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Abstract

In this paper, we investigate the generalization per-
formance of multi-class classification, for which
we obtain a shaper error bound by using the notion
of local Rademacher complexity and additional un-
labeled samples, substantially improving the state-
of-the-art bounds in existing multi-class learning
methods. The statistical learning motivates us to
devise an efficient multi-class learning framework
with the local Rademacher complexity and Lapla-
cian regularization. Coinciding with the theoretical
analysis, experimental results demonstrate that the
stated approach achieves better performance.

1 Introduction
Multi-class classification is an import task in machine learn-
ing, with numerous applications such as text categorization,
image annotation, etc. Estimating the generalization perfor-
mance of algorithms is useful for understanding the factors
that influence their behavior, as well as suggesting ways to
improve them. Many works have studied generalization abil-
ity of supervised multi-class classification, but there are still
a lot of statistical challenges in the semi-supervised case.

To study the generalization ability of multi-class classifi-
cation algorithms, researchers have developed useful tools to
measure the richness of the hypothesis space, including data-
independent measures and data-dependent measures. Data-
independent measures, such as VC-dimension [Allwein et al.,
2000] and Natarajan dimension [Daniely et al., 2015], typ-
ically provide conservative multi-class bounds. As one of
the most successful data-dependent complexity measures, the
Rademacher complexity was first introduced into the multi-
class setting in [Koltchinskii et al., 2001] and further studied
in [Cortes et al., 2013; Maximov and Reshetova, 2016]. The
convergence rates of multi-class classification bounds using
Rademacher complexity areO(K/

√
n) at best, where K and

n are the number of classes and the size of labeled samples,
respectively. A delicate error bound which exhibits logarith-
mic dependence on the class size was proposed in [Lei et al.,
2015]. While the global Rademacher complexity captures the
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complexity of the entire class, the local Rademacher com-
plexity is used to choose a favorable subset from the hypoth-
esis space [Bartlett et al., 2005], always leading better statis-
tical properties. The state-of-the-art error bound of kernel-
based multi-class classification was established in [Li et al.,
2018] by using the local Rademacher complexity.

In this paper, we derive a novel data-dependent generaliza-
tion error bound for multi-class classification in linear space
by using the notion of the local Rademacher complexity and
additional unlabeled samples. The convergence rate of the
bound is O

(
K/
√
n+ u + 1/n

)
, where u is the number of

unlabeled samples, which is much faster than the rate of com-
mon bounds O(K/

√
n). Further, motived by the statisti-

cal analysis, we devise an efficient multi-class classification
algorithm by combining the local Rademacher complexity
and unlabeled samples. Our approach improves both com-
putational efficiency and statistical guarantee. Computational
gains come from linear multi-class estimator and stochastic
gradient descent algorithm on the primal form. Statistical
gains lie in a smaller hypothesis space by using the local
Rademacher complexity and unlabeled samples. Experiential
learning reveals our approach outperforms other linear multi-
class algorithms with or without unlabeled data.

1.1 Related Work
By using the local Rademacher complexity, a sharper multi-
class error bound with fast rateO

(
log2K/n

)
was reached in

[Li et al., 2018]. But it focused on supervised settings and
kernel-based estimators which limits its applications in real-
world datasets. For partially labeled data in multi-class set-
tings, much progress has been accomplished in algorithmic
front, but there are still a lot of challenges in theoretical front.
Theoretical results for semi-supervised learning mainly con-
sider the binary case, such as generalization analysis based on
the global Rademacher complexity [Balcan and Blum, 2010;
Oneto et al., 2011] and based on the local Rademacher com-
plexity [Oneto et al., 2015]. In semi-supervised margin-based
multi-class learning, the global Rademacher complexity for
multi-class classifier trained with a two-step semi-supervised
model is exploited in [Maximov et al., 2018], of which the
convergence rate is O

(√
K/n + K

√
K/u

)
. In this work,

we derive a much shaper generalization bound for multi-class
classification with fast rate O

(
K/
√
n+ u + 1/n

)
, by using

the local Rademacher complexity and unlabeled samples.
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2 Problem Definition
In a standard semi-supervised learning setting, a set of labeled
samples Dl = {(x1, y1), · · · , (xn, yn)} are i.i.d. sampled
from distribution µ over X × Y and unlabeled ones Du =
{x1, · · · ,xu} are i.i.d. drawn according to the marginal dis-
tribution µX of µ over X , typically n� u. Further, we con-
sider multi-class classification with K ≥ 2 categories, where
xi ∈ Rd and yi ∈ {1, 2, · · · ,K}.

2.1 Maximum Margin Multi-Class Classification
To evaluate the probability of x belonging to each category,
we wish to learn a scoring rule from the hypothesis spaceH

h(x) = WTx,

where h ∈ H,W ∈ Rd×K and x ∈ Rd, thus h is a vector-
valued function with mapping X → RK . The predictor uses
the following mapping to predict labels

x→ arg max
y

h(x, y),

where h(x, y) = [WTx]y means the y-th value in vector
WTx. For any hypothesis h ∈ H, the margin of a labeled
example (x, y) is defined as

ρh(x, y) = h(x, y)−max
y 6=y′

h(x, y′).

The h misclassifies example (x, y) if ρh(x, y) ≤ 0, thus the
expected risk incurred from using h for prediction is L(h) :=
Eµ[1ρ(x,y)≤0], where 1t≤0 is the 0-1 loss. Since 0-1 loss is
noncontinuous thus hard to deal with, we consider the popular
hinge loss `(ρh(x, y)) = |1−ρh(x, y)|+ which upper bounds
the 0-1 loss and its smooth extension the square hinge loss
`(ρh(x, y)) = (1− ρh(x, y))2+.

Let the expected loss be L(`) = Eµ[`(ρh(x, y))] and em-
pirical loss be L̂(`) = 1

n

∑n
i=1 `(ρh(x, y)) with respect to h.

The loss space associated withH is defined as bellow
L = {`(ρh(x, y))|h ∈ H} .

In theoretical analysis, we use two standard assumptions:
(1) Any `(ρh(x, y)) is continuous and bounded in [0, 1],

satisfied by normalized h(x).
(2) ` is L-Lipschitz continuous, such that
|`(ρh(x, y))− `(ρh(x′, y′))| ≤ L|ρh(x, y)− ρh(x′, y′)|.
Note that both hinge loss and square hinge loss satisfy the

above two assumptions.
Remark 1. Although the estimator is defined in linear space,
it can be extended into reproducing kernel Hilbert space by
feature mapping φ(·), i.e., κ(x,x′) = 〈φ(x), φ(x′)〉 where
κ : X × X → R be a Mercer kernel with φ being the associ-
ated feature mapping.

2.2 Definitions
Before theoretical analysis, we introduce some definitions.
Definition 1. Consider a local normalized loss space Lr

Lr =
{
α`|α ∈ [0, 1], ` ∈ L, L[(α`)2] ≤ r

}
,

where L[(α`)2] = Eµ[`2(ρh(x, y))]. And the corresponding
hypothesis space is defined as

Hr = {h|`(ρh(x, y)) ∈ Lr}.

Definition 2. The empirical Rademacher complexity of loss
space Lr on labeled data and all data are

R̂n(Lr) = Eσ sup
`∈Lr

1

n

n∑
i=1

σi`(h(xi, yi)),

R̂(Lr) = Eσ sup
`∈Lr

1

n+ u

n+u∑
i=1

σi`(h(xi, y
◦
i )),

where σ1, σ2, · · · , σn+u are {±1}-valued independent
Rademacher random variables with probability P(σi =
+1) = P(σi = −1) = 1/2. Their deterministic counterparts
areRn(Lr) = EµR̂n(Lr) andR(Lr) = EµR̂(Lr).
Definition 3. The empirical local Rademacher complexity of
hypothesis spaceHr on all data is defined as

R̂(Hr) = Eσ sup
h∈Hr

1

n+ u

n+u∑
i=1

σih(xi, y
◦
i ),

where σ1, σ2, · · · , σn+u are {±1}-valued independent
Rademacher random variables with probability P(σi =
+1) = P(σi = −1) = 1/2. The expected counterpart on
all data isR(Hr) = EµR̂(Hr).
Remark 2. For i ∈ {1, · · · , n}, labels of y◦i corresponds
to labels in Dl. For i ∈ {n + 1, · · · , n + u}, y◦i are pseudo-
labeled, as a consequence R̂(Hr) actually is not computable.

3 Shaper Generalization Error Bound
In this section, we present a shaper generalization error bound
for multi-class classification by using the local Rademacher
complexity and unlabeled data and consider the supervised
case in Corollary 1. Proof details are deferred in Section 7.
Theorem 1. For any ` ∈ Lr : X × Y → [0, 1], ∀k >
1, ‖W‖ ≤ 1 and ∀ δ ∈ (0, 1), the following holds with prob-
ability at least 1− δ,

L(`) ≤max
{ k

k − 1
L̂(`),

L̂(`) +
c1
n

+
c2

n+ u
+
c3K

∑
j>θ λj(W)
√
n+ u

}
,

where c1 = (3 + 4k) log(1/δ), c2 = 32kθ and c3 = 64kL,
λj(W) is the j largest singular value of matrix W.

Note that the bound partially depend on
∑
j>θ λj(W)

which represents the tail sum of singular values, while the
global Rademacher complexity bounds depend on the trace.
The convergence rate of above bound presented in Theorem
1 is O

(
1/n

)
or O

(
K
∑
j>θ λj(W)/

√
n+ u

)
, much faster

than common rate O(K/
√
n). When there is no unlabeled

data, namely u = 0, the result in Corollary 1 reduces to the
state-of-the-art multi-class bound [Li et al., 2018].
Corollary 1. For any ` ∈ Lr : X × Y → [0, 1], ∀k >
1, ‖W‖ ≤ 1 and ∀δ ∈ (0, 1), with probability at least 1− δ,

L(`) ≤max
{ k

k − 1
L̂(`),

L̂(`) +
c1 + c2
n

+
c3K

∑
j>θ λj(W)
√
n

}
,

where c1 = (3 + 4k) log(1/δ), c2 = 32kθ and c3 = 64kL.
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3.1 Comparison with Other Bounds
VC dimension Bound
VC-dimension is a general distribution free complexity mea-
sure in statistical learning. VC-dimension was applied to
generalization analysis in multi-class area [Allwein et al.,
2000] and a data-independent bound is derived: L(`) ≤
L̂(`) +O

(√
V logK/

√
n
)
, where V is the VC-dimension.

Rademacher Complexity Bounds
In terms of the global Rademacher complexity, a data depen-
dent margin-based multi-class classification bound was pro-
posed in [Koltchinskii and Panchenko, 2002], of which the
convergence rate is O

(
K2/
√
n
)
. Moreover, the bound was

improved to O
(
K/
√
n
)

in [Maximov and Reshetova, 2016].
Lei et al. stated a bound reducing the dependence on the
class size [Lei et al., 2015], that is O

(
(logK)/

√
n
)
. The

global Rademacher complexity multi-class bounds were ex-
tended into semi-supervised case in [Maximov et al., 2018],
of which the convergence rate is O

(√
K/n+K

√
K/u

)
.

Local Rademacher Complexity Bounds
As we all know, the local Rademacher complexity was firstly
presented in binary settings and obtained shaper error bounds
[Bartlett et al., 2005]. Furthermore, it was extended into
multi-class learning in [Li et al., 2018] and derived a sharper
data dependent bound only using labeled data.

In this paper, we propose a novel local Rademacher com-
plexity bound for multi-class learning using both labeled and
unlabeled samples in Theorem 1. When there is no unlabeled
samples available, we derive Corollary 1, achieving similar
bounds as [Li et al., 2018]. (1) In common case, we ob-
serve that the bound shown in Theorem 1 is at most of or-
der O

(
K/
√
n+ u + 1/n

)
, while convergence rate of others

is usually at O(K/
√
n), such that faster convergence rate

is obtained in the common case. (2) In the special case that
the singular values decrease exponentially, the convergence
rate is O

(
(c1 + c2) log2K/n

)
in [Li et al., 2018], while it

is O
(
c1/n

)
in Theorem 1, thus much smaller constant on

is derived in the special case. Therefore, the proposed lin-
ear multi-class approach improves current multi-class bounds
with faster convergence rate or smaller constant. Table 1
reports statistical properties of related approaches and ours.

Bounds Common Case Special Case

[Allwein et al., 2000] O
(√

V logK√
n

)
[Cortes et al., 2013] O

(
K√
n

)
[Maximov et al., 2018]† O

(√
K
n +K

√
K
u

)
[Li et al., 2018] O

(
(c1 + c2) log2K

n

)
Theorem 1† O

(
K√
n+u

+ 1
n

)
O
(
c1
n

)
Table 1: Comparison of multi-class classification error bounds, in-
cluding one VC-dimension bound, two global Rademacher com-
plexity bounds, and two local Rademacher complexity bounds. Here
n� u,K � n and † represents making use of unlabeled data.

4 Algorithms
4.1 Previous Works
Consider a similarity matrix S on entire n+ u examples and
the weight Sij represents the similarity between xi and xj ,
for example, kernel weights Sij = exp(−‖xi − xj‖2/σ2).
Motivated by continuity assumption that similar points share
same label, the cost function for multi-class classification is

E(h) =
n+u∑
i,j=1

Sij‖h(xi)− h(xj)‖22 = trace(WTXLXTW),

where X ∈ Rd×(n+u), graph Laplacian L = D−S and D is
a diagonal matrix with Dii =

∑n+u
j=1 Sij .

To make use of unlabeled samples, some novel algorithms
are developed for multi-class learning in semi-supervised set-
tings. Liu and Chang proposed transductive semi-supervised
multi-class learning by minimizing cost function E(h) to
propagate labels [Liu and Chang, 2009]. Instead of trans-
ductive learning, manifold regularization is introduced into
semi-supervised multi-class learning, which minimizes the
cost function together with empirical error and the penalty
of estimator complexity [Li and Guo, 2015; Li et al., 2017b].

4.2 Optimization
Theoretical analysis demonstrates that both the smaller tail
sum of singular values

∑
j>θ λj(W) and the number of

unlabeled samples can improve generalization performance.
Therefore, instead of traditional regularized empirical risk
minimization, we consider minimizing the combination of
the empirical loss, the penalty term on estimator complexity,
the local Rademacher complexity and Laplacian regulariza-
tion term in the following form

arg min
h∈Hr

1

n

n∑
i=1

`(h(xi), yi) + τA‖W‖2F

+τI trace(WTXLXTW) + τS
∑
j>θ

λj(W),
(1)

where `(h(xi), yi) = |1−(h(xi, yi)−maxy′ 6=yi h(xi, y
′))|+,

λj(W) denotes the j-th largest singular value of W ∈
Rd×K , and τA, τI and τS are regularization parameters. τI
can be set zero when there is no unlabeled data available.

Similar to the minimization of matrix trace, minimization
of the tail sum of singular values is also nonconvex, thus the
optimization problem in Eq. (1) is nonconvex. But minimiz-
ing the sum of a part of singular values is quite different from
minimizing the sum of all singular values. Generalized SVT
algorithms with two-step updating were designed [Lu et al.,
2015; Xu et al., 2016] to minimize the sum of a part of sin-
gular values. Based on generalized SVT methods, we devise
a proximal stochastic sub-gradient singular value threshold-
ing multi-class learning framework, named PS3VT which is
shown in Algorithm 1. The algorithm PS3VT updates W
twice in each iteration, firstly updating W according to first-
order sub-gradient of terms except for the tail sum of singu-
lar values, and then updating W with a closed form solution
given by singular value thresholding (SVT).
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4.3 SVT with Proximal Gradient
For the sake of simplification, we rewrite optimization (1) as

arg min
h∈Hr

τS
∑
j>θ

λj(W) + g(W) where

g(W) =
1

n

n∑
i=1

ω(W,xi)︷ ︸︸ ︷
|1− ([WTxi]yi − max

y′ 6=yi
[WTxi]y′)|+

+τA‖W‖2F + τI trace(WTXLXTW).

(2)

In each iteration, to obtain a tight surrogate of Eq. (2), we
keep τS

∑
j>θ λj(W) while relaxing g(W) only, that leads

Wt+1 = arg min
W

τS
∑
j>θ

λj(W) + g(W)

= arg min
W

τS
∑
j>θ

λj(W) + g(Wt)

+ 〈∇g(Wt),W −Wt〉+
µ

2
‖W −Wt‖2F

= arg min
W

τS
∑
j>θ

λj(W)

+
µ

2
‖W − (Wt − 1

µ
∇g(Wt)‖2F ,

(3)

where 1
µ actually is the step size to update gradients.

Proposition 1 (Theorem 6 of [Xu et al., 2016]). Let Q ∈
Rd×K with rank r and its SVD decomposition is Q =
UΣVT , where U ∈ Rd×r and V ∈ RK×r have orthogo-
nal columns, Σ is diagonal. Then,

Dθτ (Q) = arg min
W

1

2
‖W −Q‖2F + τ

∑
j>θ

λj(W)

 ,

is given by Dθτ = UΣθ
τV

T , where Σθ
τ is diagonal with

(Σθ
τ )jj =

{
Σjj , i ≤ θ,
max(0,Σjj − τ), i > θ.

4.4 Sub-Gradient
According to Eq. (3) and hinge loss is non-smooth, we need
to solve the sub-gradient of g(W). It is similar to solve the
SVM optimization problem in the primal, which has been
solved by Pegasos algorithm [Shalev-Shwartz et al., 2011].
We also consider sub-gradient descend method in PS3VT.
The sub-gradient of hinge loss in Eq. (2) is

∇ω(W,xi) =


0, [WTxi]yi − max

y′ 6=yi
[WTxi]y′ ≥ 1,

[0, · · · ,−xi︸︷︷︸
yi

, · · · , xi︸︷︷︸
y′

, · · · , 0]d×K , else.

Bacause gradient descend (GD) and stochastic gradient de-
scend (SGD) are suitable for different situations, we explore
them individually. In each iteration, for GD the gradient up-
dates on the entire dataset

∇g(W) =
1

n

n∑
i=1

∇ω(W,xi) + 2τAW + 2τIXLXTW.

Algorithm 1 Proximal Stochastic Sub-gradient Singular
Value Thresholding (PS3VT)

Input: X,y,W1, T, θ, µ, τA, τI , τS
Output: W

Compute Laplacian matrix L.
for t = 1, 2, · · · , T do

Choose sample xit ∈ Dl uniformly at random.
Compute sub-gradient∇g(Wt) sample xti ,

∇g(Wt,xit) = ∇ω(Wt,xti) + 2τAWt + 2τIXLXTWt

Compute SVD decomposition

UΣVT = Wt − 1

µ
∇g(Wt,xit)

Update Wt+1 using Proposition 1

Wt+1 = UΣθ
τS
µ

VT

Normalize Wt+1 by

Wt+1 = min
{

1, 1/‖Wt+1‖
}

Wt+1

end for

For SGD, the gradient updates on a random sample x′

∇g(W,x′) = ∇ω(W,x′) + 2τAW + 2τIXLXTW.

Applying Proposition 1, the update of Wt in equation (3)
becomes Wt+1 = Dθτ (Q) where

Q = Wt − 1

µ
∇g(Wt)

and τ = τS
µ . The updates combine gradient descent and SVT.

4.5 Time Complexity
The time complexity of each iteration consists of two parts:
sub-gradient and SVT in each iteration:

Sub-Gradient
Laplacian regularization related term XLXT is computed be-
fore iterations, and the computing XLXTW needsO

(
d2K

)
.

Time complexity is O
(
d2K

)
for SGD and O

(
ndK + d2K

)
for GD in each iteration.

Singular Values Thresholding (SVT)
In this part, SVD decomposition determines the time com-
plexity, which isO

(
min(d2K, dK2)

)
for both SGD and GD.

In each iteration, update of matrix W follows above two
steps, of which time complexity is determined by updat-
ing sub-gradient for SGD it is O

(
d2K

)
and for GD it is

O
(
ndK+d2K

)
. It is apparent that for the time complexity of

GD in each iteration is associated with labeled sample size n,
which is unfeasible when dealing with large datasets. While
SGD update gradients on a random sample in each iteration
with early stopping [Camoriano et al., 2016], thus it is more
suitable for large scale dataset. The total time complexity of
SGD is O(d2Kt), where t is the number of iterations.
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Parameters Optimization objectives
τI = 0, τS = 0 Linear-MC [Koltchinskii et al., 2001]
τI = 0, τS > 0 LRC-MC [Li et al., 2018]
τI > 0, τS = 0 SS-MC [Li et al., 2015]
τI > 0, τS > 0 PS3VT

Table 2: Connections with other algorithms

4.6 Connections with Other Algorithms
PS3VT is a generalized multi-class learning framework, of
which different parameters settings specialize PS3VT to
other multi-class classification algorithms. Let τA > 0 and
hinge loss in terms of multi-class maximum margin. Connec-
tions with other algorithms are reported in Table 2.

(1) When both of τI and τI are zeros, the form is max-
margin multi-class problem studied in [Koltchinskii et al.,
2001], which constitutes a strong baseline.

(2) When τI = 0 and τS > 0, the local Rademacher com-
plexity was applied on multi-class area, which was firstly
introduced into kernel-based multi-class learning [Li et al.,
2018], while ours in linear space.

(3) When τI > 0 and τS = 0, the problem becomes semi-
supervised multi-class learning, studied in [Li et al., 2015].

5 Experiments
In this section, we study the empirical behavior of our pro-
posed algorithm PS3VT with several experiments in terms
of test error, the convergence and relation between error
rate and rate of labeled data. For each dataset, we com-
pute the adjacency matrix S by 10-NN graph with similarity
Sij = e−‖xi−xj‖

2/σ2

, where σ =
∑n+u
i=1 ‖xi−xj‖/(n+u).

Laplacian graph is defined as L = D − W, where D

is the diagonal matrix with Dii =
∑n+u
j=1 Sij . For fair

comparison, before a method runs on any dataset, we em-
ploy 5-folds cross validation to obtain the optimal parameter
set by grid search over candidate sets complexity parameter
τA ∈ {10−15, 10−14, · · · , 10−6}, unlabeled samples param-
eter τI ∈ {0, 10−15, 10−14, · · · , 10−6}, local Rademacher
complexity parameter τS ∈ {0, 10−10, 10−9, · · · , 10−1},
step size 1

µ ∈ {101, 102, · · · , 105} and tail parameter θ ∈
{0.5, 0.6, · · · , 0.9} × min(|K|, |d|). Experiment 2 and Ex-
periment 3 run on a randomly selected dataset to compare the
convergences and influence of unlabeled samples.

Note that, in the algorithm, we use cross-validation to
tune those regularization parameters, which significantly in-
fluences the empirical performance of methods but also cause
a large computational burden. Beyond cross-validation, we
consider more efficient model selection tools [Li et al., 2017a;
Liu et al., 2017; Liu et al., 2019] to tune parameters in future.

5.1 Comparison of Test Error
We run PS3VT and the compared methods on 15 multi-class
datasets and report the results in Table 3. Labeled and unla-
beled samples are given by stratified random sampling from
train data that 30% as labeled samples and the rest as unla-
beled ones. To obtain stable results, we run methods on each

0 10 20 30

The number of iterations

0

20

40

60

80

E
rr

o
r 

R
a
te

(%
)

Linear-MC

LRC-MC

SS-MC

PS3VT

20 30 40 50 60 70 80 90 100

Labeled Samples Rate (%)

5
6
7
8
9

10
11
12
13

E
rr

o
r 

R
at

e(
%

) Linear-MC

LRC-MC

SS-MC

PS3VT

Figure 1: Error rate on pendigits. Left: Comparison of convergence
for different approaches. Right: Influence of the labeled sample rate.

dataset 30 times with randomly partition such that 70% data
for training and 30% data for testing. Further, those multiple
test errors allow the estimation of the statistical significance
of difference among methods. The statistical significance in
Table 3 refers to 95% level of significance under t-test.

The results in Table 3 show: (1) Our method outperforms
the others almost on all datasets except iris and satimage. (2)
The classical linear margin-based multi-class classification in
[Koltchinskii et al., 2001] was defeated by other methods on
all datasets. (3) Only combining the local Rademacher com-
plexity or unlabeled samples can still obtain better empirical
performance than the primal Linear-MC.

5.2 Comparison of Convergence
We explore the convergence of all methods on pendigits, un-
der the same parameters setting and data partition in the above
Experiment. The left of Figure 1 reports average test er-
rors various on iterations on pendigits, showing our proposed
PS3VT reaches a lower error rate than others, LRC-MC and
SS-MC give better convergence than Linear-MC as well. The
convergence speeds of all methods stay at the same level.

5.3 Influence of the Rate of Labeled Samples
The right of Figure 1 demonstrates the influence of the num-
ber of labeled samples. As the growth of the number of la-
beled samples, test errors of all methods decrease. PS3VT
outperforms the others and get similar results with LRC-MC
when all training data are labeled. Linear-MC is worse than
the others and gets similar results with SS-MC when all train-
ing data are labeled. SS-MC gives better test errors than LRC-
MC when the rate of labeled data is small, but the perfor-
mance of LRC-MC has an advantage over which of SS-MC
when the rate of labeled data is larger than 60%.

6 Conclusion
Motivated by the idea of taking advantage of unlabeled sam-
ples and local Rademacher complexity, we study the gen-
eralization behavior of multi-class classification. We com-
bine linear multi-class estimator with the local Rademacher
complexity and unlabeled samples, achieving a shaper multi-
class generalization error bound with faster convergence rate
or smaller constants. Driven by theoretical analysis, we pro-
pose a nonconvex optimization problem and design an effi-
cient stochastic gradient descent algorithm to solve it. Fur-
ther, our theoretical analysis and algorithm can be improved
by Random Feature and extended to multi-label learning.
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Approaches Linear-MC LRC-MC SS-MC PS3VT
iris 27.12±5.36 24.57±6.13 23.53±5.04 23.71±5.22

wine 8.77±3.22 8.33±5.22 8.20±4.12 7.63±3.88
glass 48.68±5.32 47.46±5.40 46.68±4.83 46.28±5.18

svmguide2 23.31±3.86 22.42±3.68 22.33±3.99 21.37±3.46
vowel 47.40±3.73 47.05±2.89 46.66±3.36 45.74±3.15
vehicle 33.78±2.17 29.74±2.41 29.67±2.73 28.53±2.48

dna 8.83±0.94 8.69±0.86 8.56±0.78 8.56±0.78
segment 26.69±2.20 26.84±2.37 26.28±2.30 26.09±2.20
satimage 15.94±0.83 15.88±0.83 15.92±0.87 15.89±0.82
pendigits 10.22±0.89 8.37±0.53 7.24±0.44 6.46±0.37

usps 7.19±0.42 7.09±0.41 7.10±0.41 7.06±0.45
shuttle 23.25±0.32 21.61±0.31 21.55±0.28 21.48±0.28
letter 28.31±0.54 26.98±0.49 26.92±0.52 26.91±0.48
poker 52.34±0.50 50.30±0.38 50.22±0.40 50.11±0.45

Sensorless 54.71±1.26 54.04±1.46 53.15±1.43 52.50±1.22

Table 3: Comparison of test err (%) among our proposed PS3VT and other methods listed in Table 2. For each dataset, we bold the optimal
test error and underline results in other methods which show no significant difference from the optimal one.

7 Proof
Theorem 2. For any ` ∈ Lr : X × Y → [0, 1], consider
a sub-root function ψ(r) with fixed point r∗ and such that
∀r > r∗, KLR(Hr) ≤ ψ(r), then ∀` ∈ Lr and ∀k > 1,
with probability at least 1− δ

L(`) ≤ max

{
k

k − 1
L̂(`), L̂(`) + c4r

∗ +
c1
n

}
,

where c1 = (3 + 4k) log(1/δ), c4 = 32k.

Proof. Since ` is L-Lipschitz continuous, exploiting the con-
traction inequality [Koltchinskii, 2011] and applying Lemma
1 in [Maximov and Reshetova, 2016], we have

R̂(Lr) =
1

n+ u
Eσ sup

`∈Lr

n+u∑
i=1

σi`(ρh(xi, y
◦
i ))

≤ 1

n+ u
Eσ sup

h∈Hr

n+u∑
i=1

σiLρh(xi, y
◦
i )

≤ L
K∑
j=1

1

n+ u
Eσ sup

h∈Hr

n+u∑
i=1

σih(xi, j) = L
K∑
j=1

R̂(Hr).

So we have R(Lr) ≤ KLR(Hr). According Lemma A.6 in
[Oneto et al., 2015], we haveRn(Lr) = R(Lr).

With Rn(Lr) ≤ KLR(Hr) ≤ ψ(r) and Theorem 3.3 in
[Bartlett et al., 2005] with α = 1, we complete the proof.

Theorem 3. Let W = UΣV be SVD decomposition of
W,U and V are unitary matrices with size of d × d and
K × K respectively, and Σ is a d × K matrix with singu-
lar values {λj} on the diagonal in descending order. As-
sume ‖W‖ ≤ 1, such that the local Rademacher complexity
R(Hr) over all examples is upper bounded by

R(Hr) ≤
1

KL

√
rθ

n+ u
+

∑
j>θ λj√
n+ u

.

Proof. Let Eµ‖xTi xi‖ ≤ K
√
r/L by normalization. Accord-

ing to Definition 1 that L(`2) ≤ r, let

L(`2) = Eµ [`(ρh(x, y))]
2 ≤ L2Eµ[h(x, y)−max

y′ 6=y
h(x, y′))]2

≤ L2Eµ[h(x, y)]2 ≤ L2Eµ[WT
·yx]2

≤ L2Eµ‖WTx‖2 ≤ KL
√
rEµ‖WTW‖ ≤ r

So subset space of hypothesisHr is satisfied L(`2) ≤ r when
Eµ‖WTW‖ ≤

√
r

KL . By proof in Theorem 5 of [Xu et al.,
2016] with Eµ‖WTW‖ ≤

√
r

KL , we complete the proof.

Proof of Theorem 1. Applying Theorem 3 we have

KLR(Hr) ≤
√

rθ

n+ u
+
KL

∑
j>θ λj√

n+ u
.

That is KLR(Hr) ≤ A
√
r +B when we set

A =

√
θ

n+ u
, B =

KL
∑
j>θ λj√

n+ u

Properties of sub-root function also show that ψ(r) ≤ r
where r > r∗, thus there is KLR(Hr) ≤ r.
Based on KLR(Hr) ≤ A

√
r + B and KLR(Hr) ≤ r, we

consider choose r∗ by solution of A
√
r +B = r, such that

r∗ ≤ θ

n+ u
+

2KL
∑
j>θ λj√

n+ u

Applying the above into Theorem 2, we finish the proof.
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