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Abstract

Non-stationarity appears in many online applica-
tions such as web search and advertising. In this
paper, we study the online learning to rank problem
in a non-stationary environment where user prefer-
ences change abruptly at an unknown moment in
time. We consider the problem of identifying the
K most attractive items and propose cascading non-
stationary bandits, an online learning variant of the
cascading model, where a user browses a ranked
list from top to bottom and clicks on the first attrac-
tive item. We propose two algorithms for solving
this non-stationary problem: CascadeDUCB and
CascadeSWUCB. We analyze their performance
and derive gap-dependent upper bounds on the n-
step regret of these algorithms. We also establish
a lower bound on the regret for cascading non-
stationary bandits and show that both algorithms
match the lower bound up to a logarithmic factor.
Finally, we evaluate their performance on a real-
world web search click dataset.

1 Introduction

Learning to rank LTR [Liu, 2009] is a combination of machine
learning and information retrieval. It is a core problem in many
applications, such as web search and recommendation [Liu,
2009; Zoghi et al., 2017]. The goal of LTR is to rank items,
e.g., documents, and show the top K items to a user. Tradi-
tional LTR algorithms are supervised, offline algorithms; they
learn rankers from human annotated data [Qin et al., 2010]
and/or users’ historical interactions [Joachims, 2002]. Every
day billions of users interact with modern search engines and
leave a trail of interactions. It is feasible and important to
design online algorithms that directly learn from such user
clicks to help improve users’ online experience. Indeed, re-
cent studies show that even well-trained production rankers
can be optimized by using users’ online interactions, such as
clicks [Zoghi et al., 2016].

Generally, interaction data is noisy [Joachims, 2002], which
gives rise to the well-known exploration vs. exploitation
dilemma. Multi-armed bandit (MAB) [Auer et al., 2002]
algorithms have been designed to balance exploration and ex-
ploitation. Based onMABs, many online LTR algorithms have

been published [Radlinski et al., 2008; Kveton et al., 2015;
Katariya et al., 2016; Lagrée et al., 2016; Zoghi et al., 2017;
Li et al., 2019]. These algorithms address the exploration vs.
exploitation dilemma in an elegant way and aim to maximize
user satisfaction in a stationary environment where users do
not change their preferences over time. Moreover, they often
come with regret bounds.
Despite the success of the algorithms mentioned above

in the stationary case, they may have linear regret in a non-
stationary environment where users may change their pref-
erences abruptly at any unknown moment in time. Non-
stationarity widely exists in real-world application domains,
such as search engines and recommender systems [Yu and
Mannor, 2009; Pereira et al., 2018; Wu et al., 2018; Jagerman
et al., 2019]. Particularly, we consider abruptly changing en-
vironments where user preferences remain constant in certain
time periods, named epochs, but change occurs abruptly at
unknown moments called breakpoints. The abrupt changes
in user preferences give rise to a new challenge of balancing
“remembering” and “forgetting” [Besbes et al., 2014]: the
more past observations an algorithm retains the higher the risk
of making a biased estimator, while the fewer observations
retained the higher stochastic error it has on the estimates of
the user preferences.

In this paper, we propose cascading non-stationary bandits,
an online variant of the cascade model (CM) [Craswell et al.,
2008] with the goal of identifying the K most attractive items
in a non-stationary environment. CM is a widely-used model
of user click behavior [Chuklin et al., 2015; Zoghi et al., 2017].
In CM, a user browses the ranked list from top to bottom and
clicks the first attractive item. The items ranked above the first
clicked item are browsed but not attractive since they are not
clicked. The items ranked below the first clicked item are not
browsed since the user stops browsing the ranked list after a
click. Although CM is a simple model, it effectively explains
user behavior [Kveton et al., 2015].

Our key technical contributions in this paper are: (1) We for-
malize a non-stationary online learning to rank (OLTR) prob-
lem as cascading non-stationary bandits. (2) We propose two
algorithms, CascadeDUCB and CascadeSWUCB, for solving
it. They are motivated by discounted UCB (DUCB) and sliding
window UCB (SWUCB), respectively [Garivier and Moulines,
2011]. CascadeDUCB balances “remembering” and “forget-
ting” by using a discounting factor of past observations, and
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CascadeSWUCB balances the two by using statistics inside
a fixed-size sliding window. (3) We derive gap-dependent
upper bounds on the regret of the proposed algorithms. (4) We
derive a lower bound on the regret of cascading non-stationary
bandits. We show that the upper bounds match this lower
bound up to a logarithmic factor. (5) We evaluate the perfor-
mance of CascadeSWUCB and CascadeDUCB empirically
on a real-world web search click dataset.

2 Background

We define the learning problem at the core of this paper in
terms of cascading non-stationary bandits. Their definition
builds on the CM and its online variant cascading bandits,
which we review in this section.

We write [n] for {1, . . . , n}. For setsA andB, we writeAB

for the set of all vectors whose entries are indexed by B and
take values from A. We use boldface letters to denote random
variables. We denote a set of candidate items by D = [L], e.g.,
a set of preselected documents. The presented ranked list is
denoted as R 2 ⇧K(D), where ⇧K(D) denotes the set of all
possible combinations ofK distinct items from D. The item
at position k inR is denoted asR(k), and the position of item
a in R is denoted asR�1(a)

2.1 Cascade Model

We refer readers to [Chuklin et al., 2015] for an introduction to
click models. Briefly, a click model models a user’s interaction
behavior with the search system. The user is presented with a
K-item ranked list R. Then the user browses the list R and
clicks items that potentially attract him or her. Many click
models have been proposed and each models a certain aspect
of interaction behavior. We can parameterize a click model by
attraction probabilities ↵ 2 [0, 1]L and a click model assumes:

Assumption 1. The attraction probability ↵(a) only depends
on item a and is independent of other items.

CM is a widely-used click model [Craswell et al., 2008;
Zoghi et al., 2017]. In the CM, a user browses the ranked
listR from the first itemR(1) to the last itemR(K), which
is called the cascading assumption. After the user browses an
itemR(i), he or she clicks onR(i) with attraction probability
↵(R(i)), and then stops browsing the remaining items. Thus,
the examination probability of item R(j) equals the probabil-
ity of no click on the higher ranked items:

Qj�1
i=1 (1�↵(R(i))).

The expected number of clicks equals the probability of click-
ing any item in the list: 1 �

QK
i=1(1 � ↵(R(i))). Note that

the reward does not depend on the order in R, and thus, in the
CM, the goal of ranking is to find the K most attractive items.
The CM accepts at most one click in each search session.

It cannot explain scenarios where a user may click multiple
items. The CM has been extended in different ways to capture
multi-click cases [Chapelle and Zhang, 2009; Guo et al., 2009].
Nevertheless, CM is still the fundamental click model and fits
historical click data reasonably well. Thus, in this paper, we
focus on the CM and in the next section we introduce an online
variant of CM, called cascading bandits.

2.2 Cascading Bandits

Cascading bandits (CB) is defined by a tuple B = (D, P,K),
where D = [L] is the set of candidate items, K  L is the
number of positions, P 2 {0, 1}L is a distribution over binary
attractions.
In CB, at time t, a learning agent builds a ranked listRt 2

⇧K(D) that depends on the historical observations up to t

and shows it to the user. At 2 {0, 1}L is defined as the
attraction indicator, which is drawn from P andAt(Rt(i)) is
the attraction indicator of itemRt(i). The user examinesRt

fromRt(1) toRt(K) and clicks the first attractive item. Since
a CM allows at most one click each time, a random variable
ct is used to indicate the position of the clicked item, i.e.,
ct = argmini2[K] 1{At(Rt(i))}. If there is no attractive
item, the user will not click, and we set ct = K+1 to indicate
this case. Specifically, if ct  K, the user clicks an item,
otherwise, the user does not click anything. After the click or
browsing the last item inRt, the user leaves the search session.
The click feedback ct is then observed by the learning agent.
Because of the cascading assumption, the agent knows that
items ranked above position ct are observed. The reward at
time t is defined by the number of clicks:

r(Rt,At) = 1�
KY

i=1

(1�At(Rt(i))) . (1)

Under Assumption 1, the attraction indicators of each item in
D are independently distributed. Moreover, cascading bandits
make another assumption.
Assumption 2. The attraction indicators are distributed as:

P (A) =
Y

a2D
Pa(A(a)) , (2)

where Pa is a Bernoulli distribution with a mean of ↵(a).

Under Assumption 1 and 2, the attraction indicator of item
a at time t At(a) is drawn independently from other items.
Thus, the expectation of reward of the ranked list at time t can
be computed as E [r(Rt,At] = r(Rt,↵). And the goal of the
agent is to maximize the expected number of clicks in n steps.
Cascading bandits are designed for a stationary envi-

ronment, where the attraction probability P remains con-
stant. However, in real-world applications, users change
their preferences constantly [Jagerman et al., 2019], which is
called a non-stationary environment, and learning algorithms
proposed for cascading bandits, e.g., CascadeKL-UCB and
CascadeUCB1 [Kveton et al., 2015], may have linear regret
in this setting. In the next section, we propose cascading
non-stationary bandits, the first non-stationary variant of cas-
cading bandits, and then propose two algorithms for solving
this problem.

3 Cascading Non-Stationary Bandits

We first define our non-stationary online learning setup, and
then we propose two algorithms learning in this setup.

3.1 Problem Setup

The learning problem we study is called cascading non-

stationary bandits, a variant of CB. We define it by a tuple
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Algorithm 1: UCB-type algorithm for Cascading non-
stationary bandits.

1: Input: discounted factor � or sliding window size ⌧
2: // Initialization
3: 8a 2 D : N0(a) = 0
4: 8a 2 D : X0(a) = 0

5: for t = 1, 2, . . . , n do

6: for a 2 D do

7: // Compute UCBs

8: Ut(a) 
⇢
Eq. 5 (CascadeDUCB)
Eq. 7 (CascadeSWUCB)

9: // Recommend top K items and receive clicks
10: Rt  argmaxR2⇧K(D) r(R,Ut)
11: ShowRt and receive clicks ct 2 {1, . . . ,K + 1}
12: // Update statistics
13: if CascadeDUCB then

14: // for CascadeDUCB
15: 8a 2 D : Nt(a) = �Nt�1(a)
16: 8a 2 D : Xt(a) = �Xt�1(a)
17: else

18: // for CascadeSWUCB
19: 8a 2 D : Nt(a) =

Pt�1
s=t�⌧+1 1{a 2 Rs}

20: 8a 2 D : Xt(a) =
Pt�1

s=t�⌧+1 1{R�1
s (a) = cs}

21: for i = 1, . . . ,min{ct,K} do

22: a Rt(i)
23: Nt(a) = Nt(a) + 1
24: Xt(a) = Xt(a) + 1{i = ct}

B = (D, P,K,⌥n), where D = [L] and K  L are the
same as in CB bandits, P 2 {0, 1}n⇥L is a distribution over
binary attractions and ⌥n is the number of abrupt changes in
P up to step n. We use Pt(Rt(i)) to indicate the attraction
probability distribution of item Rt(i) at time t. If ⌥n = 0,
this setup is same as CB. The difference is that we consider
a non-stationary learning setup in which ⌥n > 0 and the
non-stationarity in attraction probabilities characterizes our
learning problem.
In this paper, we consider an abruptly changing environ-

ment, where the attraction probability P remains constant
within an epoch but can change at any unknown moment in
time and the number of abrupt changes up to n steps is ⌥n.
The learning agent interacts with cascading non-stationary
bandits in the same way as with CB. Since the agent is in a
non-stationary environment, we write ↵t for the mean of the
attraction probabilities at time t and we evaluate the agent by
the expected cumulated regret expressed as:

R(n) =
nX

t=1

E


max
R2⇧K(D)

r(R,↵t)� r(Rt,At)

�
. (3)

The goal of the agent it to minimizing the n-step regret.

3.2 Algorithms

We propose two algorithms for solving cascading non-
stationary bandits, CascadeDUCB and CascadeSWUCB.

CascadeDUCB is inspired by DUCB and CascadeSWUCB
is inspired by SWUCB [Garivier and Moulines, 2011]. We
summarize the pseudocode of both algorithms in Algorithm 1.

CascadeDUCB and CascadeSWUCB learn in a similar pat-
tern. They differ in the way they estimate the Upper Confi-
dence Bound (UCB) Ut(Rt(i)) of the attraction probability
of itemRt(i) as time t, as discussed later in this section. After
estimating the UCBs (line 8), both algorithms constructRt by
including the top K most relevant items by UCB. Since the
order of top K items only affects the observation but does not
affect the payoff ofRt, we constructRt as follows:

Rt = argmaxR2⇧K(D) r(R,Ut). (4)

After receiving the user’s click feedback ct, both algorithms
update their statistics (line 13–24). We use Nt(i) and Xt(i)
to indicate the number of items i that have been observed and
clicked up to t step, respectively.

To tackle the challenge of non-stationarity, CascadeDUCB
penalizes old observations with a discount factor � 2 (0, 1).
Specifically, each of the previous statistics is discounted by �
(line 15–16). The UCB of item a is estimated as:

Ut(a) = ↵̄t(�, a) + ct(�, a), (5)

where ↵̄t(�, a) =
Xt(a)
Nt(a)

is the average of discounted attrac-
tion indicators of item i and

ct(�, a) = 2

s
✏ lnNt(�)

Nt(a)
(6)

is the confidence interval around ↵̄t(i) at time t. Here, we
compute Nt(�) =

1��t

1�� as the discounted time horizon. As
shown in [Garivier and Moulines, 2011], ↵t(a) 2 [↵̄t(�, a)�
ct(�, a), ↵̄t(�, a) + ct(�, a)] holds with high probability.

As to CascadeSWUCB, it estimates UCBs by observations
inside a sliding window with size ⌧ . Specifically, it only
considers the observations in the previous ⌧ steps (line 19–20).
The UCB of item i is estimated as

Ut(a) = ↵̄t(⌧, a) + ct(⌧, a), (7)

where ↵̄t(⌧, a) =
Xt(a)
Nt(a)

is the average of observed attraction
indicators of item a inside the sliding window and

ct(⌧, a) =

s
✏ ln (t ^ ⌧)

Nt(a)
(8)

is the confidence interval, and t ^ ⌧ = min(t, ⌧).
Initialization. In the initialization phase, we set all the statis-
tics to 0 and define x

0 := 1 for any x (line 3–4). Mapping
back this to UCB, at the beginning, each item has the optimal
assumption on the attraction probability with an optimal bonus
on uncertainty. This is a common initialization strategy for
UCB-type bandit algorithms [Li et al., 2018].

4 Analysis

In this section, we analyze the n-step regret of CascadeDUCB
and CascadeSWUCB. We first derive regret upper bounds
on CascadeDUCB and CascadeSWUCB, respectively. Then
we derive a regret lower bound on cascading non-stationary
bandits. Finally, we discuss our theoretical results.
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4.1 Regret Upper Bound

We refer to D⇤
t ✓ [L] as the set of the K most attractive

items in set D at time t and D̄t as the complement of D⇤
t ,

i.e., 8a 2 D⇤
t , 8a⇤ 2 D̄t : ↵t(a) � ↵t(a⇤) and D⇤

t [ D̄t =
D ,D⇤

t \ D̄t = ;. At time t, we say an item a
⇤ is optimal

if a⇤ 2 D⇤
t and an item a is suboptimal if a 2 D̄t. The

regret at time t is caused by the case thatRt includes at least
one suboptimal and examined items. Let �t

a,a⇤ be the gap
of attraction probability between a suboptimal item a and an
optimal a⇤ at time t: �t

a,a⇤ = ↵t(a⇤)� ↵t(a). Then we refer
to �a,K as the smallest gap of between item a and the K-th
most attractive item in all n steps when a is not the optimal
items: �a,K = mint2[n],a⇤2D⇤

t
↵t(a⇤)� ↵t(a).

Theorem 1. Let ✏ 2 (1/2, 1) and � 2 (1/2, 1), the expected
n-step regret of CascadeDUCB is bounded as:

R(n) 

L⌥n
ln[(1� �)✏]

ln �
+

X

a2D
C(�, a)dn(1� �)e ln 1

1� �
,
(9)

where

C(�, a) =

4

1� 1/e
ln (1 + 4

p
1� 1/2✏) +

32✏

�a,K�1/(1��)
.

(10)

We outline the proof in 4 steps below; the full version is in
Appendix A.1.1

Proof. Our proof is adapted from the analysis in [Kveton et al.,
2015]. The novelty of the proof comes from the fact that, in a
non-stationary environment, the discounted estimator ↵̄t(�, a)
is now a biased estimator of ↵t(a) (Step 1, 2 and 4).
Step 1. We bound the regret of the event that estimators of

the attraction probabilities are biased by L⌥ ln[(1��)✏]
ln � . This

event happens during the steps following a breakpoint.
Step 2. We bound the regret of the event that ↵t(a)

falls outside of the confidence interval around ↵̄t(�, a) by
4

1�1/e ln (1 + 4
p

1� 1/2✏)n(1� �) ln 1
1�� .

Step 3. We decompose the regret at time t based on [Kveton
et al., 2015, Theorem 1].

Step 4. For each item a, we bound the number of times that
item a is chosen when a 2 D̄t in n steps and get the term
32✏dn(1��)e ln 1

1��

�a,K�1/(1��) . Finally, we sum up all the regret.

The bound depends on step n and the number of breakpoints
⌥n. If they are known beforehand, we can choose � by
minimizing the right hand side of Eq. 9. Choosing � =
1 � 1/4

p
(⌥n/n) leads to R(n) = O(

p
n⌥n lnn). When

⌥n is independent of n, we have R(n) = O(
p
n⌥ lnn).

Theorem 2. Let ✏ 2 (1/2, 1). For any integer ⌧ , the expected
n-step regret of CascadeSWUCB is bounded as:

R(n) 

L⌥n⌧+
L ln2 ⌧

ln(1 + 4
p

(1� 1/2✏))
+
X

a2D
C(⌧, a)

n ln ⌧

⌧
,

(11)

1https://arxiv.org/abs/1905.12370

where

C(⌧, a) =

2

ln ⌧

&
ln ⌧

ln(1 + 4
p

(1� 1/2✏))

'
+

8✏

�a,K

dn/⌧e
n/⌧

.
(12)

When ⌧ goes to infinity and n/⌧ goes to 0,

C(⌧, a) =
2

ln(1 + 4
p

(1� 1/2✏))
+

8✏

�a,K
. (13)

We outline the proof in 4 steps below and the full version is in
Appendix A.2.

Proof. The proof follows the same lines as the proof of Theo-
rem 1.
Step 1. We bound the regret of the event that estimators of

the attraction probabilities are biased by L⌥n⌧ .
Step 2. We bound the regret of the event that ↵t(a) falls

outside of the confidence interval around ↵̄t(⌧, a) by

ln2 ⌧ + 2n

&
ln ⌧

ln(1 + 4
p

(1� 1/2✏))

'
. (14)

Step 3. We decompose the regret at time t based on [Kveton
et al., 2015, Theorem 1].

Step 4. For each item a, we bound the number of times that
item a is chosen when a 2 D̄t in n steps and get the term

8✏
�a,K

dn⌧ e. Finally, we sum up all the regret.

If we know ⌥n and n beforehand, we can choose the window
size ⌧ by minimizing the right hand side of Eq. 11. Choosing
⌧ = 2

p
n ln(n)/⌥n leads to R(n) = O(

p
n⌥n lnn). When

⌥n is independent of n, we have R(n) = O(
p
n⌥ lnn).

4.2 Regret Lower Bound

We consider a particular cascading non-stationary bandit and
refer to it as BL = (L,K,�, p,⌥). We have a set of L
items D = [L] and K = 1

2L positions. At any time t, the
distribution of attraction probability of each item a 2 D is
parameterized by:

↵t(a) =

⇢
p if a 2 D⇤

t

p�� if a 2 D̄t,
(15)

where D⇤
t is the set of optimal items at time t, D̄t is the set

suboptimal items at time t, and � 2 (0, p] is the gap between
optimal items and suboptimal items. Thus, the attraction
probabilities only take two values: p for optimal items and
p�� for suboptimal items up to n-step. ⌥ is the number of
breakpoints when the attraction probability of an item changes
from p to p�� or other way around. Particularly, we consider
a simple variant that the distribution of attraction probability
of each item is piecewise constant and has two breakpoints.
And we assume another constraint on the number of optimal
items that |D⇤

t | = K for all time steps t 2 [n]. Then, the
regret that any learning policy can achieve when interacting
with BL is lower bounded by Theorem 3.
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Theorem 3. The n-step regret of any learning algorithm

interacting with cascading non-stationary bandit BL is lower

bounded as follows:

lim inf
n!1

R(n) � L�(1� p)K�1

s
2n

3DKL(p��||p) , (16)

whereDKL(p��||p) is the Kullback-Leibler (KL) divergence
between two Bernoulli distributions with means p�� and p.

Proof. The proof is based on the analysis in [Kveton et al.,
2015]. We first refer to R⇤

t as the optimal list at time t that
includes K items. For any time step t, any item a 2 D̄t and
any item a

⇤ 2 D⇤
t , we define the event that item a is included

inRt instead of item a
⇤ and item a is examined but not clicked

at time step t by:

Gt,a,a⇤ =

{91  k < ct s.t. Rt(k) = a ,Rt(k) = a
⇤}. (17)

By [Kveton et al., 2015, Theorem 1], the regret at time t is
decomposed as:

E[r(Rt,↵t)] � �(1�p)K�1
X

a2D̄t

X

a⇤2D⇤
t

1{Ga,a⇤,t}. (18)

Then, we bound the n-step regret as follows:

R(n) � �(1� p)K�1
nX

t=1

X

a2D̄t

X

a⇤2D⇤
t

1{Gt,a,a⇤}

� �(1� p)K�1
X

a2D

nX

t=1

1{a 2 D̄t, a 2 Rt}

= �(1� p)K�1
X

a2D
Tn(a),

(19)

where Tn(a) =
Pn

t=1 1{a 2 D̄t, a 2 Rt,R
�1
t (a)  ct}.

The second inequality is based on the fact that, at time t, the
event Gt,a,a⇤ happens if and only if item a is suboptimal and
examined. By the results of [Garivier and Moulines, 2011,
Theorem 3], if a suboptimal item a has not been examined
enough times, the learning policy may play this item for a long
period after a breakpoint. And we get:

lim inf
n!1

T(n) �

s
2n

3DKL(p��||p) . (20)

We sum up all the inequalities and obtain:

lim inf
n!1

R(n) � L�(1� p)K�1

s
2n

3DKL(p��||p) .

4.3 Discussion

We have shown that the n-step regret upper bounds of
CascadeDUCB and CascadeSWUCB have the order of
O(
p
n lnn)and O(

p
n lnn), respectively. They match the

lower bound proposed in Theorem 3 up to a logarithmic factor.
Specifically, the upper bound of CascadeDUCB matches the
lower bound up to lnn. The upper bound of CascadeSWUCB

matches the lower bound up to
p
lnn, an improvement over

CascadeDUCB, as confirmed by experiments in Section 5.
We have assumed that step n is know beforehand. This may

not always be the case. We can extend CascadeDUCB and
CascadeSWUCB to the case where n is unknown by using
the doubling trick [Garivier and Moulines, 2011]. Namely,
for t > n and any k, such that 2k  t < 2k+1, we reset
� = 1� 1

4
p
2k

and ⌧ = 2
p
2k ln(2k).

CascadeDUCB and CascadeSWUCB can be computed ef-
ficiently. Their complexity is linear in the number of time
steps. However, CascadeSWUCB requires extra memory to
remember past ranked lists and rewards to updateXt andNt.

5 Experimental Analysis

We evaluate CascadeDUCB and CascadeSWUCB on the Yan-
dex click dataset,2 which is the largest public click collec-
tion. It contains more than 30 million search sessions, each
of which contains at least one search query. We process
the queries in the same manner as in [Zoghi et al., 2017;
Li et al., 2019]. Namely, we randomly select 100 frequent
search queries with the 10 most attractive items in each query,
and then learn a CM for each query using PyClick.3 These
CMs are used to generate click feedback. In this setup, the
size of candidate items is L = 10 and we choose K = 3 as
the number of positions. The objective of the learning task
is to identify 3 most attractive items and then maximize the
expected number of clicks at the 3 highest positions.

We consider a simulated non-stationary environment setup,
where we take the learned attraction probabilities as the de-
fault and change the attraction probabilities periodically. Our
simulation can be described in 4 steps: (1) For each query,
the attraction probabilities of the top 3 items remain con-
stant over time. (2) We randomly choose three suboptimal
items and set their attraction probabilities to 0.9 for the next
m1 steps. (3) Then we reset the attraction probabilities and
keep them constant for the next m2 steps. (4) We repeat
step (2) and step (3) iteratively. This simulation mimics
abrupt changes in user preferences and is widely used in pre-
vious work on non-stationarity [Garivier and Moulines, 2011;
Wu et al., 2018; Jagerman et al., 2019]. In our experiment, we
setm1 = m2 = 10k and choose 10 breakpoints. In total, we
run experiments for 100k steps. Although the non-stationary
aspects in our setup are simulated, the other parameters of a
CM are learned from the Yandex click dataset.
We compare CascadeDUCB and CascadeSWUCB, to

RankedEXP3 [Radlinski et al., 2008],CascadeKL-UCB [Kve-
ton et al., 2015] and BatchRank [Zoghi et al., 2017]. We
describe the baseline algorithms in slightly more details in
Section 6. Briefly, RankedEXP3, a variant of ranked bandits,
is based on an adversarial bandit algorithm Exp3 [Auer et al.,
1995]; it is the earliest bandit-based ranking algorithm and is
popular in practice. CascadeKL-UCB [Kveton et al., 2015]
is a near optimal algorithm in CM. BatchRank [Zoghi et al.,
2017] can learn in a wide range of click models. However,
these algorithms only learn in a stationary environment. We

2https://academy.yandex.ru/events/data analysis/relpred2011
3https://github.com/markovi/PyClick

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2863



0 20k 40k 60k 80k 100k
6WeS n

0

1k

2k

3k

4k

5k
5e

gU
eW

5DnkedEX33
BDWcK5Dnk
CDscDdeKL-8CB
CDscDdeD8CB
CDscDde6W8CB

Figure 1: The n-step regret in up to 100k steps. Lower is better. The
results are averaged over all 100 queries and 10 runs per query. The
shaded regions represent standard errors of our estimates.

choose them as baselines to show the superiority of our algo-
rithms in a non-stationary environment. In experiments, we set
✏ = 0.5, � = 1 � 1/(4

p
n) and ⌧ = 2

p
n ln(n), the values

that roughly minimize the upper bounds.
We report the n-step regret averaged over 100 queries and

10 runs per query in Figure 1. All baselines have linear regret
in time step. They fail in capturing the breakpoints. Non-
stationarity makes the baselines perform even worse during
epochs where the attraction probability are set as the default.
E.g., CascadeKL-UCB has 111.50±1.12 regret in the first 10k
steps but has 447.82±137.16 regret between step 80k and 90k.
Importantly, the attraction probabilities equal the default and
remain constant inside these two epochs. This is caused by the
fact that the baseline algorithms rank items based on all histor-
ical observations, i.e., they do not balance “remembering” and
“forgetting.” Because of the use of a discounting factor and/or a
sliding window, CascadeDUCB and CascadeSWUCB can de-
tect breakpoints and show convergence. CascadeSWUCB out-
performs CascadeDUCB with a small gap; this is consistent
with our theoretical finding that CascadeSWUCB outperforms
CascadeDUCB by a

p
lnn factor.

6 Related Work

The idea of directly learning to rank from user feedback has
been widely studied in a stationary environment. Ranked

bandits [Radlinski et al., 2008] are among the earliest OLTR
approaches. In ranked bandits, each position in the list is mod-
eled as an individual underlying MABs. The ranking task is
then solved by asking each individual MAB to recommend an
item to the attached position. Since the reward, e.g., click, of a
lower position is affected by higher positions, the underlying
MAB is typically adversarial, e.g., Exp3 [Auer et al., 1995].
BatchRank is a recently proposed OLTR method [Zoghi et
al., 2017]; it is an elimination-based algorithm: once an item
is found to be inferior to K items, it will be removed from
future consideration. BatchRank outperforms ranked bandits
in the stationary environment. In our experiments, we include
BatchRank and RankedEXP3, the Exp3-based ranked bandit
algorithm, as baselines.
Several OLTR algorithms have been proposed in specific

click models [Kveton et al., 2015; Lagrée et al., 2016;
Katariya et al., 2016; Oosterhuis and de Rijke, 2018]. They
can efficiently learn an optimal ranking given the click model
they consider. Our work is related to cascading bandits and
we compare our algorithms to CascadeKL-UCB, an algorithm
proposed for soling cascading bandits [Kveton et al., 2015],
in Section 5. Our work differs from cascading bandits in that
we consider learning in a non-stationary environment.

Non-stationary bandit problems have been widely stud-
ied [Slivkins and Upfal, 2008; Yu and Mannor, 2009; Garivier
and Moulines, 2011; Besbes et al., 2014; Liu et al., 2018].
However, previous work requires a small action space. In our
setup, actions are (exponentially many) ranked lists. Thus, we
do not consider them as baselines in our experiments.
In adversarial bandits the reward realizations, in our case

attraction indicators, are selected by an adversary. Adversarial
bandits originate from game theory [Blackwell, 1956] and
have been widely studied, cf. [Auer et al., 1995; Cesa-Bianchi
and Lugosi, 2006] for an overview. Within adversarial bandits,
the performance of a policy is often measured by comparing
to a static oracle which always chooses a single best arm
that is obtained after seeing all the reward realizations up
to step n. This static oracle can perform poorly in a non-
stationary case when the single best arm is suboptimal for a
long time between two breakpoints. Thus, even if a policy
performs closely to the static oracle, it can still perform sub-
optimally in a non-stationary environment. Our work differs
from adversarial bandits in that we compare to a dynamic
oracle that can balance the dilemma of “remembering” and
“forgetting” and chooses the per-step best action.

7 Conclusion

In this paper, we have studied the online learning to rank
(OLTR) problem in a non-stationary environment where user
preferences change abruptly. We focus on a widely-used
user click behavior model cascade model (CM) and have
proposed an online learning variant of it called cascading

non-stationary bandtis. Two algorithms, CascadeDUCB and
CascadeSWUCB, have been proposed for solving it. Our the-
oretical have shown that they have sub-linear regret. These
theoretical findings have been confirmed by our experiments
on the Yandex click dataset. We open several future directions
for non-stationary OLTR. First, we have only considered the
CM setup. Other click models that can handle multiple clicks,
e.g., DBN [Chapelle and Zhang, 2009], should be considered
as part of future work. Second, we focused on UCB-based
policy. Another possibility is to use the family of softmax
policies [Besbes et al., 2014]. Along this line, one may obtain
upper bounds independent from the number of breakpoints.
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