·) accept
only states from the original space as inputs.

The history-dependent policy (11) results in the desired ac-
tion distribution (10) in the original MDPM , at the same time
with respect to M̃p it is just a particular case of a Gaussian
policy (6). Formally, we will perform learning in M̃p, where
πθ is Markov, and therefore all the related theoretical results
apply, and any off-the-shelf learning algorithm, applicable
to policies of type (6), can be used. In particular, the value
function in e.g. actor-critic architectures is learned with usual
methods. Empirically we found that conditioning value func-
tion only on a current state st from the original MDP instead
of an entire vector s̃t gives more stable learning performance.
It also helps to maintain the critic network size invariant to
the AR process order p.

By design, for each sample path (s̃0, a0, s̃1, a1, . . .) in M̃p

there is a corresponding sample path (s0, a0, s1, a1, . . .) inM

with identical rewards. Therefore, improving the policy and
the obtained rewards in M̃p results in identical improvement
of a corresponding history-dependent policy in M . Notice
also, that if σθ(st)→ 0 in (11), then πθ reduces to a Markov
deterministic policy at = µθ(st) in M . Therefore, the op-
timal policy in the set of ARPs defined by (11) is at least as
good, as the best deterministic policy in the set of policies
at = µθ(st). This is in contrast with action averaging ap-
proaches, where temporal smoothing is typically imposed on
the entire action vector and not just on the exploration com-
ponent, limiting the space of possible deterministic policies.

It is important to point out that for any history-dependent
policy there exists an equivalent Markov stochastic policy
with identical expected returns [Puterman, 2014, Theorem
5.5.1]. For the policy (11), for example, it can be constructed
as πMθ (a|s) =

∑
hp∈Hp

πθ(a|s, hp)p(hp|s, πθ) ∀(a, s), where

Hp is a set of all histories of size p. However, πMθ (a|s)
is a non-trivial function of a state s, unknown to us at the
beginning of learning. It is certainly not given by a ran-
dom initialization of (6), while a random initialization of (11)
already provides consistent and smooth behavior. πM (a|s)
also cannot be derived analytically from (11), since comput-
ing p(hp|s, πθ) requires knowledge of environment transition
probabilities, which we cannot expect to have for each given
task. From these considerations, the particular form of pol-
icy parametrization defined by (11) can also be thought of
as an additional structure, enforced upon the general class of
Markov policies, such as policies defined by (6), restricting
possible behaviors to temporally coherent ones.

Although autoregressive term fθ(s̃t) in (11) is formally a
part of the distribution mean, numerically it corresponds to a
stationary zero mean random process Ft =

∑p
k=1 φ̃kXt−k,

where {Xt} is an underlying AR process defined by (5).
Therefore, fθ(s̃t) can be thought of as a part of an action
exploration component around the deterministic mean, given
by µθ(st). It is this part that ensures a consistent and smooth
exploration, as will be demonstrated in the next section.

In principle, one could define πθ in (11) using arbitrary
values of coefficients {φ̃k} and σ̃2

Z . The role of particular
values of {φ̃k} computed according to (5) is to make sure,
that the underlying AR process {Xt} is stationary and the
autoregressive part fθ(s̃t) does not explode. The role of σ̃2

Z

computed by solving (2) with coefficients {φk = φ̃k} and
γ0 = 1 is to make sure, that the variance of the underlying
process {Xt} is 1. The total variance around µθ(st) is then
conveniently defined by an agent controlled σθ(st).

Since linear system (2) with coefficients (3) and γ0 = 1 has
a unique solution according to the Proposition 4.1, its matrix
has a full rank, and therefore the system is well-determined
and can be solved numerically to an arbitrary precision. In
practice we solve it with numpy.linalg.solve function.

6 Experiments
We compared conventional Gaussian policy with ARPs on
a set of tasks with both, sparse and dense reward functions,
in simulation and the real world. In the following learn-
ing experiments we used the Open AI Baselines PPO al-
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Figure 2: a) Autocorrelation function ρτ for autoregressive pro-
cesses (5) with different orders p but the same value of ρ1 = 0.99.
b) Realizations of processes (5) with the same ρ1 = 0.99.

gorithm implementation [Schulman et al., 2017]. The re-
sults with Baselines TRPO [Schulman et al., 2015] are pro-
vided in Supplementary Materials C available at https://bit.
ly/2BQqWMx. For each experiment we used identical al-
gorithm hyper-parameters and neural network structures to
parametrize µθ, σθ and the value networks for both Gaus-
sian and ARP policies. We used the same set of random
seeds to initialize neural networks and the same set of random
seeds to initialize environments that involve uncertainty. De-
tailed parameters for each task are included in Supplementary
Materials E. We did not perform a hyper-parameter search
to optimize for ARP performance, as our primary objective
is to demonstrate the advantage of temporally coherent ex-
ploration even in the setting, tuned for a standard Gaussian
policy. The video of agent behaviors can be found at https:
//youtu.be/NCpyXBNqNmw. The code to reproduce experi-
ments is available at https://github.com/kindredresearch/arp.

6.1 The Order of an Autoregressive Process
From Figure 1 one can notice that the temporal smoothness
of realizations of AR processes (5) empirically increases with
both, parameter α and order p. Why do we need higher order
processes if we can simply increase α to achieve a higher
degree of temporal coherence? To answer this question
it is helpful to consider an autocorrelation function (ARF)
ρτ = cov(Xt, Xt+τ )/var(Xt) = γτ/γ0 of these processes.
White Gaussian noise by definition has autocorrelation func-
tion equal to zero at any τ other than 0. An autoregressive
process with non-zero coefficients generally has non-zero val-
ues of autocorrelation function at all τ .

One of the reasons we are interested in autoregressive pro-
cesses for exploration is that they provide smooth trajecto-
ries that do not result in jerky movement and do not damage
physical robot hardware. Intuitively, the smoothness of the
process realization is defined by a correlation between subse-
quent observations corr(Xt, Xt+1) = ρ1, which for a given p
increases with increasing α. However, given the same value
ρ1, processes of different orders p behave differently. Fig-
ure 2a shows ARFs for different processes defined by (5)
and their corresponding values of α with the same value of
ρ1 = 0.99, while Figure 2b shows realizations of these pro-
cesses. ARF values at higher orders p decrease much faster
with increasing time lag τ compared to the 1st order pro-
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Figure 3: a) Average time to target in Square environment as a func-
tion of an action rate for Gaussian policy and ARPs with varied α.
b) 10 seconds long exploration trajectories at 10Hz (left column) and
100Hz (right column) action rate using Gaussian policy (top row)
and ARPs with p = 3 and α values 0.8 and 0.95 (bottom row).

cess, where correlation between past and future observations
lingers over long periods of time. As shown on Figure 2b,
the 1st order AR process produces nearly a constant func-
tion, while the 5th order process exhibits a much more diverse
exploratory behavior. Given the same value of correlation
between subsequent realizations, higher order autoregressive
processes exhibit lower correlation between observations dis-
tant in time, resulting in trajectories with better exploration
potential. In robotics applications where smoothness of the
trajectory can be critical, higher order autoregressive pro-
cesses may be a preferable choice. Empirically we found that
the 3-rd order processes provide sufficiently smooth trajecto-
ries while exhibiting a good exploratory behavior, and used
p = 3 in all our subsequent learning experiments varying
only the smoothing parameter α.

6.2 Toy Environment with Sparse Reward
To demonstrate the advantage of temporally consistent ex-
ploration, in particular at high action rates, we designed a
toy Square environment with a 2D continuous state space
bounded by a 10x10 square arena. The agent controls a dot
through a continuous direct velocity control. The agent is ini-
tialized in the middle of the arena at the start of each episode
and receives a -1 reward at each time step scaled by time step
duration. The target is generated at a random location on a
circle of diameter 5 centered at the middle of the arena to
make episodes homogenous in difficulty. The episode is over
when the agent approaches the target to within a distance of
0.5. The action space is bounded within a two-dimensional
[−1, 1]2 interval. The observation vector contains the agent’s
position, velocity, and the vector difference between agent
position and the target position.

To compare exploration efficiency we ran random ARP
(p = 3) and Gaussian agents with µθ(·), σθ initialized to
~0 and ~1 respectively for 10 million simulated seconds at dif-
ferent action rates. Figure 3a shows average time to reach the
target as a function of an action rate. The results show that
the optimal degree of temporal coherence depends on the en-
vironment properties, such as action rate. At low control fre-
quency a white Gaussian exploration is more effective than
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Figure 4: Learning curves in a toy 2D environment with sparse reward. White noise exploration (Gaussian policy) leads to ineffective learning
at higher action rates. Temporally smoother processes are capable to learn an effective behavior at wide range of action rates.

ARPs with high α, as in the latter the agent quickly reaches
the boundary of the state space and gets stuck there. The
efficiency of Gaussian exploration drops dramatically with
the increase of action rate. However it is possible to main-
tain a consistent exploration performance in ARP across wide
range of action rates by increasing accordingly the α param-
eter. This effect is visualized on Figure 3b which shows five
10 seconds long exploration trajectories at 10Hz and 100Hz
control for Gaussian and ARP policies. Although run for
the same amount of simulated time, Gaussian exploration at
100Hz covers substantially smaller area of state space com-
pared to 10Hz control, while increasing α from 0.8 to 0.95
(the values were chosen empirically) results in ARP trajec-
tories covering similar space at both action rates. Note that
the issue with Gaussian policy can not be fixed by simply
increasing the variance, as most actions will just be clipped
at the [−1, 1]2 boundary, resulting in a similarly poor explo-
ration. Figure 3b top right plot shows exploration trajectories
for σ(θ) = ~1 (blue) and σ(θ) = ~10 (gray). To the contrary of
the common intuition, in bounded action spaces Gaussian ex-
ploration with high variance does not produce a diverse state-
action visitation.

The advantage of ARPs in exploration translates into an
advantage in learning. Figure 4 shows learning curves (av-
eraged over 5 random seeds) on Square environment at dif-
ferent action rates ran for 50,000 seconds of total simulated
time with episodes limited to 1000 simulated seconds. Not
only ARPs exhibit better learning at most action rates, but the
initial random behavior gives much higher returns compared
to initial Gaussian agent behaviour. At higher action rates
ARPs with higher α produce better results. At the same time

at the lowest action rate Gaussian policy (corresponding to
ARP with α = 0) outperforms policies with higher α values.
In a Square environment the fast reaction time is not essential
and an effective policy can be achieved at low action rates,
since the target is stationary and there are no safety hazards.
In practical applications however this is rarely the case. The
robots often share workspace with other robots and humans
and the environment changes dynamically. A fast reaction
time of the agent is often necessary to have both safe and ef-
fective behaviour. In Supplementary Materials D we provide
learning results in a modified Square environment with a mo-
bile target where an effective behaviour cannot be achieved at
low action rate.

In the formulation of the AR-1 process used in Lillicrap
et al. [2015] and in Tallec et al. [2019], parameter α corre-
sponds to 1 − κdt, where dt is a time step duration. Hence,
in that formulation α naturally approaches 1 as dt approaches
zero. Note, that in order to achieve the best performance on
each given task, parameter κ still needs to be tuned, just as
parameter α needs to be tuned in our formulation. The op-
timal values of these parameters depend not only on action
rate, but also on environment properties, such as a size of a
state space relative to the typical size of an agent step. For ex-
ample, in the defined here Square environment increasing the
size of the arena and the initial distance to the target k-fold is
equivalent to keeping the arena size the same but decreasing
time step durartion k-fold. Therefore, given the same value of
dt, bigger arena would require a larger value of α or a smaller
value of κ parameters respectively.

Notice that ARP, although having better performance than
a Gaussian policy, still degrades at higher action rates (e.g.
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Figure 5: Learning curves in Mujoco-based environments.

α = 0.5 at 10Hz vs α = 0.95 at 100Hz control). There are
two main challenges in learning at high action rates: one be-
ing an effective exploration and the other being a problem of
credit assignment (i.e. at higher action rates the information
about returns needs to be propagated through a larger number
of steps and the effect of each individual action is less per-
ceptible to e.g. neural network approximations). Our method
addresses the first challenge but not the second one, and there-
fore its performance still suffers from very high action rates.

6.3 Mujoco Experiments
Figure 5 shows the learning results on standard OpenAI Gym
Mujoco environments [Brockman et al., 2016]. These en-
vironments have dense rewards, so consistent exploration is
less crucial here compared to tasks with sparse rewards. Nev-
ertheless, we found that ARPs perform similarly or slightly
better, than a standard Gaussian policy. On a Swimmer-v2 en-
vironment ARP resulted in a much better performance com-
pared to Gaussian policy, possibly because in this environ-
ment smooth trajectories are highly rewarded. Note that dif-
ferent Mujoco environments are defined with different simu-
lated time step durations (shown on Figure 5), which partially
define the best value of α for each task. In addition, as we dis-
cussed in the previous subsection, the optimal value of alpha
is defined by other aspects of the simulation, such as torque
limits, joint space limits, and the reward function. The results
suggest that fot the best performance α generally needs to be
tuned separately on each given domain.

6.4 Physical Robot Experiments
On a UR5 robotic arm we were able to obtain results similar
to those in the toy environment. We designed a sparse reward
version of a UR5 Reacher 2D task introduced in [Mahmood et
al., 2018b]. In a modified task at each time step the agent re-
ceives a -1 reward scaled by a time step duration. The episode
is over when the agent reaches the target within a distance of
0.05. In order to provide sufficient time for exploration in a
sparse reward setting we doubled the episode time duration to
8 seconds. Figure 6 shows the learning curves for 25Hz and
125Hz control. Each curve is an average across 4 random
seeds. The Gaussian policy fails to learn in a 125Hz control
setting within a 5 hours time limit, while ARP was able to find
an effective policy in 50% of the runs, and the effectiveness
at higher α increased at a higher action rate.
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Figure 6: Learning curves on a UR5 Reacher 2D environment with
sparse reward at 25Hz and 125Hz velocity control.

7 Conclusions
We introduced autoregressive policies (ARPs) for temporally
coherent exploration in continuous control deep reinforce-
ment learning. The policy form is grounded in the theory
of stationary autoregressive stochastic processes. We derived
a family of stationary Gaussian autoregressive stochastic pro-
cesses for an arbitrary order p with continuously adjustable
degree of temporal coherence between subsequent observa-
tions. We derived an agent policy that implements these pro-
cesses with a standard agent-environment interface. Empir-
ically we showed that ARPs result in a superior exploration
and learning in sparse reward tasks and perform on par or bet-
ter compared to standard Gaussian policies in dense reward
tasks. On physical hardware, ARPs result in smooth trajec-
tories that are safer to execute compared to the trajectories
provided by conventional Gaussian exploration.
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