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Abstract

Optimal transport has received much attention dur-
ing the past few years to deal with domain adap-
tation tasks. The goal is to transfer knowledge
from a source domain to a target domain by find-
ing a transportation of minimal cost moving the
source distribution to the target one. In this paper,
we address the challenging task of privacy preserv-
ing domain adaptation by optimal transport. Us-
ing the Johnson-Lindenstrauss transform together
with some noise, we present the first differentially
private optimal transport model and show how it
can be directly applied on both unsupervised and
semi-supervised domain adaptation scenarios. Our
theoretically grounded method allows the optimiza-
tion of the transportation plan and the Wasserstein
distance between the two distributions while pro-
tecting the data of both domains. We perform an
extensive series of experiments on various bench-
marks (VisDA, Office-Home and Office-Caltech
datasets) that demonstrates the efficiency of our
method compared to non-private strategies.

1 Introduction

Optimal Transport (OT) [Villani, 2008] is a geometric the-
ory that allows us to put a distance (e.g. Wasserstein dis-
tance, earth mover distance) on the space of probability mea-
sures. As probability measures occur in many scenarios in
machine learning, OT has received a lot of attention dur-
ing the past few years in this community [Cuturi, 2013;
Frogner et al., 2015; Arjovsky et al., 2017]. For instance,
probability measures take the form of color histograms when
comparing images, bags of words in document analysis, ac-
tivation maps in brain imaging, etc. Perhaps, the most excit-
ing recent application of OT in machine learning comes from
the wide use of generative models and the need of some no-
tion of distance to measure the divergence between generated
data and the actual generative model. Very recently, OT has
been shown to be a useful and intuitive tool to address domain
adaptation tasks [Courty et al., 2017b; Courty et al., 2017a;
Shen et al., 2018], where the goal is to transfer knowledge
from a source domain to a target domain. In such a scenario,
regularized OT aims at finding a transportation of minimal
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cost aligning labeled source data on unlabeled target exam-
ples. Then a classifier can be learned from the source ex-
amples and deployed on the target domain. OT for domain
adaptation has also received recent attention from a theoret-
ical perspective. In [Redko ef al., 2017], the authors show
how the Wasserstein distance can be used to derive general-
ization bounds on the target error. All things considered, OT
can be seen nowadays as a theoretically grounded competitive
framework to perform transfer learning.

Optimizing the transportation that aligns the source and
target distributions boils down to finding a coupling matrix
that moves the source data to the target ones and allows us
to induce the Wasserstein distance. Therefore, this proce-
dure requires to share data from both sources at some point
of the learning process that may appear to be an unaccept-
able solution when source and/or target data contain sensi-
tive information (e.g. about the medical history of patients).
The contributions of this paper lie in the setting of differen-
tially private OT and its application to Domain Adaptation.
Differential privacy [Dwork er al., 2006] provides a strong
theoretical-grounded guarantee for the privacy of individuals
against attackers and has become the standard for formal pri-
vacy in machine learning. The basic idea of differential pri-
vacy is to introduce randomness in the communication that
preserves privacy even against an adversary possessing ar-
bitrary side information and having access to the commu-
nication. It turns out that there has been a rich amount of
work on differentially private machine learning, such as in
logistic regression [Chaudhuri and Monteleoni, 2009], prin-
cipal component analysis [Hardt and Roth, 2013], boosting
[Dwork et al., 20101, support vector machines [Rubinstein
et al., 2009], or more recently on deep learning [Abadi et al.,
2016; Shokri and Shmatikov, 2015] and semi-supervised deep
learning [Papernot et al., 2017]. However, it is worth not-
ing that privacy preserving domain adaptation is surprisingly
under-developed. Recently, [Wang et al., 2018] and [Guo et
al., 2018] proposed two similar methods, combining hypoth-
esis transfer learning with private logistic regression. How-
ever, the first model needs to have access to a publicly avail-
able auxiliary dataset as a bridge to transfer knowledge from
the source to the target, while the second trains on a fully la-
beled target data; both are strong constraints that do not hold
in the standard (both unsupervised and semi-supervised) do-
main adaptation setting.
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The objective of this paper is to fill the gap mentioned
above and address the challenging privacy preserving prob-
lem when OT is used to transfer knowledge from a source to
a target. To do so, we present two new algorithms. The first
one, called Differentially Private Optimal Transport (DPOT),
makes use of the Johnson-Lindenstrauss transform [Johnson
and Lindenstrauss, 1984] which linearly projects a set of
examples onto a small feature space by a random matrix that
preserves the pairwise distances. Adapted to the context of
OT, DPOT allows us to jointly compute the coupling matrix
and the Wasserstein distance between two domains under the
differential privacy constraint, by adding noise on the random
projection. As far as we know, DPOT is the first differentially
private optimal transport algorithm. Experimental results
show that DPOT preserves the Wasserstein distance on the
space of probability measures compared to a non private
OT approach. We then build upon DPOT the first complete
differentially private domain adaptation model (DPDA)
where the learner can benefit from labeled source data to
improve a different but related target task while still ensuring
the privacy of each source of data. We provide theoretical
guaranty of our method and demonstrate its efficiency
empirically on various benchmarks.

The rest of this paper is organized as follows: Section 2
presents the required background in Optimal Transport, Do-
main Adaptation and Differential Privacy. In Section 3, based
on the Johnson-Lindenstrauss transform, we introduce DPOT.
Section 4 is devoted to the presentation of DPDA, the first
Differentially Private Domain Adaptation algorithm based on
Optimal Transport for which differential privacy guarantees
are derived. In Section 5, we first show that DPOT allows us
to efficiently approximate the true Wasserstein distance that
would be obtained without privacy constraint. Then, we re-
port the results of an extensive experimental study performed
on various benchmarks (VisDA, Office-Home and Office-
Caltech datasets) that demonstrate the efficiency of DPDA
compared to non-private strategies.

2 Background and Related Work

2.1 Optimal Transport

Let 11 and po be two probability measures. Given some cost
function ¢, optimal transport (OT) seeks a transportation plan
of minimal cost that moves 11 to puo. Let II be the space of
joint probability distributions with marginals w7 and po. In
the relaxed formulation of Kantorovitch [1942], the optimal
transportation takes the form of a distribution (or coupling)
vo € II that minimizes the following quantity:

Wy, o) = min/ c(z®zt)dy(2*, 2",
V€ Jo, X0,

where c(z%, z%) is this paper the Euclidean distance between

¥ € Qg and ' € Q. The quantity W (pq, u2) is called

the Wasserstein distance between the two distributions ; and

Lo. When pq, o are defined as empirical measures between

two datasets X, and X4, then

Yo = argmin(y, C) r, (1)
vyell
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where (.,.)r is the Frobenius dot product and C is the cost
matrix between X, and X;. Then, the Wasserstein distance
between X and X; is W (X, X¢) = (70,C)p.

2.2 Domain Adaptation

Domain adaptation [Pan and Yang, 2010] aims at using avail-
able labeled data from a source domain (e.g. synthetic data)
to facilitate the learning process in a target domain (e.g. real
data) with a different underlying distribution. In unsuper-
vised domain adaptation, we assume to have access to only
unlabeled target data, while in semi-supervised tasks, a small
amount of supervision is available, but not large enough to
learn well only from the labeled target data. Most recent
state-of-the-art methods either learn a common latent feature
space between the two domains, e.g. DANN [Ganin ef al.,
2016], or map the samples of one domain to the other, e.g.
ADDA [Tzeng et al., 2017].

Optimal transport was recently applied successfully to do-
main adaptation, where the Wasserstein distance is used as a
divergence measure between the two domains that a domain
adaptation algorithm aims at minimizing. In [Courty er al.,
2017b], the source samples are transported to the target do-
main using the coupling matrix 7g. In [Courty et al., 2017al,
the authors optimize both the coupling matrix and a target
prediction function, while [Shen et al., 2018] minimize the
domain divergence in the latent space using the Wasserstein-
GAN [Arjovsky et al., 2017].

2.3 Differential Privacy

Differential Privacy was introduced by Dwork ez. al. [2006]
and constitutes nowadays a standard for privacy guarantees.

Definition 1 (Differential Privacy, see eg. [Abadi er al.,
2016]). A randomized mechanism M : X™ — R? satisfies
(e, §)-differential privacy if for any two datasets X, X' € X"
differing by a single element and for any set of possible output
O C Range(M):

P(M(X) € O) < EP(M(X') € O) + 4.

There has been a rich amount of work on differentially pri-
vate machine learning, such as in logistic regression [Chaud-
huri and Monteleoni, 2009], principal component analysis
[Hardt and Roth, 2013], boosting [Dwork et al., 2010] and
support vector machine [Rubinstein et al., 2009]. Private
deep learning methods were also introduced recently; [Abadi
et al., 2016] provided a differentially private SGD method for
training a deep neural network, where at each step, the gra-
dient is clipped and some noise is added to protect privacy.
On the other hand, [Shokri and Shmatikov, 2015] proposed
a distributed selective SGD: several models are trained inde-
pendently using SGD and they selectively upload the gradi-
ents to a global one. Similarly, [Papernot et al., 2017] train
several teachers with private data, then predict pseudo-labels
via a majority vote for unlabeled public data that are used by
a student to train.

It is worth noticing that privacy preserving domain adap-
tation has not received much attention. Deep learning meth-
ods such as [Abadi et al., 2016; Papernot et al., 2017] are
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designed for standard classification tasks with the assump-
tion that all data are drawn from the same underlying distri-
bution, which is not the case in domain adaption (although
technically, these algorithms can be deployed out of the box
for domain adaptation through training a source-only model)
Private multiparty learning methods, such as [Pathak et al.,
2010; Hamm et al., 2016] could also be applied to semi-
supervised domain adaptation, but they face two drawbacks:
(1) the amount of target labeled data is usually very limited
for a meaningful aggregation, and (2) these models assume
that the domain distributions are identical and so ignore the
domain shift. As already mentioned, [Wang er al., 2018]
and [Guo er al., 2018] proposed two methods that combine
hypothesis transfer learning with private logistic regression.
However, the first model needs to have access to a publicly
available auxiliary dataset as a bridge to transfer knowledge
from the source to the target, while the second trains on a fully
labeled target data; both are strong constraints that do not
hold in the standard (both unsupervised and semi-supervised)
domain adaptation setting.

2.4 Johnson-Lindenstrauss Transform

Let N'(0,0)%*¢ be a k x ¢ matrix where each entry is drawn
iid. from N(0,0). A variant of the famous Johnson-
Lindenstrauss Lemma [Johnson and Lindenstrauss, 1984]
states that a linear transformation of a set of n data points to
a much smaller subspace by such a random matrix has a high
probability to retain the pairwise distances within (1 + 7)-
factor for some 7 € [0,0.5] (see eg. [Blocki et al., 2012]).

Theorem 1. Let vy, ..., v, be a set of n points in R*. For any
n,£ > 0 and an N'(0, %)k” matrix M, with probability at
least 1 — m the following holds for every i, 5:

2
o707 — o7

L—-n<
lvi = ;113

<1+n.

The Johnson-Lindenstrauss transform is widely used
across many areas of computer science such as computational
speedups, machine learning, information retrieval. The inter-
ested reader may find an extensive overview of the topic in the
monograph written by Vempala [2005]. Due to its random-
ness, the Johnson-Lindenstrauss transform was also used in
differential privacy. [Blocki et al., 2012] showed that it pre-
serves the differential privacy, as long as all singular values of
the database are sufficiently large. [Kenthapadi et al., 2013]
showed that by simply applying the Johnson-Lindenstrauss
transform together with some noise, one can publish the pair-
wise distances of elements while protecting the privacy of the
original data.

As OT resorts to a pairwise distance matrix to find the opti-
mal coupling and the Wasserstein distance, we suggest in the
next sections to benefit from the Johnson-Lindenstrauss trans-
form and the idea introduced in [Kenthapadi et al., 2013] to
build the first differentially private OT method (DPOT); then,
we use it to design a new privacy-preserving domain adapta-
tion algorithm (DPDA).
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Algorithm 1 Differentially Private Optimal Transport
Input: X, X¢,ando,¢ >0
1: Source generates an (0, )" matrix M and an N'(0, o)***
noise matrix A. _
2: Source sends {M, X, + A}, where X, = X, M
3: Target computes C' = ¢(X,+A, X,) —lo? where X, = X, M

4: Solve Problem (1) with cost matrix C' and return o and

W(Xs, X1).

3 Differentially Private Optimal Transport

Let X and X, be a source and a target dataset of size ngs X k
and n; x k (where k is the number of features) respectively.
A standard OT procedure aims at finding the Wasserstein dis-
tance W and the empirical transportation plan 7y between X
and X;.

Usually, one has access to both X and X to calculate the
cost matrix C, typically as the matrix of pairwise Euclidean
distances ¢(X;, X¢) between samples of the source and tar-
get sets. Then we solve the optimization Problem (1) to get vy
and W. However, under privacy constraints, source and target
parties may not be willing to release their data, making opti-
mal transport a challenging task. To overcome this problem,
let us use the result proved in Kenthapadi ef al. [2013] stating
that by applying the Johnson-Lindenstrauss transform with
some additional Gaussian noise, one can publish the pairwise
distances of elements privately (see Kenthapadi et al. [2013]
for more details).

We exploit this idea in the context of OT where the objec-
tive is to align X; on X;. Therefore, the data we want to pub-
lish safely here is the source set X,. Algorithm 1 describes
the pseudo-code of our Differentially Private Optimal Trans-
port (DPOT) algorithm. The main steps of DPOT are the fol-
lowing: In Step 1, we generate a random matrix M according
to [Johnson and Lindenstrauss, 1984] and a noise matrix A
according to [Kenthapadi et al., 2013]. Step 2 boils down to
publishing both M and the source data X, + A after a random
projection of X by M in a subspace of size ¢ and the addi-
tion of the noise A. To benefit from the privacy guarantees
of [Kenthapadi er al., 2013] over the pairwise (source/target)
distances, one compute the distance matrix C' in Step 3 be-
tween the published source data X + A and the projected
target examples X; = X,M. Note that o2 is subtracted
from each entry to cancel the bias caused by A (indeed, o2 is
known by the target party but not A). Step 4 is devoted to the
resolution of Problem (1).

Kenthapadi er al. [2013], Theorem 1, showed that the
mechanism of publishing M and the noisy data Xs + A
satisfies the (e, §)-differential privacy of Definition 1, for

w\/zan(%)%)
13

1
maxi<;<k (2521 ij) 2, that is the f»-norm sensitivity of
M, which is tightly concentrated around 1 [Kenthapadi er al.,
2013]. Therefore, Algorithm 1 comes directly with the fol-
lowing privacy guarantee.

any €,6 > 0 and 0 > where w =

Theorem 2. Algorithm 1 is (e, 0)-differentially private for

A/ 2(111(2%5)+5)
-

anye,d >0and o > w
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Figure 1: The architecture of DPOT and DPDA.

In Section 5, we will report experimental results showing
that by satisfying the previous constraint on the noise o, the
Wasserstein distance W (X, X;) computed by Algorithm 1
remains very close to the true W (X, X;), while preserving
the privacy of the data. Therefore, we can now benefit from

W (X, X;) and vy to transfer knowledge from a source do-
main to a target one to deal with domain adaptation in a dif-
ferential privacy setting.

4 Differentially Private Domain Adaptation

Extending DPOT for domain adaptation requires (i) to trans-
port the source data to the target domain thanks to a private
barycentric mapping, (ii) to transfer the source labels while
ensuring privacy, (iii) to add some appropriate domain adap-
tation regularizers for computing the coupling matrix.

Barycentric mapping. Once the coupling matrix 7y is
computed, the source samples can be moved to the target
domain using the geodesics of the Wasserstein metric. The
barycentric mapping [Reich, 2013] from each source sample
x? € X to its corresponding image Z7 in the target domain
is as follows

7} = argmin y o, jle(x, ). @
zeRF ;
J

The barycentric image T can be understood as the empirical
optimal location on the target domain to transport x; w.r.t. the

coupling matrix 7p. Let X s be the set of barycentric images
of the source data. It is now possible to train a model from

the transported labeled source data ()?s, Y;) and use it in the
target domain [Courty et al., 2017b].

Private barycentric mapping. Generally in domain adap-
tation, the target agent must have access to the labeled data
from the source. However, under privacy constraints, this is
not possible anymore. Fortunately, by combining DPOT al-
gorithm with the barycentric mapping, we can privately trans-
port the source data in the target domain. Indeed, as shown
in Equation 2, only 7y and X, are involved in the calcula-
tion of the barycentric mapping which does not depend on
the source data. The prAivate barycentric images can be con-

veniently rewritten as X, = nsy9X; as shown in [Perrot et
al., 2016] in a non private scenario.

Transmitting source labels. To perform domain adapta-
tion in both unsupervised and semi-supervised settings, the
target party needs to have access to the source labels Y. To
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enhance the privacy of our domain adaptation algorithm, we
also aim at adding some noise on the labels. To do so, we fol-
low the principle of Histogram Queries mentioned in [Dwork
et al., 2014]: The source first reorders its data (X, Y;) such
that all samples of label 1 appear first, then samples of la-
bel 2 and so on. Hence Y, is now equivalent to a vector
v(Y5) of length ¢ counting the number of samples for each
label, where ¢ is the number of labels. The source party can
now safely publish a noisy version of v(Y;) as a histogram
query by adding a Laplacian noise Lap(Z)?, which s (¢’, 0)-
differentially private [Dwork er al., 2014].

Regularization techniques. There are various techniques
in the literature to regularize the coupling matrix for domain
adaptation tasks. In our method, we utilize two of them. The
first one is the entropic regularization [Cuturi, 2013] that al-
lows us to transform Problem 1 into a strictly convex problem
and is defined as follows:

Ro(y) ==Y vij(logvi; — 1).
i,

The second one is the group Lasso regularization [Courty et

al.,2017b],
Ry(y) =D > I d)lle,
J S

where || - |2 is the ¢3-norm, I, contains the indices of rows
in 7y related to source samples associated to label s, (I, j)
is then a vector containing the coefficients of the j** column
of ~ associated to label s. This regularization encourages a
coupling where a given target sample receives masses from
source samples having the same labels. Thus, the coupling
matrix is now computed by the following equation:

Yo = arger%in@, Clr+AcRe(7) + ARy () ()
v

where A;, \. are hyper-parameters. In the semi-supervised

setting, we can further exploit the available target label data

by prohibiting masses from being transported between sam-

ples with different labels, which does not require any addi-

tional hyper-parameter [Courty et al., 2017b].

Algorithm 2 Differentially Private Domain Adaptation
Input: (X;,Y;), X¢ and 0,¢’,£ > 0
1: Source reorders (X, Ys) and sends noisy v(Ys) + Lap(%)?

2: Source runs Steps 1,2 of Algorithm 1 on the ordered X
3: Target follows Steps 3,4 of Algorithm 1 solving Problem (3)

and returns 4o and W
4: Target computes the barycentric images /X s = NsYoXt
5: Target trains his own model using (X,,Y.), where Y, =
v(Ys) + Lap(2)?, together with labeled data in X (if any)

Differentially Private Domain Adaptation Algorithm.
We now have all the necessary blocks for our differentially
private domain adaptation algorithm DPDA, see the pseudo-
code in Algorithm 2, where the two parties collaboratively
compute a regularized coupling matrix using Eq. (3), which
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Figure 2: Evolution between noise-ratio and the accuracy of DPOT.
On the right, 200b means 200 minibatches”.

allows the target to obtain the barycentric images of the
source data for his own training. We have shown that both
mechanisms of transmitting { M, X + A} and the noisy vec-
tor v(Y;) from the source are differentially private. Accord-
ing to the Composition Theorem ([Dwork et al., 2014] The-
orem 3.16), the composition of differentially private mech-
anisms is also differentially private. This means that Algo-
rithm 2 is also differentially private.

Theorem 3. Algorithm 2 is (¢ + &', §)-differentially private

V2(n(55)+¢)
- .

The whole workflow of our differentially private method is
shown is Figure 2.

foranye, &', >0and o > w

S Experiments

5.1 Private Optimal Transport with DPOT

In this section, we empirically validate our private optimal
transport method DPOT by analyzing the relation between
the privacy budget (e,9) and the accuracy of the Wasser-
stein distance W computed by DPOT. The error between W
and the true Wasserstein distance W is measured here by

Err = ‘ WI;,W ‘ We perform an experiment on the Office-
Home dataset [ Venkateswara et al., 2017], using two domains
with a moderate number of samples, Clipart (4365 samples)
and Product (4439 samples). We follow the experimental pro-
tocol used in [Abadi er al., 2016] and [Papernot er al., 2017]
by setting the privacy budget to § = j5-—, where n, is the
size of the source domain, and using a some moderate ¢ with
1-digit.

Besides, it is widely known that minibatch subsampling
can enhance privacy [Abadi et al., 2016; Balle et al., 2018].
Recently, [Abadi et al., 2016] introduced the privacy accoun-
tant theorem to get a tight bound on the total privacy budget
(e,9) (i.e. the allowed leakage amount of privacy during the
whole training process) when training with multibatches. In
the following, we will perform experiments on two settings:
whole batch and minibatch to demonstrate the effect of using
minibatches on the privacy budget.

Whole batch setting. In the whole batch setting, the noise-
ratio > can be calculated directly from the privacy budget
(e,8) by Theorem 2. For example, when ¢ = 4,5,10, we

get = = 1.25,1.04,0.61, respectively. In Figure 2 (left), we
plot the evolution of the error Err between W and W given
a noise-ratio 2 on the two whole datasets (we calculate Err
over 20 runs and report the average). Keeping in mind that we

want € as small as possible, the figure shows that Err = 0.08
at ¢ = 10 (maximum acceptable value according to the litera-
ture), while when the privacy budget is reduced to € = 4, the
error reaches 22%. In order to reduce the approximation er-
ror, the next experiment shows that using minibatches allows
us to drastically reduce the privacy budget.

Minibatch setting. In the minibatch setting, the relation-
ship between the noise-ratio Z and the privacy budget (e, §)
can be calculated v1a the privacy accountant [Abadi et al.,
2016]. For § = -—— and a minibatch of size 128, the noise-
ratio ;. depends on both ¢ and the number of minibatches we
wish to run. For example, if Z = 1 then for e = 3,5,7 we
can run 200, 600, 1200 minibatches respectively, while when
2 = 0.7, we can run only 4, 60, 200 batches for ¢ = 3,5, 7.
We can note in Figure 2 (right) that the error Err of DPOT
(average over 1000 random minibatches), for £ = 0.7, 1, 1.3,
is 7%, 10% and 15%, respectively. This is substantlally lower
than running on the whole batch. Empirically, we found that
the effect of the noise-ratio 7 on the accuracy of DPOT in
the minibatch setting is the same across datasets, but the pri-
vacy budget (or the number of allowed minibatches for a
given budget) would be different since the size of the dataset
plays an important role. For example, as the Synthetic do-
main of VisDA dataset [Peng et al., 2017] has 150k samples,
we can run 10k batches for e = 1, 2 = 1 or 30k batches for
e=2,2=038.

5.2 Private Domain Adaptation with DPDA

The previous experimental study showed that minibatches al-
low us to improve the quality of the outputs of DPOT with a
smaller privacy budget. For this reason, the next experiments
are performed only in this setting.

Benchmarks. We evaluate our method on three domain
adaptation benchmarks from the classical Office-Caltech
dataset [Saenko et al, 2010] to the more recent and
challenging VisDA [Peng et al., 2017] and Office-Home
[Venkateswara et al., 2017] datasets. The three datasets of-
fer a wide range of scenarios: Office-Caltech is a very small
dataset with 150-1000 samples per domain; VisDA contains
a large collection (200k samples in total) of high quality im-
ages, while Office-Home has a moderate size (4000 sam-
ples/domain) but many (65) classes. In Office-Caltech and
Office-Home, there are four different domains each, coming
from different sources, while VisDA is a specific dataset for
simulation-to-real adaptation, where the source domain con-
tains 150k synthetic images rendering of 3D models from dif-
ferent angles and the target domain contains 50k samples of
natural images. We conduct the experiments on both unsu-
pervised and semi-supervised settings.

Baselines. Our baselines include the state-of-the-art pri-
vate semi-supervised method PATE [Papernot et al., 20171,
where the teachers hold source data and the student holds tar-
get data, the non-private optimal transport domain adapation
method OTDA [Courty et al., 2017b] which we build our
model DPDA upon, and another state-of-the-art non-private
domain adaptation method ADDA [Tzeng er al., 2017] us-
ing a domain-adversarial technique. We do not add [Wang et
al., 2018] and [Guo et al., 2018] as baselines since both only
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PATE DPDA | OTDA ADDA
A—C 81.4 87.6 88.3 86.9
A—D 88.5 91.0 94.2 91.7
A—-W | 779 96.4 95.5 96.8
C— A 91.0 919 92.5 92.1
C—D 85.9 92.0 92.5 91.7
C—»W | 820 939 95.3 95.5
D— A 67.2 89.1 92.5 89.8
D—C 58.5 79.0 87.0 85.8
D—W | 813 96.1 98.7 96.9
W—A | 792 93.1 93.2 93.0
wW—C | 709 86.0 87.6 87.6
W—D | 987 98.0 98.7 99.2
Average | 80.2 91.2 93.0 92.3

Table 1: Performance (accuracy %) on Office-Caltech dataset in the
unsupervised setting.

PATE DPDA | OTDA ADDA
plane 87.7 88.5 89.2 96.2
bicycle 31.3 66.2 64.8 714
bus 76.4 75.8 75.7 76.2
car 69.6 59.1 58.6 443
horse 86.9 86.5 87.0 65.8
knife 53.4 70.4 62.1 83.0
motorcycle | 80.8 69.9 74.6 87.7
person 60.1 71.6 70.8 44.8
plant 64.7 75.9 76.3 81.8
skateboard 229 49.3 50.5 68.7
train 55.4 86.8 87.7 91.4
truck 7.0 39.5 40.9 40.4
All 60.6 68.8 69.1 67.3

Table 2: Classwise performance (accuracy %) of VisDA dataset in
the unsupervised setting.

work on binary-classification and the first requires an aux-
iliary public dataset while the second requires fully labeled
target data.

For the Office-Caltech dataset, we use the common De-
CAF features as input, while for VisDA and Office-Home,
we use the NASNet model [Zoph et al., 2018] with weights
pre-trained on ImageNet as a base model to extract features
from the images. All methods are written in Keras [Chollet,
2015] with the same target model architecture (a 3-layer neu-
ral network) for fair comparison. The coupling matrices are
computed using the POT library [Flamary and Courty, 2017].
As already said, we train all the models using minibatches.

Hyper-parameters. For OTDA and our method DPDA, we
set the hyper-parameters A, and A, of Eq. (3) to 0.01 and
0.1, respectively. In all benchmarks, we set the dimension
of the subspace of our method ¢ = % and the noise-ratio
= = 1.1. For the privacy budget, we again follow the stan-
dard of [Abadi et al., 2016; Papernot et al., 2017] by set-
ting § = 15—, ¢ = 2 for VisDA and ¢ = 8 for the other
datasets, except € = 20 if the source is DSLR or Webcam in
Office-Caltech since they have too few samples (150-200 in
total). For PATE and DPDA, we use the privacy accountant
tool [Abadi et al., 2016] to keep track the privacy budget af-

ter each step as explained in Section 5.1. We run each test 3
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PATE DPDA | OTDA ADDA || t-only DPDA | OTDA
AC | 374 392 | 442 413 233 434 | 465
AP | 52.1 544 | 585 56.5 56.8 642 | 652
AR | 597 614 | 67.2 67.1 513 67.7 68.6
CA | 487 503 55.3 49.6 419 558 572
CP | 542 578 61.7 61.2 56.8 67.6 | 69.1
CR | 567 599 | 64.0 63.2 513 635 66.4
PA | 51.5 535 539 504 419 57.6 | 58.0
PC | 36.8 40.7 | 429 454 233 458 | 46.1
PR | 658 679 | 68.9 69.5 51.3 708 71.3
RA | 576 594 | 61.6 58.8 419 63.1 63.6
RC | 394 438 | 46.2 49.3 233 479 | 49.1
RP | 66.2 68.7 70.1 70.9 56.8 728 73.5
Avr| 52.1 548 579 56.9 433  60.0 | 61.2

Table 3: Performance (accuracy %) on Office-Home dataset. Left:
unsupervised, and right: semi-supervised.

times and report the average.

Results. The results are presented in Tables 1, 2 and 3.
In both Office-Caltech and VisDA benchmarks, our model
DPDA performs at the same level as non-private state-of-the-
art methods and even gets 1 point higher than ADDA in the
VisDA benchmark, while PATE significantly lags behind. If
we reduce the privacy budget for the source domains DSLR,
Webcam in the Office-Caltech benchmark to ¢ = 10, then
the performances of DPDA and PATE drop by 3-5 points.
In the Office-Home dataset, DPDA is 2-3 points lower than
non-private baselines but still safely outperforms PATE by 3
points. On the other hand, in the semi-supervised scenario
on the Office-Home benchmark , when only 1 labeled target
sample per class is allowed, DPDA manages to reduce the
gap with OTDA significantly from 3 points (55 vs 58) to 1
point (60 vs 61). This means that DPDA benefits more from
some labeled target data than OTDA. Behind the good behav-
ior of DPDA to deal with domain adaptation tasks, the results
reported in these tables confirm that DPOT is a very perform-
ing differentially private optimal transport method.

6 Conclusion

In this paper, we have proposed the first differentially pri-
vate approach for optimal transport. The proposed algorithm
DPOT is able to preserve the Wasserstein distance despite
the noisy perturbations introduced used to ensure differen-
tial privacy. We have then designed the first complete differ-
entially private domain adaptation model based upon DPOT.
Our methods are justified by strong theoretical guarantees and
the experimental evaluations illustrated that our approach al-
lows one to obtain good results while ensuring a high pri-
vacy level of the data. Future work includes extensions of
our framework to other applications of optimal transport, for
instance, in differentially private distributed learning.
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