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Abstract
Generative Adversarial Networks (GANs) are a
powerful class of deep generative models. In this
paper, we extend GAN to the problem of generat-
ing data that are not only close to a primary data
source but also required to be different from aux-
iliary data sources. For this problem, we enrich
both GAN’s formulations and applications by in-
troducing pushing forces that thrust generated sam-
ples away from given auxiliary data sources. We
term our method Push-and-Pull GAN (P2GAN).
We conduct extensive experiments to demonstrate
the merit of P2GAN in two applications: generat-
ing data with constraints and addressing the mode
collapsing problem. We use CIFAR-10, STL-10,
and ImageNet datasets and compute Fréchet Incep-
tion Distance to evaluate P2GAN’s effectiveness in
addressing the mode collapsing problem. The re-
sults show that P2GAN outperforms the state-of-
the-art baselines. For the problem of generating
data with constraints, we show that P2GAN can
successfully avoid generating specific features such
as black hair.

1 Introduction
Modern machine learning systems need to deal with complex
high-dimensional objects such as natural images, motion pic-
tures, speeches, dialog texts and hand-written cursive draw-
ings to name a few. Recent deep generative models, in partic-
ular Generative Adversarial Networks (GANs) [Goodfellow
et al., 2014] have quickly become a building block for de-
signing powerful models to work with such high-dimensional
objects. The idea of GAN is to train a generatorG(z) where z
might come from any arbitrary distribution such that the dis-
tribution PG induced over the values of G(z) (s) as z varies
is close to the true data distribution Pdata. Once trained, gen-
erating a new sample is extremely efficient as one can simply
draw z then feed it through G(z) where G(z) is a deep neu-
ral network (NN). Despite its simplicity, GAN has shown an
enormous capacity in dealing with high-dimensional objects
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and has been enjoying remarkable success from image, video
generation [Mathieu et al., 2015], image-to-image translation
[Isola et al., 2017] to name a few [Goodfellow, 2016]. ,

However, GAN comes with some important limitations.
Central to its formulation [Goodfellow et al., 2014] is a min-
imax optimization problem whose Nash equilibrium point
minimizes the Jensen-Shanon (JS) divergence between Pdata
and PG. This JS divergence might be viewed as a ‘pulling
force’ to move generated samples toward data samples. Other
variants of GAN have extended this mechanism to differ-
ent divergences, notably f -divergence family proposed in
[Nowozin et al., 2016] which generalizes JS divergence
via a variational bound whose solution can be character-
ized tractably. Nonetheless, the ill-posedness of GAN min-
imax problem and the nature of f -divergence pose the in-
herent mode collapsing problem where generated samples
tend to ‘collapse’ to a few modes, hence hindering the
diversity of generating process [Goodfellow et al., 2014;
Goodfellow, 2016; Le et al., 2018]. Overcoming this prob-
lem has become one of the main research themes in GAN
with reasonable success, but still an open problem. Besides
f -divergence, WGAN [Arjovsky et al., 2017; Gulrajani et al.,
2017; Dam et al., 2019] employs the Wasserstein distance and
formulates the optimization through the Kantorovich duality,
but has its own problems in training due to the constraints
encountered in the optimization formulation.

From a practicality viewpoint, while enjoying its research
success, GAN is still limited in exploiting data from multiple
sources. One particular open and important problem is to ex-
tend its current setting to move beyond a single data source
to work with multiple data distributions, which currently re-
ceives very little research attention. For example, one might
generate realistic photos of the beach, but at the same time
purposely avoid generating images of a storm whose data col-
lection are available for both beach and storm scenes; or in
abnormality detection where one not only has access to nor-
mal data, but also partially abnormal data to train with. Real-
world scenarios like these have abundant applications and are
open to explore. Our main contribution of this paper is to
propose a novel approach, leveraging on the success of GAN
and recent techniques for this open problem.

Specifically, assume that there exists multiple data distri-
bution with P be the primary and m other auxiliary distribu-
tions P1, P2, . . . , Pm. Our goal is to recover P via a gen-
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erative distribution Q as close to P as possible (i.e., the pull
force), but at the same time, being as different from all other
Pi(s) as possible (i.e., the push force). It is important to note
that Q will not be estimated explicitly in a parametric form,
but instead a generator function G will be learned such that
Q implicitly represents the induced distribution for G(z) (s)
where z comes from any arbitrary distribution. This can be
then formulated as an optimization problem as in Eq. (1)
under a generalized extension for f−divergence in the ex-
istence of multiple data distributions. Subsequently, we ex-
tend the theoretical results in [Nowozin et al., 2016], show-
ing that it is still possible to obtain a tractable solutions for the
Q’s generator, G, and efficient algorithms to train G as well
the discriminators. Our proposed model naturally subsumes
and extends several important existing variants of GAN, in-
cluding the original GAN [Goodfellow et al., 2014], f -GAN
[Nowozin et al., 2016], and D2GAN [Nguyen et al., 2017]. In
addition, unlike GAN, the our discriminators at convergence
point do not become uniform and redundant, but carry spe-
cific meanings which can be exploited for various application
uses.

Beside the model contribution, while potentially having a
wider application scope, we choose to apply and demonstrate
our approach for two specific applications in this paper:

1. Improving GAN training by overcoming mode collaps-
ing problem. Interestingly, we show that our approach
is flexible enough to be exploited to improve the train-
ing of GAN (with a single data distribution), addressing
the mode collapsing problem mentioned earlier. To do
so, we train the first generator G1 so that its induced
distribution is close to Pdata as usual. G1 is anticipated
to cover only some modes in Pdata and known to suffer
from the mode collapse problem. To subsequently di-
versify the generated samples, we need the generator to
explore uncovered modes from G1. Using the proposed
approach, we then train the second generator G2 which
is to be as close to Pdata as possible, but as different from
G1 as possible. This process is repeated until the gen-
erators cover sufficient number of modes, resulting in a
sequence of generators {G1, G2, . . . , Gk}. At the gen-
eration step, for each sample to be generated, we simply
pick a random generator from this pool.

2. Generating samples with constraints. This is an on-
going research problem which has been addressed under
both supervised and unsupervised setting, notably con-
ditional GAN [Mirza and Osindero, 2014] and InfoGAN
[Chen et al., 2016] respectively. Here we demonstrate
that our approach naturally offers an unsupervised so-
lution for generating samples with constraints. Specif-
ically, assume we have m data distributions (supposed
to belong to m classes, although we do not need know
these class labels explicitly). The goal is to generate
samples for just one particular primary data class, and
being as different from remainder data classes as possi-
ble. For example, we have an unlabeled primary data
source including images of people with blond, black
hairs and wish to generate only images with blond hair;
we can find another data source containing images of

people with black hair and use it as an auxiliary data
source.

We conduct extensive experiments to demonstrate the mer-
its of our simple yet very effective approach. We used the
CIFAR-10, STL-10, and ImageNet datasets and computed
Fréchet Inception Distance (FID) [Heusel et al., 2017] to
evaluate our solution to the mode collapsing problem against
the baselines. The results show that our approach achieves the
best FID scores on these real-world datasets and can generate
high-quality images. Beyond addressing the mode collaps-
ing problem, we further demonstrate that our framework is
capable of learning from negative examples, e.g., learning to
generate faces with non-black hairs while given example of
faces with black hair.

2 Push and Pull GAN
We now describe how our P2GAN works. Recall that P2GAN
maintains an existing set of generators that are currently well
occupying some data modes and the principle for sequentially
adding a new generator is to encourage this generator seeking
for new missing data modes in order to boost the diversity.
Guided by this principle, we propose using push forces to
push the generated distribution Q of the new generator away
those of the previous generators, i.e. P1, . . . , Pm, while using
a pull force to pull the generated distribution Q towards the
real data distribution P . We term our model Push-and-Pull
GAN (P2GAN) and explicitly characterize the pull and push
forces as f -divergences. Intuitively, since the previous gener-
ators can well occupy some data modes and the new generator
is encouraged to generate data samples that mimic the true
ones and diverge from the existing ones, this is expected to
well explore and occupy some additional missing data modes.
In what follows, we present the formulation of P2GAN when
adding a new generator based on the existing ones, followed
by some theoretical results enabling training P2GAN and a
concise discussion on how to generalize P2GAN for other
applications, specifically generating images with constraints.
The supplementary material for this paper can be found at the
following url address1.

2.1 P2GAN Formulation
Let fi(s) and φ be convex, lower semi-continuous functions.
At each incremental round, our proposed P2GAN solves the
following optimization problem to find a new generator Q

max
Q∈Q

{
m∑
i=1

αiDfi (Pi‖Q)−Dφ (P‖Q)

}
(1)

where α1, ..., αm ≥ 0 are the push parameters and Q is a
suitable class of functions.

This formulation is natural as it is clear that the optimal so-
lution Q∗ for Eq. (1) is the closest to the data distribution P
while furthermost from Pi (s) in the f -divergence optimiza-
tion sense. The parameter αi is a hyper-parameter to adjust
how favorable we would likeQ∗ is to be different from Pi (s).
Setting α1, . . . , αm to be small will favor Q∗ to be closer to

1https://app.box.com/v/p2gan-supp.
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P and vice versa2. In its most general form, the formulation
allows us to use different kind of f -divergence for different
pull and push forces. In our experiments, we will simply use
standard JS for all divergences.

2.2 Training P2GAN
We now assume that the generative distribution Q is formed
by a NN-based generator G and the source of randomness
z ∼ Pz (i.e., the noise distribution). Let S (x) be the primary
discriminator specifying a score for x to be more likely gen-
erated from the primary distribution P rather than the gener-
ative distribution Q. Likewise, for each auxiliary distribution
Pi, denote by S̃i (x) the auxiliary discriminator scoring the
degree to which x is generated from Pi rather than the gener-
ative distribution Q. Once again, all discriminator functions
S and S̃i (s) are parameterized by deep NNs.

We propose to solve the following optimization problem,
which is later on proved in Theorem 2 to be equivalent to the
our formulation in Eq (1):

max
G,S̃1:m

min
S
J
(
G,S, S̃1:m

)
(2)

where we have defined the objective function
J
(
G,S, S̃1:m

)
as:

−E
P
[g (S (x))] + E

Pz

[φ∗ (g (S (G (z))))]

+

m∑
i=1

αi

[
E
Pi

[
g̃i
(
S̃i (x)

)]
− E
Pz

[
f∗
i

(
g̃i
(
S̃i (G (z))

))]]
and g, g̃i (s) are the monotonic increasing wrapping functions
mapping from R to dom (φ∗) and dom (f∗i ) respectively to
ensure a valid optimization problem.

We note that with monotonic increasing functions for
Fenchel conjugate function in the f -divergences (e.g., as
listed in our supplementary material), minimizing the first
two terms in above objective function w.r.t S is expected to
return high score S (x) for x ∼ P and low for x ∼ Q.
Likewise, maximizing the last two terms w.r.t S̃i returns high
score S̃i (x) for x ∼ Pi and low score for x ∼ Q.

Building upon the result from [Nowozin et al., 2016] for
the single distribution case, we formally show in Theorem
1 and 2 that optimal solutions S̃∗1:m (x) and S∗ (x) for Eq.
(2) when Q is held fixed can be obtained analytically, and
that optimizing Eq. (2) is indeed equivalent to solving the
optimization problem in Eq. (3). From a high level perspec-
tive, this results are natural, given the connection between
f -divergence and a suitable optimal loss of the best classi-
fier trying to separate data coming from the two distributions.
One thing to remark about Eq. (2) is that despite having to
deal with a set of new discriminators for the push forces, these
discriminators only appear in the outer max problem, unlike
the discriminator for the pull force which has to appear in the

2Note that we purposely do not specify a hyper-parameter for
the pulling term −Dφ (P‖Q) as it is implicitly controlled via all αi
(s). However, in our discussion for a extended version of Eq. (1)
later in the supplementary material, such parameters will need to be
explicitly introduced.

inner min problem. The technical details of all proofs can be
found in the supplementary material1.

Theorem 1. Given the generative distribution Q (i.e., G),
the optimal solutions S̃∗1:m (x)and S∗ (x) of the optimization
problem in Eq. (2) can be evaluated as

S̃∗i (x) = g̃−1i

(
∇fi

(
pi (x)

q (x)

))
, 1 ≤ i ≤ m

andS (x) = g−1
(
∇φ

(
p (x)

q (x)

))
Theorem 2 further establishes the Nash equilibrium point

of the minimax problem in Eq. (2) to be a solution of the
optimization problem in Eq. (3).
Theorem 2. The optimization problem in Eq. (2) is equiva-
lent to the following optimization problem:

maxQ

(
m∑
i=1

αiDfi (Pi‖Q)−Dφ (P‖Q)

)
(3)

2.3 Generating Data with Constraints
We can adopt the framework of P2GAN to tackle the prob-
lem of generating samples with constraints in an unsuper-
vised manner. To be more precise, assume that we have a
primary unlabeled data source with m classes: C1, . . . , Cm.
We wish to train a generative model that can generate samples
that mimic real data in the primary data source except those
in some classes including Ci1 , . . . , Cik . We further assume
that we can find additionally auxiliary data sources of classes
Ci1 , . . . , Cik . We train a generative model generated data
samples satisfying the aforementioned constraints by pushing
from the auxiliary data sources while pulling to the primary
data source. In addition, the auxiliary data sources do not
need to be a part of the primary data source. For example,
assume that we have a primary data source including images
of people with black and blond hairs and we wish to generate
only images with blond hair; we can find images from another
data source which contains images of people with black hair
and use it as auxiliary data source.

2.4 Addressing the Mode Collapse
The underlying idea of using the auxiliary data sources to ad-
dress the mode collapse is as follows. We train the genera-
tor G1 by minimizing Df1 (P‖QG1) where QG1 is the push-
forward distribution of the noise distribution via the genera-
tor G1. It is likely that QG1

can only cover some modes in
the real data distribution P . To enable the discovery of other
modes in the real data distribution P , we set QG1

as the first
auxiliary data distribution and train the second generator G2

in such a way that its push-forward distribution QG2
mini-

mizes−Dh (QG1
‖QG2

)+Df2 (P‖QG2
). This minimization

encourages the resulting distribution QG2
to simultaneously

move away the distribution QG1 and toward the real data dis-
tribution P , hence pushing QG2 to cover more other modes
in the real data distribution P . This process is proceeded by
setting QG1,QG2 as two auxiliary data distributions and un-
til the resulting distributions QG1

, QG2
, . . . , QGK

can cover
most of modes in the real data distribution P .
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3 Experiment
In this section, we first extensively demonstrate how our
P2GAN can be used to address the mode collapsing prob-
lem, and achieving the best FID scores on CIFAR-10, STL-
10, and ImageNet in comparison with current strongest base-
lines. This is then followed by another application to gen-
erate samples with constraints to demonstrate the flexibility
of our P2GAN beyond its use for addressing the mode col-
lapse. Regarding network architectures used in all experi-
ments, the generators share parameters in all layers except
for the weights from the input to the first hidden layer; the
discriminators share parameters in all layers except for the
weights from the penultimate hidden layer to the output layer;
auxiliary sources generate the same pushing force, all αi in
Eq. (1) are equal, and their sum is denoted by α. We refer
to the supplementary material for more details about model
architectures and hyper-parameter setting.

3.1 Addressing the Mode Collapse with P2GAN
We now demonstrate the performance of our proposed model
in addressing the mode collapsing problem on both synthetic
2D and real-world large-scale datasets. We compare the re-
sults of our method with those of the state-of-the-art GAN’s
variants by replicating experimental settings in the original
work.

Synthetic Data
First, we reuse the experimental design proposed in [Metz et
al., 2016] to investigate how our P2GAN explores multiple
data modes. The training data is sampled from a 2D mixture
of 8 isotropic Gaussian distributions with a covariance matrix
of 0.02I and means arranged in a circle of zero centroid and
radius of 2.0. The small variance creates low density regions,
thus separating the modes.

We start with one generator and sequentially add a new
generator after every 1, 000 training epochs until reaching
8 generators, and then train the entire network for 15, 000
epochs in total. The generators have an input layer with 256
noise units drawn from isotropic multivariate Gaussian distri-
bution N (0, I), and two hidden layers with 128 ReLU units
each. The discriminators contain one hidden layer with 128
ReLU units. The pushing parameter α is set to 0.05. Fig. 1
shows the evolution of data generated by P2GAN. It can be
seen that each new generator at first generates a cluster at the
center of the circle and gradually moves to one of the unoccu-
pied modes. Eventually at epoch 8, 000, each generator cap-
tures one mode, and 8 generators altogether effectively cover
all the modes.

Real-world Datasets
In this section, we present our experiments on real-world
datasets. We first conduct experiment on the CIFAR-10
dataset [Krizhevsky and Hinton, 2009] to investigate the in-
fluence of the number of generators. The result shows that
P2GAN model helps stabilize training and improve visual
quality of generated samples over the standard GAN with
a similar architecture. Next we perform experiments on the
STL-10 [Coates et al., 2011] and ImageNet [Russakovsky et
al., 2015] datasets to prove that P2GAN not only achieves

the best quantitative results but also generates highly realistic
images.
Data and Evaluation Metric. CIFAR-10 contains 50,000
32×32 training images of 10 classes, including airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. STL-10 contains about 100,000 96×96 images, sub-
sampled from ImageNet, and is a more diverse dataset than
CIFAR-10. ImageNet is the largest and most diverse datasets
with more than 1.2 million images from 1,000 classes. We
follow the procedure of [Krizhevsky et al., 2012] to re-
size the STL-10 and ImageNet images down to 48×48 and
32×32, respectively, for a fair comparison with the base-
lines in [Warde-Farley and Bengio, 2016; Miyato et al., 2018;
Hoang et al., 2018]. We also resize ImageNet images down to
64×64 to examine P2GAN’s capability on higher-resolution
data. To quantitatively assess the quality and diversity of gen-
erated samples, we adopt Fréchet Inception Distance (FID)
proposed in [Heusel et al., 2017] that is more advanced than
Inception score [Salimans et al., 2016] since it compares the
statistics of synthetic samples with those of the real samples,
hence capturing the similarity of the two distributions bet-
ter [Heusel et al., 2017]. FIDs are computed on samples of
50,000 images.
Model Architecture with CNN and ResNet. Our network
is designed following the DCGAN’s architecture [Radford
et al., 2015], which we refers to as Standard CNN, and the
ResNet architecture used in [Gulrajani et al., 2017]. For the
pulling force, we use the Jensen-Shannon (JS) divergence as
in the standard GAN. For the pushing force, we experiment
with both JS and KL divergences. The results are similar but
the JS is more numerically stable, hence we eventually use
it for both pulling and pushing. Discriminators of the same
type, either pull or push, share parameters in all layers except
for the weights from the last layer to the output layer. Start-
ing with one generator, we add a new generator every fixed
number of epochs until the number of generators reaches a
predefined number K , and continue training the entire net-
work. The learning process is terminated after 150 epochs for
CIFAR-10, 100 epochs for STL-10, and 50 epochs for Ima-
geNet.
Hyperparameter Setting. We use Adam optimizer with a
batch size of 64. The learning rate and the first-order mo-
mentum are set at 0.0002 and 0.5, respectively. Regarding
the pushing parameter α, we observe that varying α between
0.001 and 0.1 makes only little influence on the quantitative
results, but large α can lead to less visually appealing samples
as generators push each other too hard. As a result, we em-
ployed a gentle force of 0.01 for all experiment. We vary the
total number of generators K in {1, 3, 5, 10, 15} for our ex-
periment on CIFAR-10 to investigate the influence of K. We
add a new generator for every 15, 10, 5, 3 epochs when K is
3, 5, 10, and 15, respectively. For STL-10 and ImageNet, we
simply setK at 10. For models using the ResNet architecture,
we apply noise-reduced regularization [Roth et al., 2017] and
set the regularization parameter γ at 2.0.
The Influence of the Number of Generators. Tab. 1 com-
pares FIDs (lower is better) for P2GAN with different values
of K, the number of generators. All models use the ResNet
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Figure 1: Evolution of data generated by P2GAN. Data samples from the 8 Gaussians are in red, and generated data by each generator are in
a different color.

(a) Standard GAN. (b) First gen of 5-gen P2GAN. (c) 5-gen P2GAN.

Figure 2: Random samples generated by GAN models trained on CIFAR-10.

architecture. It should be noted that the P2GAN model with
only one generator turns into the standard GAN, so we refer
to it as standard GAN. The results show that using more gen-
erators improves FID and the performance peaks at K = 5.
However, FID slightly deteriorates when K is 10 or 15. This
behavior is consistent with that in our experiment with syn-
thetic data (see Sec. 3.1) when the generators are crowded.
In general, more diverse data can accommodate more gener-
ators.

# Generators FID
1 26.7
3 25.7
5 20.1

10 23.1
15 23.5

Table 1: Comparison of FIDs
(lower is better) on CIFAR-10
for P2GAN models with different
number of generators.
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Figure 3: Comparison of FIDs
for the P2GAN models with 1
and 5 generators on CIFAR-10.
The 5-gen model is better and
more stable FIDs.

We further compares the standard GAN model with the 5-
gen P2GAN model. Fig. 3 plots FIDs of each model over
training epochs. The 5-gen P2GAN achieves better and more
stable performance. After 60 epochs, the FID of standard
GAN becomes unstable and deteriorates. On the contrary,
the FID of 5-gen P2GAN remains stable and keeps improv-
ing. Fig. 2 shows random samples generated by the standard
GAN (a), the first generator of the 5-gen P2GAN (b) and the
5-gen P2GAN (c). Due to limited space, we refer to the sup-

plementary material for samples generated by other genera-
tors of the 5-gen P2GAN. Compared to the standard GAN,
the first generator of 5-gen P2GAN generates fewer classes
of objects (mostly car, airplanes and birds) but much clearer
images. As a result, the 5-gen P2GAN (i.e., P2GAN with
5 generators) produces more diverse and visually appealing
samples. This analysis demonstrates that P2GAN has more
stable learning, achieves stronger quantitative evaluation and
generates better samples.
Fréchet Inception Distance Results. Tab. 2 reports the
FIDs obtained by our P2GAN and the latest baselines col-
lected from recent work in literature [Heusel et al., 2017;
Miyato et al., 2018]. For fair comparison, we also implement
MGAN [Hoang et al., 2018] using the ResNet architecture
with noise-reduced regularization. It is worthy to note that in
the standard CNN group, DCGAN+TTUR and P2GAN share
the same architecture similar to DCGAN, while WGAN-GP
and SN-GANs employ a similar architecture for the gener-
ator, but add three more layers to the discriminator [Miy-
ato et al., 2018]. Overall, the P2GAN significantly outper-
forms other baselines on both CIFAR-10 and STL-10 in terms
of FID. On the ImageNet dataset, our P2GAN model with
ResNet architecture achieves a FID of 18.1 while MGAN
with ResNet obtains 21.8. Note that we have not found the
FIDs of other baselines for this dataset. These impressive re-
sults demonstrate the effectiveness of P2GAN in addressing
the mode collapse.

Generated samples. Random CIFAR-10 images generated
by our proposed model with ResNet architecture were dis-
cussed and presented previously in Fig. 2. For 48×48 STL-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2827



Model CIFAR-10 STL-10
-Standard CNN-
WGAN-GP 40.2 55.1
DCGAN [Radford et al., 2015] 37.7 –
DCGAN + TTUR [Heusel et al., 2017] 36.9 –
LayerNorm [Miyato et al., 2018] 33.9 75.6
WeightNorm [Miyato et al., 2018] 34.7 73.4
Orthonormal [Miyato et al., 2018] 29 46
WeightClipping [Miyato et al., 2018] 42.6 64.2
MGAN [Hoang et al., 2018] 26.7 –
SN-GANs [Miyato et al., 2018] 25.5 43.2
P2GAN (ours) 25.2 53.3
-ResNet-
WGAN-GP [Gulrajani et al., 2017] 29.3 –
WGAN-GP + TTUR [Heusel et al., 2017] 24.8 –
SN-GANs [Miyato et al., 2018] 21.7 40.1
MGAN [Hoang et al., 2018] 20.9 45.3
P2GAN (ours) 20.1 38.2

Table 2: Comparison of FIDs (lower is better) with unsupervised
image generators.

(a) SN-GAN. (b) P2GAN

Figure 4: Random 48×48 STL-10 samples generated by SN-GAN
(left) and P2GAN (right).

10, Fig. 4 compares random samples generated by P2GAN
and the closest baseline, SN-GAN [Miyato et al., 2018].
SN-GAN samples sketch the general shapes of some objects
but are blurry and fragmented. P2GAN samples are much
sharper, more vivid and visually appealing depiction of a vari-
ety of objects. Lastly, we present highly recognizable 64×64
ImageNet samples and shows random 32×32 ImageNet sam-
ples generated by DFM, MGAN and P2GAN in the sup-
plementary material1. These examples once again confirm
the superiority of P2GAN’s generated samples over those of
other methods.

3.2 Generating Data with Constraints with
P2GAN

In this experiment, we verify the effectiveness of the pushing
force in our framework. We consider the scenario where the
primary unlabeled data source consists of images from two
classes, whilst the auxiliary unlabeled data source only has
images from one of those two classes. The images in aux-
iliary source, though from the same class, are different from
those contained in the primary data. In particular, we conduct
the experiment where we have two classes: blond and black
hair. Our task is to train generators to generate blond hair. In
what follows we present our data construction, model setting
and the results.

Figure 5: Samples generated by P2GAN model pushed by images of
females with black hair. It can be seen that most generated images
are of females with blond hair.

Data construction. For the blond/black hair setting, we
randomly pick 12, 000 female images with black hair, and
12, 000 with blond hair from the CelebA dataset [Liu et al.,
2015], and merge them to create the primary data source. We
then randomly select 11, 000 images of females with black
hair, which do not appear in the primary data source, from
the CelebA dataset to create the auxiliary data source.
Model setting. In generating data with constraints, the gen-
erator faces two conflicting goals. The first goal is to driven
by the pulling force to generate data for both two classes. The
second goal is driven by the pushing force to avoid generat-
ing data of the class in auxiliary source. To address this con-
flict, we train two generators G1 and G2 where: the primary
source pulls both G1 and G2; the auxiliary source pulls G2

but pushes G1; and G1 and G2 push each other. The idea is
that G2 will cover a part of the primary data that is similar to
the auxiliary data, and contribute additional force to push G1

to generate images as our desired results. Here G1 and G2

also follow the same parameter sharing scheme as mentioned
above.
Results. Empirically we observe that setting the pulling
force produced by the primary data to 1.0 and applying a
small pulling force of the auxiliary source of 0.1 and a gentle
pushing force (of the auxiliary source, and between G1and
G2) of 0.01 can effectively encourage G1 and G2 to gener-
ate different data. Fig. 5 shows samples generated by G1 for
blond/black hair experiment. It can be seen that most images
generated by G1 are of females with blond hair, whilst some
tend to mix with other colors such as red, green or white.

4 Conclusion
In this paper, we enrich the formulations and applications of
GANs by introducing push forces among generated samples
and a heap of auxiliary data sources to propose Push-and-
Pull GAN (P2GAN). We demonstrate two applications of
P2GAN in generating data with constraints and addressing
the mode collapsing problems. Besides these two applica-
tions, our P2GAN might be applicable to other applications
such as augmenting data for anomaly detection problems;
however, we leave these investigations to our future work.
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