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Abstract

Learning from data streams is among the most vital
contemporary fields in machine learning and data
mining. Streams pose new challenges to learning
systems, due to their volume and velocity, as well
as ever-changing nature caused by concept drift.
Vast majority of works for data streams assume a
fully supervised learning scenario, having an un-
restricted access to class labels. This assumption
does not hold in real-world applications, where ob-
taining ground truth is costly and time-consuming.
Therefore, we need to carefully select which in-
stances should be labeled, as usually we are work-
ing under a strict label budget. In this paper, we
propose a novel active learning approach based on
ensemble algorithms that is capable of using mul-
tiple base classifiers during the label query pro-
cess. It is a plug-in solution, capable of working
with most of existing streaming ensemble classi-
fiers. We realize this process as a Multi-Armed
Bandit problem, obtaining an efficient and adaptive
ensemble active learning procedure by selecting the
most competent classifier from the pool for each
query. In order to better adapt to concept drifts, we
guide our instance selection by measuring the gen-
eralization capabilities of our classifiers. This adap-
tive solution leads not only to better instance se-
lection under sparse access to class labels, but also
to improved adaptation to various types of concept
drift and increasing the diversity of the underlying
ensemble classifier.

1 Introduction

Velocity of data gave rise to the notion of data streams,
potentially unbounded collections of data that continuously
flood the system. We define data stream a sequence
< 81,82,...,8n, ... >, where each element S is a new in-
stance. In this paper, we work under the supervised learn-
ing scenario and thus we will define each instance as S; ~
pi(xt, - 24 y) = pj(x,y), where p;(x, y) is a joint distri-
bution of j-th instance, defined by a d-dimensional feature
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space and originating from class y. Each instance in the
stream is independent and randomly drawn from a station-
ary probability distribution ¥, (x, y). As new data is contin-
uously arriving, storing a data stream is not a viable option.
One needs to analyze new instances on-the-fly, incorporate
the useful information into the classifier, and discard them.
Both the prediction and classifier update steps cannot be of a
high complexity, as instances arrive rapidly and bottleneck-
ing must be avoided. Data streams are also subject to a phe-
nomenon known as concept drift [Gama er al., 2014], where
the properties of stream are subject to a change over time.

Most of works dedicated to data stream mining assume a
fully supervised learning process and thus unlimited access
to class labels [Krawczyk et al., 2017]. This assumption does
not hold in real-life scenarios, where obtaining a ground truth
for each instance is a costly and time-consuming process.
Therefore, one needs to relax the requirements for class labels
and work with sparsely labeled data streams. Active learning
allows for selecting only the most valuable instances for label
query and thus working under a strict budget.

In this paper, we propose a novel active learning method for
drifting data streams, based on ensemble approach. We use a
set of classifiers to decide which instances should be labeled,
obtaining a more robust and accurate selection. We realize the
instance selection procedure as a Multi-Armed Bandit prob-
lem, where each classifier is encoded as a bandit. We show
how to conduct an adaptive instance selection for label query
that learns from its past experiences and improves the perfor-
mance over time. Additionally, we guide our instance selec-
tion not by popularly used classifier uncertainty metric, but
by measuring how a new instance will affect the generaliza-
tion capabilities of each base classifier in the ensemble. Our
algorithm is a plug-in solution, capable of working with most
of existing streaming ensemble classifiers. A thorough exper-
imental study showcases that our method is capable of out-
performing state-of-the-art active learning methods, is highly
suitable for various concept drift scenarios, and has a bene-
ficial influence on the diversity of the underlying ensemble,
leading to increasing its drift adaptability.

2 Access to Ground Truth in Data Streams

Ever-growing volume, high-speed of instance arrival and con-
cept drift presence are considered as the biggest challenges
that must be handled by supervised learning algorithms in
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data stream mining. While there is a plethora of works dedi-
cated to proposing new and efficient classifiers, many of them
assume that the ground truth (class label y in the supervised
classification case) is available immediately after a new in-
stance S; is processed. Therefore, these algorithms are de-
signed to work with fully labeled data streams. However,
such an assumption does not hold in the vast majority of real-
life applications. Obtaining a class label requires either an ac-
cess to an oracle-like source or a domain expert. The former
case may hold for scenarios in which ground truth may be ob-
served at no cost as a state of the environment (e.g., weather
condition predictions). This is a rare case and is connected
with delay at which labels become available. The latter case
is a more frequent one and assumes a human annotator in-
volved. As in data streams we deal with high-speed and mas-
sive volumes of instances, labeling all of them is costly, or
even impossible due to human limitations in throughput. A
scenario in which we can obtain labels only for a small sub-
set of carefully selected instances is therefore a much more
realistic one.

Active learning is an attractive solution to this prob-
lem, allowing for obtaining class labels at a limited bud-
get [Lughofer, 2017]. Budget is defined as a number of
label queries that can be made within a given time win-
dow and active learning strategies aim to optimize their us-
age to label the most important, diverse, or novel instances.
While there exist a number of online active learning algo-
rithms, they cannot be used for data streams as they do not
posses any mechanisms for handling concept drift [Lughofer,
2017]. This is crucial for proper stream labeling, as the
query strategy should adapt swiftly to changes in class char-
acteristics [Ksieniewicz et al., 2019]. At the same time, a
proper sampling of instances coming from a new concept
ensure a fast recovery rate after the concept drift has oc-
curred. Most popular strategies use adaptive thresholds on
classifier certainty (or support functions) [Zliobaite et al.,
2014], density information [Mohamad er al., 2018al, er-
ror propagation [Mohamad et al., 2018bl, or combine ac-
tive learning with drift detectors [Krawczyk er al., 2018].
Recently, few works on ensemble learning for active learn-
ing from data streams emerged [Alabdulrahman ez al., 2016;
Xu et al., 2016]. However, they treat the active learning com-
pound as completely unrelated to the ensemble learner and
thus should be considered as rather wrapper approaches, than
core ensemble active learning.

All of existing active learning strategies are significantly
impaired when the label query budget is small. In many real
problems labeling even as little as 1% of instances from the
stream may be too costly. Therefore, methods that allow ob-
taining class labels at no cost from drifting data streams are a
promising research direction [Dyer et al., 2014].

3 Ensemble Active Learning for Drifting Data
Streams

In this section, we present the details of the proposed en-
semble active learning algorithm dedicated to drifting data
streams.
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3.1 Active Learning for Data Streams

In classic AL scenario we assume having an access to classi-
fier ¥ and a set of unlabeled instances {/:

U:HxU— R, (1)

The role of active learning is to select the most useful in-
stance from I/ for label query, based on the current learning
hypothesis (or model):

q = arg r;lg/){( U(h,x). 2)

Assuming an access to an oracle (or domain expert in

real-world applications) that can provide a true class (over

M-class problem) label for queried instance o : U —

{1,---, M} and selected training algorithm A, we can for-

mulate an incremental update of hypothesis & in i-th active
learning iteration:

hiv1 = A ({qr, 0(q) Hie1) 3)

where
q; = arg %%‘I’(m, ), 4)
Uisr = U \{a}- &)

In classic AL scenario, hypothesis i depends on time (as it
changes with every iteration), but ¥ remains constant. This
however does not hold for a data stream scenario, where we
need to constantly update the hypothesis and classification
model, thus leading to a dynamic learning problem. There-
fore, in the context of data streams we must assume that both
h and ¥ may depend on time and adapt according to its past
experiences:

¢i = argmax W (hi, z), (6)

which is obtained by some adaptive learning process f:

Vipr=f ((hk)?c:h (‘I’k)izh (Qk)?c:h (O(Qk))f;:l) - (D

The considered function f used to update models over time
could be any function that returns utility function - a popular
problem in the context of data streams. In this paper, we pro-
pose to model this function as an ensemble learning problem
controlled by multi-armed bandit adaptation.

3.2 Ensemble Active Learning as Multi-Armed
Bandit Problem

Ensemble active learning for data streams is an emerging
trend, showing high promise due to highly efficient label
queries for newly arriving instances and higher robustness to
concept drift. We assume that we have at our disposal a pool
of L classifiers:

M= {0y, 0.}, @®)

where each classifier in the pool fulfills the adaptability crite-
ria over time (see Eq. 6) and their committee decision is used
to decide on which instance should be queried.
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We propose to achieve the adaptation over time by using a
multi-armed bandit approach [Czarnecki and Podolak, 2014].
This allows us to conduct active learning in a different fash-
ion than existing committee methods. While ensemble active
learning is usually done via using multiple votes on whether
new instance should be queried or not, the proposed approach
selects dynamically the most competent classifier to be re-
sponsible for the query decision. Therefore, we are able to
better utilize a pool of diverse classifiers in hope that at least
one of them can anticipate the direction of changes in the
stream better than the remaining ones. The idea behind this is
similar to dynamic classifier selection [Almeida et al., 2018;
Zyblewski et al., 2019], as we aim to exploit the unique com-
petencies of base learners.

MAB assumes access to a finite number of processes (i.e.,
bandits) that are iteratively sampled (played) in order to ob-
tain a value (reward r). MAB aims at maximizing the cumu-
lative reward over time by observing the results of playing at
a given machine. Of course, the issue related with MAB is
the selection of a proper playing strategy. This can be seen
as a minimization of regret function R that can be formulated
as a difference between the sum of obtained rewards using a
selected strategy s and the sum of rewards obtained using a
hypothetical optimal strategy:

T T T
min R, = E roPt E Ty = maxg e, (9)
S S

k=1 k=1 k=1

where 7] is the reward after k=th iteration with s.

To use MAB for active learning from data streams, we con-
sider each classifier in the pool as a separate machine and
query them during playing (i.e., during data stream process-
ing). After defining a reward function, we may use any exist-
ing MAB algorithm as our adaptation function f (see Eq. 7):

f ((hk)izu (qjk)i::h (%)Z:u (O(Qk))zzl) =
MAB ((\I}k);@:h (rk);c:l) , (10

where

Ty =T ((hk);;:l’ (‘I'k)zzh (%)2:17 (O(Qk))ﬁc:l) - (1D

As we deal with an ensemble of classifiers, we will denote
the mean reward of j-th classifier as:

_ Tk
=) R 12)
i, 1o
1

where P, = {k : ¥}, = ¥,} is a set of iterations’ indices
where [-th classifier was used for label query.

3.3 MAB Strategy

In order to optimize our ensemble AL, we will use an efficient
MAB algorithm. A thorough survey on MAB pointed out
UCBI1 as one of the most efficient approaches and thus we
will focus on this strategy [Burtini ef al., 2015].

Upper Confidence Bound (UCB1) [Kuleshov and Precup,
2014] is a popular algorithm for solving MAB problems that
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approaches the minimal regret bound of Q(logT') when the
constant variance of each bandit (in our case classifier) is as-

sumed:
B 2logT
1/ . 13
lE{l,“’ 7L} <Tl + |P)l| ) ( )

b=arg max

While UCB1 has gained popularity in solving various
MAB problems, we will argue that it is not feasible for en-
semble active learning. The assumption of identical variance
of each bandit (i.e., classifier) is too strong and unrealistic for
any ensemble composition. Therefore, we must assume that
our classifiers will have varying variances within the pool W.

In order to capture that, we propose to use a tuned version
of UCBI that takes into account the variance of each bandit
[Burtini et al., 2015]:

T+ I?E‘T min ( 1, var (r,) + 2|1<133ng .
le{1,-,L} t keP; L

b=arg max
(14)

3.4 Reward Function

Vast majority of existing active learning methods for data
streams base their decision regarding label query for a new
instance on the uncertainty of a classifier regarding that in-
stance. Therefore, one should select instances for labeling
that are closest to the current classification boundary and have
a high chance of being incorrectly labeled by the classifier:

r ((hk);c:lv (\Pk‘),i::l’ (Qk');czlv (0(%))2:1) =
ro/1 (hiy @i, 0(a:)) = 1n,(g0)#0(qi)-  (15)

While this uncertainty-based approach for label query is
used by many successful active learning algorithms dedicated
to data streams, its usefulness degrades with the increasing
presence of concept drift. This is caused by the fact that con-
cept drift may appear in regions associated with a high clas-
sifier certainty - therefore these regions will never be queried
for new instances, prohibiting the classifier from adapting to
such a change. Therefore, in this paper we propose to ex-
plore an alternative way of selecting instances for label query
by measuring the increase in generalization capabilities of the
classifier according to a metric m on a separate validation set
V:

Tm (hiyhi—1,V)) =
m (hs(V),0(V)) = m (hi_1(V),0(V)). (16)

Using this approach for instance selection leads to im-
proved theoretical bound on the learning process from data
streams. We will prove this using the UCB1 strategy for proof
derivation.

Theorem 1 Given an ensemble of classifiers 11 suitable for
learning from data streams, MAB-based active learning with
UCBI strategy, and reward function r,,, assuming that each
classifier is stochastic, the generalization capabilities of the
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proposed ensemble active learning approach for used metric
m is at most O(log T') worse than the one obtained from an
optimal selection strategy after T’ iterations.

Proof. Following the similar proofs for UCB1 MAB bounds
in non-streaming environments, this theorem is a conse-
quence of UCB1 MAB bounds on reward function and be-
cause the following:

T T
> rme =Y [m(hi(V),0(V)) = m(hx—1(V),0(V))]
k=1 k=1
=m(hr(V),0(V)) = m(ho(V),0(V)) (17)

is the generalization capability of an underlying classification
model that depends only on the initial hypothesis hy and the
final hypothesis hp. Therefore, this realizes the theoretical
lower bound of MAB error of Q2(log T") and in general cannot
be asymptotically improved. [

3.5 Practical Considerations

From the practical point of view, our proposed Ensemble Ac-
tive Learning with Multi-Armed Bandit (EAL-MAB) can be
seen as a plug-in approach working with vast majority of
modern streaming ensembles. However, there are few prac-
tical considerations to be taken into an account when using
EAL-MAB with a selected ensemble algorithm:

Validation set. Used ensemble learning algorithm must be
capable of evaluating the generalization metric (see Eq. 16)
for each base classifier on instances unseen by this classifier.
In practice, this is realized by most of streaming ensemble
methods, as they either train base classifiers using instance
subsets (e.g., Online Bagging [Oza and Russell, 2001]) or us-
ing different chunks of data.

Classifier outputs. EAL-MAB requires for the base classi-
fiers in ensemble to return continuous outputs (e.g., support
functions) and not discreet labels. In practice, this is realized
by most of online / streaming single classifiers.

Usage of labeling budget. EAL-MAB runs on each new
chunk of data for 7 iterations to select instances, one per it-
eration. Thus, the given budget B for a window size of w
is equal to the number of iterations that EAL-MAB will per-
form: T'= B X w.

Usage of metric m. EAL-MAB may use any metric suit-
able for data streams [Krawczyk et al., 2017].

4 Experimental Study

This experimental study was designed to answer four research
questions that will provide an insight into the proposed EAL-
MAB approach:

e RQ1: How does EAL-MAB compares to state-of-the-
art active learning methods dedicated to drifting data
streams and is it capable of more efficient utilization of
the provided budget?

e RQ2: How does EAL-MAB reacts to concept drift and
how well is it able to improve the recovery after a drift
occurred?
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e RQ3: How does the AL procedure within EAL-MAB
affects the underlying ensemble diversity?

e RQ4: How does EAL-MAB work with different ensem-
ble architectures and base classifiers?

4.1 Data Stream Benchmarks

For the purpose of evaluating our proposed algorithm, we
generated 10 diverse and large-scale data stream benchmarks
using MOA environment [Bifet ez al., 2010al, as well as two
popular real-world data streams. By using data stream gener-
ators, we were able to fully control the nature and occurrence
of concept drifts, which in turn leads to a more explainable
experimental study. By analyzing how the proposed method
behaves in a controlled environment, we may gain more in-
depth insight into its strong and weak points. Details of used
data streams are given in Table 1.

Abbr. Generator Instances Features Classes Drift

HYP;r» Hyperplane 1 000 000 10 2 incremental-fast
HYP;s  Hyperplane 1 000 000 10 2 incremental-slow
LEDy), LED 1000 000 24 10 mixed

LEDg LED 1 000 000 24 10 sudden

RBFp RBF 1 000 000 100 5 blips

RBFq RBF 1 000 000 40 20  gradual

RBF;r RBF 6 000 000 20 10 gradual-recurring
SEA¢ SEA 3000 000 3 4 gradual

SEAg SEA 3000 000 3 4 sudden

TREg RandomTree 2 000 000 10 6 sudden

ACT Activity 1 048 570 3 6 unknown

SEN Intel Sensor 2219 804 5 54 unknown

Table 1: Properties of used data stream benchmarks.

4.2 Set-up

Here, we will present the details of the experimental study
design.

Reference AL algorithms. In order to provide a fair com-
petition for our proposed algorithm, we have selected three
state-of-the-art AL methods dedicated specifically to drifting
data streams:

e Randomized Variable Uncertainty (R-VAR) [Zliobaite
et al., 2014] is an AL approach that monitors the un-
certainty of a classifier and dynamically adjust the label
query threshold. Additionally, a randomized component
is added, allowing for periodical query of feature space
subsets characterized by a high classifier certainty. This
allows for detection of concept drifts taking place far
from the decision boundary.

e Stream-based Active Learning (SAL) [Mohamad et al.,
2018b] uses non-parametric Bayesian models to cope
with the lack of prior knowledge about the data stream,
realized as Dirichlet mixture models and the stick break-
ing process. This allows for querying instances that are
most likely to reduce the classification error.

e Bi-Criteria Active Learning Algorithm for Dynamic
Data Streams (BIAL) [Mohamad et al., 2018al uses a
combination of label uncertainty criterion and density-
based criterion. The latter criterion dynamically weights
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incoming instances according to their underlying distri-
butions, in order to bias the sampling process.

Ensemble learning algorithm. All used AL algorithms are
plug-in tools that can be combined with any classifier. Ref-
erence methods were mainly designed for single classifiers,
while the proposed EAL-MAB can be used with almost any
stream-based ensemble learning algorithm. For the purpose
of this comparison, we use all of them in connection with
popular Leveraging Bagging [Bifet et al, 2010b], as it is
widely recognized as one of the most effective ensembles for
data streams [Krawczyk er al., 2017]. All AL methods use ex-
actly the same initial ensemble. We restrict the size of Lever-
aging Bagging to 10 base classifiers (as suggested by authors)
and use Hoeffding Trees as base learners. Additionally, we
examined Online Bagging [Oza and Russell, 2001] and Accu-
racy Updated Ensemble [Brzezinski and Stefanowski, 2014]
architectures with both Hoeffding Tree and Naive Bayes base
classifiers to examine if the proposed EAL-MAB algorithm
can efficiently work with any underlying streaming classifi-
cation model.

AL budgets. As we want for our experimental study
to reflect a real-world scenario, we investigate small to
medium budgets, from highly restrictive 1% to 30%, so B €
{0.01,0.05,0.1,0.15,0.2,0.25,0.3}.

Evaluation metrics. For comparing streaming classifiers,
we use a prequential accuracy metric [Gama et al., 2013]. In
order to evaluate the diversity of ensembles, we use a stream-
ing version of kappa interrater agreement metric [Brzezinski
and Stefanowski, 2016].

Windows. We use a window size w = 1000 for calculating
the budgets, prequential metrics, and training new classifiers
for ensembles. For evaluating the generalization capabilities
of base classifiers in the ensemble (see Eq. 16), we use a win-
dow wy = 50 most recently labeled instances.

Statistical analysis. To examine the significance of the ob-
tained results, we used McNemar'’s test [Bifet ez al., 2015] for
pairwise comparison and Bayesian signed rank test [Benavoli
et al., 2017] for comparison over multiple datasets.

Analyzing the concept drift. As we generated all 10 bench-
mark data streams, we have full information about the ex-
act point when concept drift takes place. Therefore, we la-
bel these instances as drifting ones and monitor how many of
them will be selected by evaluated AL algorithms for label-
ing.

4.3 Results and Discussion

Let us discuss the obtained results from the perspective of
stated three research questions that guided this study.

Influence of AL algorithms on classification accuracy
(RQ1). Figure 1 presents the prequential accuracies of ex-
amined AL methods with respect to varying budget sizes and
benchmarks. Additionally, Figure 3 depicts the outcomes of
Bayesian statistical analysis of result significance. In 10 out
of 12 cases, the proposed EAL-MAB approach was capable
of significantly outperforming all of AL reference methods,
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Dataset R-VAR SAL BIAL EAL-MAB
HYP;r 17.23£521 19.54 £4.12 20.46£4.51 26.12+3.18
HYP;s 18.65£4.26 22.54+395 21.89+4.26 28.81+3.52
LED;;  32.73£2.19  38.45+£3.11  39.99+3.82  43.26+3.18
LEDg 27.41£1.86  29.45+2.11 29.88+£3.28 33.47+1.68
RBFp 21.09+£2.76  24.98+2.98  29.72+3.07 26.5443.01
RBFq 36.44+4.98  38.72+6.11 40.07+£5.28  45.284+5.39
RBFgr 38.56+£6.21 40.03+=7.01 41.13+6.38  47.20+6.94
SEA¢ 11.874£3.98  17.43£2.51 18.82+2.99  15.824+2.32
SEAs 10.02+7.32  15.77+£6.21  16.61+5.84  25.06+5.11
TREg 38.23+4.98  31.44+2.66 32.80+2.29 43.19+3.36
ACT - - - -

SEN - - - -

Table 2: Percentage of instances labeled as drifting ones that were
selected for label query by AL algorithms.

showing its capabilities for selecting more useful instances.
This can be contributed to efficiently using the ensemble of
classifiers for label query, which leads to reduced variance
and improved evaluation on which instance may be useful not
only for base classifiers, but for the ensemble as a whole. Ad-
ditionally, reference methods are all based on classifier uncer-
tainty, while the proposed EAL-MAB uses the generalization
capabilities of base classifiers for selecting instances. This
proves that strwam-based AL should evaluate different se-
lection criteria, as uncertainty itself loses information value
in the presence of concept drift. This is especially limiting
when drifting instances appear in regions with associated high
classification certainty. While for high budgets BIAL refer-
ence method achieves similar performance to EAL-MAB, we
should focus on realistic and small budgets. Here, EAL-MAB
is capable of much better usage of the limited class labels,
leading to much more stable and effective classification.

Capabilities of AL algorithms to adapt to concept drift
(RQ2). As a second part of our experiment, we want to
evaluate the capabilities of examined AL algorithms to han-
dle concept drifts. We propose to realize this by checking
how many instances labeled as drifting ones have been se-
lected for label query. A good AL algorithm should select
as many instances from the new concept as possible, leading
to faster recovery and adaptation to the evolved environment.
Table 2 presents the percentage of drifting instances that have
been selected by examined AL algorithms. Here, we see that
for 8 benchmarks on which EAL-MAB obtained the best per-
formance, it also selected the highest number of drifting in-
stances for labeling. This shows a relationship between the
obtained predictive power and speed of adaptation to concept
drifts. By suing adaptive MAB approach with classifier gen-
eralization criterion, we are able to select most valuable in-
stances during the drift.

Influence of AL algorithms on the ensemble diversity
(RQ3). Let us check how the used AL algorithms influ-
ence the underlying ensemble diversity. Diversity metrics for
non-streaming environments have been criticized for not be-
ing an efficient tool for ensemble forming and for not actu-
ally grasping the idea of what makes a good or bad diver-
sity [Brown and Kuncheva, 2010]. However, in the context
of data streams the situation has recently changed. Diversity
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Figure 1: Averaged prequential accuracy of evaluated AL algorithms with respect to varying budget sizes.

has been identified as a crucial factor for ensemble adaptation
to concept drift, as it allows for anticipating the direction of
changes [Minku et al., 2010]. Therefore, a good AL method
should be (directly or indirectly) managing the ensemble di-
versity. Although there is a lack of success stories of applying
diversity measures for ensemble forming from data streams
[Krawczyk et al., 2017], the same measures are useful for
monitoring the ensemble performance over time [Brzezinski
and Stefanowski, 2016]. Figure 2 presents the averaged di-
versity for each examined budget and benchmark. Here, we
can see that none of the reference AL methods can manage
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the diversity properly, especially for small budgets - as in-
stances selected there are too similar to each other (they all
are selected by classifier uncertainty metric). The proposed
EAL-MAB is capable of much better diversity management,
improving it significantly. This is especially visible in case of
small budgets (0.01 - 0.1), where such enhanced diversity di-
rectly translates to improved predictive power and drift adap-
tation capabilities. EAL-MAB is capable of selecting use-
ful and mutually complementary instances even under very
sparse access to class labels. Please note that one cannot say
what value of diversity metric leads to an improved ensem-
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Figure 2: Diversity of ensembles measured with kappa interrater agreement metric with respect to varying budget sizes.

ble performance. However, what is important is to observe
that the diversity of ensemble reacts to even small changes
in the number of provided instances (i.e., for small budget
increases). That means that increased budget was used to
choose complementary instances that introduce new knowl-
edge to base classifiers and that these classifiers do not con-
verge to a similar model. As we can see, for three refer-
ence AL algorithms, the diversity metric is stable for small
to medium budget values, showing that the new instances ei-
ther do not introduce new knowledge, or that they were sup-
plied to all base classifiers at the same time. This is not the
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case with the EAL-MAB, where each classifier takes an in-
dividual part in the instance selection. Thus, it is possible to
select instances that will improve the local (for a given base
classifier) or global performance (of the entire ensemble).

Influence of different ensemble architectures and base
classifiers (RQ4). Finally, let us analyze how does EAL-
MAB relies on the underlying ensemble model and base clas-
sifier. This is necessary to examine, as EAL-MAB aims to
be a flexible plug-in AL method that can work with any en-
semble scheme that follows the practical considerations dis-
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method.
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Figure 4: Comparison of EAL-MAB and reference active learning algorithms over different ensemble architectures and base classifiers.
Results presented with respect to the number of wins (green),ties (yellow), and losses (red) over 84 cases (12 benchmark datasets and 7
different budgets). A tie was considered when McNemar’s test rejected the significance of difference between tested algorithms.

cussed in Section 3.5. Figure 4 depicts the results over three
different ensemble models with two different base classifiers.
Results are presented according to pairwise McNemar’s test
for statistical significance over 84 test cases (12 benchmarks
with 7 budget sizes). We can see that while there is a small
variance in results, the general trends are clearly preserved
with EAL-MA B outperforming all three reference AL algo-
rithms. This shows the flexibility of the proposed AL frame-
work and proves that it can be used as an efficient plug-in
tool for making ensembles work under labeling constraints
for drifting data stream mining.

5 Conclusions and Future Works

In this paper, we have discussed the issue of learning from
drifting data streams under a restricted access to class la-
bels. To address this challenging, real-world problem, we
proposed a new ensemble-based active learning scheme. We
treated base classifiers as bandits and realized the instance
query procedure as a Multi-Armed Bandit problem. This al-
lowed us to efficiently use the pool of classifiers to select such
instances that will improve both individual learners and the
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ensemble as a whole. We proposed to guide the selection pro-
cess not by a popular uncertainty measure, but by measuring
how each new instance influences the generalization capabili-
ties of each classifier. This has lead to a much better selection
tool that is capable of handling drifting data streams.

Obtained results encourage us to pursue further works in
this directions. We plan to investigate novel measures for se-
lecting instances that are based on local instance hardness, as
well as adapt our approach to binary and multi-class imbal-
anced and drifting data streams.

References

[Alabdulrahman et al., 2016] Rabaa Alabdulrahman, Herna
Viktor, and Eric Paquet. An active learning approach for
ensemble-based data stream mining. In KDIR, pages 275—
282. SciTePress, 2016.

[Almeida et al., 2018] Paulo R. L. Almeida, Luiz S. Oliveira,
Alceu S. Britto Jr., and Robert Sabourin. Adapting dy-
namic classifier selection for concept drift. Expert Syst.
Appl., 104:67-85, 2018.

Accuracy Updated Ensemble + Hoeffding Tree: EAL-MAB vs.

Accuracy Updated Ensemble + Naive Bayes: EAL-MAB vs.



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

[Benavoli et al., 2017] Alessio Benavoli, Giorgio Corani,
Janez Demsar, and Marco Zaffalon. Time for a change:
a tutorial for comparing multiple classifiers through
bayesian analysis. Journal of Machine Learning Research,
18:77:1-77:36, 2017.

[Bifet et al., 2010a] Albert Bifet, Geoff Holmes, Richard
Kirkby, and Bernhard Pfahringer. MOA: massive on-
line analysis. Journal of Machine Learning Research,
11:1601-1604, 2010.

[Bifet et al., 2010b] Albert Bifet, Geoffrey Holmes, and
Bernhard Pfahringer. Leveraging bagging for evolving
data streams. In Machine Learning and Knowledge Dis-
covery in Databases, European Conference, ECML PKDD
2010, Barcelona, Spain, September 20-24, 2010, Proceed-
ings, Part I, pages 135-150, 2010.

[Bifet et al., 2015] Albert Bifet, Gianmarco De Francisci
Morales, Jesse Read, Geoff Holmes, and Bernhard
Pfahringer. Efficient online evaluation of big data stream
classifiers. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, Sydney, NSW, Australia, August 10-13, 2015,
pages 59-68, 2015.

[Brown and Kuncheva, 2010] Gavin Brown and Ludmila 1.
Kuncheva. ”good” and ’bad” diversity in majority vote en-
sembles. In MCS, volume 5997 of Lecture Notes in Com-
puter Science, pages 124—133. Springer, 2010.

[Brzezinski and Stefanowski, 2014] Dariusz Brzezinski and
Jerzy Stefanowski. Reacting to different types of concept
drift: The accuracy updated ensemble algorithm. IEEE
Trans. Neural Netw. Learning Syst., 25(1):81-94, 2014.

[Brzezinski and Stefanowski, 2016] Dariusz Brzezinski and
Jerzy Stefanowski. Ensemble diversity in evolving data
streams. In Discovery Science - 19th International Con-
ference, DS 2016, Bari, Italy, October 19-21, 2016, Pro-
ceedings, pages 229-244,2016.

[Burtini et al., 2015] Giuseppe Burtini, Jason Loeppky, and
Ramon Lawrence. A survey of online experiment de-
sign with the stochastic multi-armed bandit. CoRR,
abs/1510.00757, 2015.

[Czarnecki and Podolak, 2014] Wojciech M. Czarnecki and
Igor T. Podolak. Adaptive active learning as a multi-armed
bandit problem. In ECAI 2014 - 21st European Confer-
ence on Artificial Intelligence, 18-22 August 2014, Prague,
Czech Republic - Including Prestigious Applications of In-
telligent Systems (PALS 2014 ), pages 989-990, 2014.

[Dyer et al., 2014] Karl B. Dyer, Robert Capo, and Robi Po-
likar. COMPOSE: A semisupervised learning framework
for initially labeled nonstationary streaming data. IEEE
Trans. Neural Netw. Learning Syst., 25(1):12-26, 2014.

[Gama et al., 2013] Jodo Gama, Raquel Sebastido, and Pe-
dro Pereira Rodrigues. On evaluating stream learning al-
gorithms. Machine Learning, 90(3):317-346, 2013.

[Gama et al., 2014] Jodao Gama, Indre Zliobaite, Albert
Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia.

A survey on concept drift adaptation. ACM Comput. Surv.,
46(4):44:1-44:37, 2014.

2771

[Krawczyk et al., 2017] Bartosz Krawczyk, Leandro L.
Minku, Jodo Gama, Jerzy Stefanowski, and Michal
WozZniak. Ensemble learning for data stream analysis: A
survey. Information Fusion, 37:132-156, 2017.

[Krawczyk et al., 2018] Bartosz ~ Krawczyk, Bernhard
Pfahringer, and Michal Wozniak. = Combining active
learning with concept drift detection for data stream
mining. In IEEE International Conference on Big Data,
Big Data 2018, Seattle, WA, USA, December 10-13, 2018,
pages 2239-2244, 2018.

[Ksieniewicz et al., 2019] Pawel Ksieniewicz, Michal Woz-
niak, Boguslaw Cyganek, Andrzej Kasprzak, and
Krzysztof Walkowiak. Data stream classification using
active learned neural networks. Neurocomputing, 353:74—
82,2019.

[Kuleshov and Precup, 2014] Volodymyr Kuleshov —and
Doina Precup. Algorithms for multi-armed bandit
problems. CoRR, abs/1402.6028, 2014.

[Lughofer, 2017] Edwin Lughofer. On-line active learning:
A new paradigm to improve practical useability of data
stream modeling methods. Inf. Sci., 415:356-376, 2017.

[Minku et al., 2010] Leandro L. Minku, Allan P. White, and

Xin Yao. The impact of diversity on online ensemble
learning in the presence of concept drift. IEEE Trans.
Knowl. Data Eng., 22(5):730-742, 2010.

[Mohamad et al., 2018a] Saad Mohamad,  Abdelhamid

Bouchachia, and Moamar Sayed Mouchaweh. A bi-
criteria active learning algorithm for dynamic data
streams. [EEE Trans. Neural Netw. Learning Syst.,
29(1):74-86, 2018.

[Mohamad et al., 2018b] Saad Mohamad, Moamar Sayed
Mouchaweh, and Abdelhamid Bouchachia. Active learn-
ing for classifying data streams with unknown number of
classes. Neural Networks, 98:1-15, 2018.

[Oza and Russell, 2001] Nikunj C. Oza and Stuart J. Rus-
sell. Online bagging and boosting. In Proceedings of the
Eighth International Workshop on Artificial Intelligence
and Statistics, AISTATS 2001, Key West, Florida, USA,
January 4-7, 2001, 2001.

[Xu et al., 2016] Wenhua Xu, Fengfei Zhao, and Zhengcai
Lu. Active learning over evolving data streams using
paired ensemble framework. In ICACI, pages 180-185.
IEEE, 2016.

[Zliobaite et al., 2014] Indre Zliobaite, Albert Bifet, Bern-
hard Pfahringer, and Geoffrey Holmes. Active learning
with drifting streaming data. [EEE Trans. Neural Netw.
Learning Syst., 25(1):27-39, 2014.

[Zyblewski et al., 2019] Pawel Zyblewski, Pawel Ksie-
niewicz, and Michal Wozniak. Classifier selection for
highly imbalanced data streams with minority driven en-
semble. In Artificial Intelligence and Soft Computing -
18th International Conference, ICAISC 2019, Zakopane,
Poland, June 16-20, 2019, Proceedings, Part I, pages 626—
635, 2019.



