Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Dense Transformer Networks for Brain Electron Microscopy Image Segmentation

Jun Li', Yongjun Chen', Lei Cai', Ian Davidson? and Shuiwang Ji**

'Washington State University
2University of California, Davis
3Texas A&M University

{jun.li3, yongjun.chen, lei.cai} @wsu.edu, davidson@cs.ucdavis.edu, sji@tamu.edu

Abstract

The key idea of current deep learning methods for
dense prediction is to apply a model on a regu-
lar patch centered on each pixel to make pixel-
wise predictions. These methods are limited in the
sense that the patches are determined by network
architecture instead of learned from data. In this
work, we propose the dense transformer networks,
which can learn the shapes and sizes of patches
from data. The dense transformer networks em-
ploy an encoder-decoder architecture, and a pair of
dense transformer modules are inserted into each
of the encoder and decoder paths. The novelty of
this work is that we provide technical solutions for
learning the shapes and sizes of patches from data
and efficiently restoring the spatial correspondence
required for dense prediction. The proposed dense
transformer modules are differentiable, thus the en-
tire network can be trained. We apply the proposed
networks on biological image segmentation tasks
and show superior performance is achieved in com-
parison to baseline methods.

1 Introduction

In recent years, deep convolution neural networks (CNNs)
have achieved promising performance on many artificial in-
telligence tasks, including image recognition [LeCun er al.,
1998], object detection [Sermanet et al., 2014], and segmen-
tation [Chen er al., 2015]. Among these tasks, dense predic-
tion tasks take images as inputs and generate output maps
with similar or the same size as the inputs. For example,
in image semantic segmentation, we need to predict a la-
bel for each pixel on the input images [Long et al., 2015;
Noh et al., 2015]. Other examples include depth estima-
tion [Laina er al., 2016], image super-resolution [Dong et
al., 2016], and surface normal prediction [Eigen and Fergus,
2015]. These tasks can be generally considered as image-to-
image translation problems in which inputs are images, and
outputs are label maps [Isola et al., 2017].

Given the success of deep learning methods on image-
related applications, numerous recent attempts have been

*Contact Author

2894

made to solve dense prediction problems using CNNs. A
central idea of these methods is to extract a square patch
centered on each pixel and apply CNNs on each of them to
compute the label of the center pixel. The efficiency of these
approaches can be improved by using fully convolutional or
encoder-decoder networks. Specifically, fully convolutional
networks [Long et al., 2015] replace fully connected layers
with convolutional layers, thereby allowing inputs of arbi-
trary size during both training and test. In contrast, decon-
volution networks [Noh et al., 2015] employ an encoder-
decoder architecture. The encoder path extracts high-level
representations using convolutional and pooling layers. The
decoder path uses deconvolutional and up-pooling layers to
recovering the original spatial resolution. In order to trans-
mit information directly from encoder to decoder, the U-
Net [Ronneberger et al., 2015] adds skip connections [He et
al., 2016] between the corresponding encoder and decoder
layers. A common property of all these methods is that the
label of any pixel is determined by a regular (usually square)
patch centered on that pixel. Although these methods have
achieved considerable practical success, there are limitations
inherent in them. For example, once the network architec-
ture is determined, the patches used to predict the label of
each pixel is completely determined, and they are commonly
of the same size for all pixels. In addition, the patches are
usually of a regular shape, e.g., squares.

In this work, we propose the dense transformer networks
to address these limitations. Our method follows the encoder-
decoder architecture in which the encoder converts input im-
ages into high-level representations, and the decoder tries to
make pixel-wise predictions by recovering the original spatial
resolution. Under this framework, the label of each pixel is
also determined by a local patch on the input. Our method al-
lows the size and shape of every patch to be adaptive and data-
dependent. In order to achieve this goal, we propose to insert
a spatial transformer layer [Jaderberg et al., 2015] in the en-
coder part of our network. We propose to use nonlinear trans-
formations, such as these based on thin-plate splines [Book-
stein, 1989]. The nonlinear spatial transformer layer trans-
forms the feature maps into a different space. Therefore, per-
forming regular convolution and pooling operations in this
space corresponds to performing these operations on irregular
patches of different sizes in the original space. Since the non-
linear spatial transformations are learned automatically from

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

data, this corresponds to learning the size and shape of each
patch to be used as inputs for convolution and pooling opera-
tions.

There has been prior work on allowing spatial transfor-
mations or deformations in deep networks [Jaderberg et al.,
2015; Dai er al., 2017], but they do not address the spatial
correspondence problem, which is critical in dense predic-
tion tasks. The difficulty in applying spatial transformations
to dense prediction tasks lies in that the spatial correspon-
dence between input images and output label maps needs to
be preserved. A key innovation of this work is that we provide
a new technical solution that not only allows data-dependent
learning of patches but also enables the preservation of spa-
tial correspondence. Specifically, although the patches used
to predict pixel labels could be of different sizes and shapes,
we expect the patches to be in the spatial vicinity of pixels
whose labels are to be predicted. By applying the nonlinear
spatial transformer layers in the encoder path as described
above, the spatial locations of units on the intermediate fea-
ture maps after the spatial transformation layer may not be
preserved. Thus a reverse transformation is required to re-
store the spatial correspondence.

In order to restore the spatial correspondence between in-
puts and outputs, we propose to add a corresponding decoder
layer. A technical challenge in developing the decoder layer
is that we need to map values of units arranged on input regu-
lar grid to another set of units arranged on output grid, while
the nonlinear transformation could map input units to arbi-
trary locations on the output map. We develop a interpolation
method to address this challenge. Altogether, our work re-
sults in the dense transformer networks, which allow the pre-
diction of each pixel to adaptively choose the input patch in a
data-dependent manner. The dense transformer networks can
be trained end-to-end, and gradients can be back-propagated
through both the encoder and decoder layers. Experimental
results on biological images demonstrate the effectiveness of
the proposed dense transformer networks.

2 Spatial Transformer Networks Based on
Thin-Plate Spline

Spatial transformer networks [Jaderberg et al., 2015] are deep
models containing spatial transformer layers. These layers
explicitly compute a spatial transformation of the input fea-
ture maps. They can be inserted into convolutional neural net-
works to perform explicit spatial transformations. The spatial
transformer layers consist of three components; namely, the
localization network, grid generator and sampler.

The localization network takes a set of feature maps as in-
put and generates parameters to control the transformation. If
there are multiple feature maps, the same transformation is
applied to all of them. The grid generator constructs trans-
formation mapping between input and output grids based on
parameters computed from the localization network. The
sampler computes output feature maps based on input fea-
ture maps and the output of grid generator. The spatial trans-
former layers are generic and different types of transforma-
tions, e.g., affine transformation, projective transformation,
and thin-plate spline (TPS), can be used. Our proposed work

2895

is based on the TPS transformation, and it is not described in
detail in the original paper [Jaderberg ef al., 2015]. Thus we
provide more details below.

2.1 Localization Network

When there are multiple feature maps, the same transfor-
mation is applied to all of them. Thus, we assume there
is only one input feature map below. The TPS transforma-
tion is determined by 2K fiducial points among which K
points lie on the input feature map and the other K points
lie on the output feature map. On the output feature map,
the K fiducial points, whose coordinates are denoted as F=
[f1, fo, -+, frr] € R2XE are evenly distributed on a fixed
regular grid, where f; = [Z;, gj,;]T denotes the coordinates of
the ith point. The localization network is used to learn the K
fiducial points F' = [f1, fa,- -, fx] € R?*X on the input
feature map. Specifically, the localization network, denoted
as floc(+), takes the input feature maps U € RTXWXC a5 in-
put, where H, W and C are the height, width and number of
channels of input feature maps, and generates the normalized
coordinates F as the output as F' = fi,.(U).

A cascade of convolutional, pooling and fully-connected
layers is used to implement fj,.(-). The output of the final
fully-connected layer is the coordinates I on the input feature
map. Therefore, the number of output units of the localization
network is 2K . In order to ensure that the outputs are normal-
ized between —1 and 1, the activation function tanh(-) is used
in the fully-connected layer. Since the localization network is
differentiable, the K fiducial points can be learned from data
using error back-propagation.

2.2 Grid Generator

For each unit lying on a regular grid on the output fea-
ture map, the grid generator computes the coordinate of the
corresponding unit on the input feature map. This corre-
spondence is determined by the coordinates of the fiducial
points F' and F. Given the evenly distributed K points
F = [f1, fa, -+, fx] on the output feature map and the K
fiducial points F' = [f1, f2,-- - , fk] generated by the local-
ization network, the transformation matrix 7" in TPS can be
expressed as follows:

T T
= (A? x [e D e RPUEHY (1

where A 7 € RE+3)x(K+3) jg 3 matrix determined only by
Fas

1K %1 FT R
01><1 01><2 11><K
02><2 F

Aﬁ' — G R(K+3)X(K+3), (2)

02><1

where R € RE*E and its elements are defined as r; ; =

d; jInd; ;, and d; ; denotes the Euclidean distance between
fi and f7

Through the mapping, each unit (Z;, §;) on the output fea-
ture map corresponds to unit (z;, y;) on the input feature map.

To achieve this mapping, we represent the units on the regular

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Encoder Path Decoder Path
Input Spatial Hieh-level Spatial Output
gh-leve patial
Image E> Transformer |:> |:> . Dessiks ‘ Iizbel ‘
ap

|

Figure 1: The proposed dense transformer networks.

output grid by {f; }7 %W, where p; = [#;,] is the (z,y)-
coordinates of the ¢th unit on output grid, and H and W are
the height and width of output feature maps. Note that the
fiducial points {f;}/<, are a subset of the points {p;} %",
which are the set of all points on the regular output grid.

To apply the transformation, each point p; is first
extended from R? space to RE+3 space as ¢ =
(1, %4, Gi, 801,812, > sik])T € REF3 where s;; =

e ;Ine7 ;, and e, ; is the Euclidean distance between p; and
, :

f;. Then the transformation can be expressed as
pi = TG, (3)

where 7' is defined in Eq. (1). By this transformation, each
coordinate (Z;, ;) on the output feature map corresponds to
a coordinate (x;,y;) on the input feature map. Note that the
transformation 7' is defined so that the points F' map to points
F.

]T

2.3 Sampler

The sampler generates output feature maps based on input
feature maps and the outputs of grid generator. Each unit
p; on the output feature map corresponds to a unit p; on the
input feature map as computed by Eq. (3). However, the co-
ordinates p; = (z;,;)T computed by Eq. (3) may not lie
exactly on the input regular grid. In these cases, the output
values need to be interpolated from input values lying on reg-
ular grid. For example, a bilinear sampling method can be
used to achieve this. Specifically, given an input feature map

U € RH*XW the output feature map V € R¥*W can be
obtained as

H W
Vi=> " Unmmax(0, 1 |z;— m|) max(0, 1— |y;— nl)

n=1lm=1
L “)
fori = 1,2,--- | H x W, where V; is the value of pixel
i, Unm is the value at (n,m) on the input feature map,
pi = (zi,y:)T, and p; is computed from Eq. (3). By us-
ing the transformations, the spatial transformer networks have

2896

been shown to be invariant to some transformations on the in-
puts. Other recent studies have also attempted to make CNNs
to be invariant to various transformations [Jia et al., 2016;
Henriques and Vedaldi, 2016; Cohen and Welling, 2016;
Dieleman et al., 2016].

3 Dense Transformer Networks

The central idea of CNN-based method for dense prediction
is to extract a regular patch centered on each pixel and apply
CNNs to compute the label of that pixel. A common property
of these methods is that the label of each pixel is determined
by a regular (typically square) patch centered on that pixel.
Although these methods have been shown to be effective on
dense prediction problems, they lack the ability to learn the
sizes and shapes of patches in a data-dependent manner. For
a given network, the size of patches used to predict the labels
of each center pixel is determined by the network architec-
ture. Although multi-scale networks have been proposed to
allow patches of different sizes to be combined [Farabet et al.,
2013], the patch sizes are again determined by network archi-
tectures. In addition, the shapes of patches used in CNNs
are invariably regular, such as squares. Ideally, the shapes
of patches may depend on local image statistics around that
pixel and thus should be learned from data. In this work, we
propose the dense transformer networks to enable the learn-
ing of patch size and shape for each pixel.

As illustrated in Figure 2, features extracted by the origi-
nal convolutional operation corresponds to a regular path on
input feature maps. We employ a nonlinear TPS transforma-

tion in our model. Therefore, a regular patch f; fo f5f4 cor-
responds to an area f fo f3f4 with different shape and size.
The parameters of nonlinear transformation are learned by a
network based on inputs. Therefore, our model can learn an
appropriate transformation to achieve better performance. To
tackle the spatial correspondence problem, a reverse trans-
formation is used to restore the spatial correspondence. The
reverse TPS transformation share parameters with the TPS
transformation in the encoder network.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

i)
-

Input Image

L

i

—f f_)
shared transformation matrix

T
a--===- I FT
y T:[A;‘X{O}xz}] ©

ht
=t

aht

Output Image

Figure 2: Illustration of the dense transformer networks.

3.1 An Encoder-Decoder Architecture

In order to address the above limitations, we propose to de-
velop a dense transformer network model. Our model em-
ploys an encoder-decoder architecture in which the encoder
path extracts high-level representations using convolutional
and pooling layers and the decoder path uses deconvolution
and un-pooling to recover the original spatial resolution [Noh
et al., 2015; Ronneberger et al., 2015; Badrinarayanan et al.,
2015]. To enable the learning of size and shape of each patch
automatically from data, we propose to insert a spatial trans-
former module in the encoder path in our network. As has
been discussed above, the spatial transformer module trans-
forms the feature maps into a different space using nonlinear
transformations. Applying convolution and pooling opera-
tions on regular patches in the transformed space is equiv-
alent to operating on irregular patches of different sizes in
the original space. Since the spatial transformer module is
differentiable, its parameters can be learned with error back-
propagation algorithms. This is equivalent to learning the size
and shape of each patch from data.

Although the patches used to predict pixel labels could be
of different sizes and shapes, we expect the patches to include
the pixel in question at least. That is, the patches should be
in the spatial vicinity of pixels whose labels are to be pre-
dicted. By using the nonlinear spatial transformer layer in
encoder path, the spatial locations of units on the intermedi-
ate feature maps could have been changed. That is, due to this
nonlinear spatial transformation, the spatial correspondence
between input images and output label maps is not retained
in the feature maps after the spatial transformer layer. In or-
der to restore this spatial correspondence, we propose to add a
corresponding decoder layer, known as the dense transformer
decoder layer. This decoder layer transforms the intermedi-
ate feature maps back to the original input space, thereby re-
establishing the input-output spatial correspondence.

The spatial transformer module can be inserted after any
layer in the encoder path while the dense transform decoder
module should be inserted into the corresponding location
in decoder path. In our framework, the spatial transformer

2897

module is required to not only output the transformed feature
maps, but also the transformation itself that captures the spa-
tial correspondence between input and output feature maps.
This information will be used to restore the spatial corre-
spondence in the decoder module. Note that in the spatial
transformer encoder module, the transformation is computed
in the backward direction, i.e., from output to input feature
maps (Figure 1). In contrast, the dense transformer decoder
module uses a forward direction instead; that is, a mapping
from input to output feature maps. This encoder-decoder pair
can be implemented efficiently by sharing the transformation
parameters in these two modules.

A technical challenge in developing the dense transformer
decoder layer is that we need to map values of units arranged
on input regular grid to another set of units arranged on reg-
ular output grid, while the decoder could map to units at ar-
bitrary locations on the output map. That is, while we need
to compute the values of units lying on regular output grid
from values of units lying on regular input grid, the mapping
itself could map an input unit to an arbitrary location on the
output feature map, i.e., not necessarily to a unit lying exactly
on the output grid. To address this challenge, we develop a
sampler method for performing interpolation. We show that
the proposed samplers are differentiable, thus gradients can
be propagated through these modules. This makes the entire
dense transformer networks fully trainable. Formally, assume
that the encoder and decoder layers are inserted after the i-th
and j-th layers, respectively, then we have the following rela-
tionships:

Utlp) =
Uti(p) =

Sampling{U"(T'p)}, U'*"(Tp) = U’ (p),
Sampling{U7 ! (Tp)}, (5)

where U is the feature map of the i-th layer, p is the coor-
dinate of a point, 7 is the transformation defined in Eq. (1),
which maps from the coordinates of the (i + 1)-th layer to the
i-th layer, Sampling(-) denotes the sampler function.

From a geometric perspective, a value associated with an
estimated point in bilinear interpolation in Eq. (4) can be in-
terpreted as a linear combination of values at four neighbor-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

ing grid points. The weights for linear combination are ar-
eas of rectangles determined by the estimated points and four
neighboring grid points. For example, in Figure 1, when a
point is mapped to P on input grid, the contributions of points
A, B, C, and D to the estimated point P is determined by the
areas of the rectangles 51, S2, S3, and S;. However, the inter-
polation problem needs to be solved in the dense transformer
decoder layer is different with the one in the spatial trans-
former encoder layer, as illustrated in Figure 1. Specifically,
in the encoder layer, the points A, B, C, and D are associ-
ated with values computed from the previous layer, and the
interpolation problem needs to compute a value for P to be
propagated to the next layer. In contrast, in the decoder layer,
the point P is associated with a value computed from the pre-
vious layer, and the interpolation problem needs to compute
values for A, B, C, and D. Due to the different natures of
the interpolation problems need to be solved in the encoder
and decoder modules, we propose a new sampler that can ef-
ficiently interpolate over decimal points in the following sec-
tion.

3.2 Decoder Sampler

In the decoder sampler, we need to estimate values of regular
grid points based on those from arbitrary decimal points, i.e.,
those that do not lie on the regular grid. For example, in Fig-
ure 1, the value at point P is given from the previous layer.
After the TPS transformation in Eq. (3), it may be mapped
to an arbitrary point. Therefore, the values of grid points A,
B, C, and D need to be computed based on values from a set
of arbitrary points. If we compute the values from surround-
ing points as in the encoder layer, we might have to deal with
a complex interpolation problem over irregular quadrilater-
als. Those complex interpolation methods may yield more
accurate results, but we prefer a simpler and more efficient
method in this work. Specifically, we propose a new sam-
pling method, which distributes the value of P to the points
A, B, C, and D in an intuitive manner. Geometrically, the
weights associated with points A, B, C, and D are the area
of the rectangles S1, Sa, S3, and Sy, respectively (Figure 1).

In particular, given an input feature map V€ R¥*W the
output feature map U € R”*W can be obtained as
HxW
Snm = Z max(0,1 — |z; —m|)

=1

x max(0,1 — |y; — nl), (6)
1 HxW
Upm :Snm ; Vimax(0,1 — |z; — m|)
x max(0,1 — |y; — nl), @)

where V/ is the value of pixel i, p; = (x;, ;)7 is transformed
by the shared transformation 7" in Eq. (1), U, is the value
at the (n, m)-th location on the output feature map, Sy, is a
normalization term that is used to eliminate the effect that dif-
ferent grid points may receive values from different numbers
of arbitrary points, andn = 1,2,--- N,m =1,2,--- | M.
More details are given in Figure 2.

2898

In order to allow the backpropagation of errors, we define
the gradient with respect to U,,,, as dU,,,,,. Then the gradient
with respect to V,,,,, and x; can be derived as follows:

AUy max (0,1 — |z; — m|)

n=1m=1 Sn’m
x max(0,1 — |y; — n|), (8)
HxW
_dUnm
dSnum =—c5 Z Vi max(0,1 — |z; —m|)
STL’HL i=1
x max(0,1 — |y; — n|), ©)

H W
dUpm,

n=1m=1
0 if |m—uz|>1
X { 1 if m>ug . (10)
-1 if m<ua

A similar gradient can be derived for dy;. This provides us
with a differentiable sampling mechanism, which enables the
gradients flow back to both the input feature map and the sam-
pling layers.

4 Experimental Evaluation

We evaluate the proposed methods on two image segmenta-
tion tasks. The U-Net [Ronneberger et al., 2015] is adopted
as our base model in both tasks, as it has achieved state-of-
the-art performance on image segmentation tasks. Specifi-
cally, U-Net adds residual connections between the encoder
path and decoder path to incorporate both low-level and high-
level features. Other methods like SegNet [Badrinarayanan
et al., 20151, deconvolutional networks [Zeiler et al., 2010]
and FCN [Long et al., 2015] mainly differ from U-Net in
the up-sampling method and do not use residual connec-
tions. Experiments in prior work [Ronneberger et al., 2015;
Zeiler et al., 2010; Long e al., 2015] show that residual con-
nections are important while different up-sampling methods
lead to similar results. The network consists of 5 layers in the
encoder path and another corresponding 5 layers in the de-
coder path. A stack of two 3 x3 convolutional layers have the
same receptive field as a 5x5 convolutional layer, but with
less parameters [Simonyan and Zisserman, 2015]. Therefore,
we use 3 x3 kernels and one pixel padding to retain the size
of feature maps at each level.

In order to efficiently implement the transformations, we
insert the spatial encoder layer and dense transformer decoder
layer into corresponding positions at the same level. Using
spatial transformation layers at a deep position in the encoder-
decoder network can increase the receptive field of the spatial
transformation operation. Therefore, the layers are applied
to the 4th layer, and their performance is compared to the
basic U-Net model without spatial transformations. As for
the transformation layers, we use 16 fiducial points that are
evenly distributed on the output feature maps. In the dense
transformer decoder layer, if there are pixels that are not se-
lected on the output feature map, we apply an interpolation

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Figure 3: Example results generated by the U-Net and the proposed DTN models for the SNEMI3D data set.

DATA SET MODEL TRAINING PREDICTION
U-NET 14M18s 3M31s
SNEMI3D DTN 15mM41s 4M02s

Table 1: Training and prediction time on the two data sets using a
Tesla K40 GPU. We compare the training time of 10,000 iterations
and prediction time of 40 (SNEMI3D) images for the base U-Net
model and the DTN.

— DTN
osf | U-Net AUC: 0.86761
[[DTN AUC: 0.89532

True Positive Rate

.
o 01 02 03 04 05 06 07 08 09 1
False Positive Rate

Figure 4: Comparison of the ROC curves of the U-Net and the pro-
posed DTN model on the SNEMI3D data set.

strategy over its neighboring pixels on previous feature maps
to produce smooth results.

4.1 Brain Electron Microscopy Image
Segmentation

We evaluate the proposed methods on brain electron mi-
croscopy (EM) image segmentation task [Lee er al., 2015;
Ciresan et al., 2012], in which the ultimate goal is to re-
construct neurons at the micro-scale level. A critical step in
neuron reconstruction is to segment the EM images. We use
data set from the 3D Segmentation of Neurites in EM Im-
ages (SNEMI3D, http://brainiac2.mit.edu/SNEMI3D/). The
SNEMI3D data set consists of 100 1024 x1024 EM image
slices. Since we perform 2D transformations in this work,
each image slice is segmented separately in our experiments.
The task is to predict each pixel as either a boundary (denoted
as 1) or a non-boundary pixel (denoted as 0).

Our model can process images of arbitrary size. How-
ever, training on whole images may incur excessive mem-
ory requirement. In order to accelerate training, we randomly
pick 224x224 patches from the original images and use it

to train the networks. The experimental results in terms of
ROC curves are provided in Figure 4. We can observe that
the proposed DTN model achieves higher performance than
the baseline U-Net model, improving AUC from 0.8676 to
0.8953. These results demonstrate that the proposed DTN
model improves upon the baseline U-Net model, and the use
of the dense transformer encoder and decoder modules in the
U-Net architecture results in improved performance. Some
example results along with the raw images and ground truth
label maps are given in Figure 3.

4.2 Timing Comparison

Table 1 shows the comparison of training and prediction time
between the U-Net model and the proposed DTN model on
the two data sets. We can see that adding DTN layers leads to
only slight increase in training and prediction time.

5 Conclusion

In this work, we propose the dense transformer networks to
enable the automatic learning of patch sizes and shapes in
dense prediction tasks. This is achieved by transforming the
intermediate feature maps to a different space using nonlinear
transformations. A unique challenge in dense prediction tasks
is that, the spatial correspondence between inputs and outputs
should be preserved in order to make pixel-wise predictions.
To this end, we develop the dense transformer decoder layer
to restore the spatial correspondence. The proposed dense
transformer modules are differentiable. Thus the entire net-
work can be trained from end to end. Experimental results
show that adding the spatial transformer and decoder layers
to existing models leads to improved performance. To the
best of our knowledge, our work represents the first attempt
to enable the learning of patch size and shape in dense pre-
diction. The current study only adds one encoder layer and
one decoder layer in the baseline models. We will explore
the possibility of adding multiple encoder and decoder layers
at different locations of the baseline model. In this work, we
develop a simple and efficient decoder sampler for interpo-
lation. A more complex method based on irregular quadri-
laterals might be more accurate and will be explored in the
future.

Acknowledgments

This work was supported in part by National Science Foun-
dation grants IIS-1615035 and DBI1641223.

2899

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

References

[Badrinarayanan er al., 2015] Vijay Badrinarayanan, Alex
Kendall, and Roberto Cipolla. Segnet: A deep convolu-
tional encoder-decoder architecture for image segmenta-
tion. arXiv preprint arXiv:1511.00561, 2015.

[Bookstein, 1989] Fred L. Bookstein. Principal warps: Thin-
plate splines and the decomposition of deformations. /EEE

Transactions on pattern analysis and machine intelli-
gence, 11(6):567-585, 1989.

[Chen et al., 2015] Liang-Chieh Chen, George Papandreou,
Tasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Se-
mantic image segmentation with deep convolutional nets
and fully connected CRFs. In Proceedings of the Interna-
tional Conference on Learning Representations, 2015.

[Ciresan et al., 2012] Dan Ciresan, Alessandro Giusti,
Luca M Gambardella, and Jiirgen Schmidhuber. Deep
neural networks segment neuronal membranes in electron
microscopy images. In Advances in neural information
processing systems, pages 2843-2851, 2012.

[Cohen and Welling, 2016] Taco Cohen and Max Welling.
Group equivariant convolutional networks. In Proceedings
of The 33rd International Conference on Machine Learn-
ing, pages 2990-2999, 2016.

[Dai et al., 2017] Jifeng Dai, Haozhi Qi, Yuwen Xiong,
Yi Li, Guodong Zhang, Han Hu, and Yichen Wei.
Deformable convolutional networks. arXiv preprint
arXiv:1703.06211, 2017.

[Dieleman et al., 2016] Sander Dieleman, Jeffrey De Fauw,
and Koray Kavukcuoglu. Exploiting cyclic symmetry in
convolutional neural networks. In Proceedings of The 33rd

International Conference on Machine Learning, pages
1889-1898, 2016.

[Dong et al., 2016] Chao Dong, Chen Change Loy, Kaiming
He, and Xiaoou Tang. Image super-resolution using deep

convolutional networks. [IEEE transactions on pattern
analysis and machine intelligence, 38(2):295-307, 2016.

[Eigen and Fergus, 2015] David Eigen and Rob Fergus. Pre-
dicting depth, surface normals and semantic labels with a
common multi-scale convolutional architecture. In Pro-
ceedings of the IEEE International Conference on Com-
puter Vision, pages 2650-2658, 2015.

[Farabet et al., 2013] Clement Farabet, Camille Couprie,
Laurent Najman, and Yann LeCun. Learning hierarchi-
cal features for scene labeling. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 35(8):1915-1929,
2013.

[He ef al., 2016] Kaiming He, Xiangyu Zhang, Shaoging
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2016.

[Henriques and Vedaldi, 2016] Jodao F Henriques and An-
drea Vedaldi. Warped convolutions: Efficient invariance to
spatial transformations. arXiv preprint arXiv:1609.04382,
2016.

2900

[Tsola er al., 2017] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou,
and Alexei A Efros. Image-to-image translation with con-
ditional adversarial networks. arXiv preprint, 2017.

[Jaderberg et al., 2015] Max Jaderberg, Karen Simonyan,
Andrew Zisserman, et al. Spatial transformer networks. In
Advances in neural information processing systems, pages
2017-2025, 2015.

[Jia er al., 2016] Xu Jia, Bert De Brabandere, Tinne Tuyte-
laars, and Luc V Gool. Dynamic filter networks. In Ad-
vances in Neural Information Processing Systems, pages
667-675, 2016.

[Laina er al., 2016] Tro Laina, Christian Rupprecht, Vasileios
Belagiannis, Federico Tombari, and Nassir Navab. Deeper
depth prediction with fully convolutional residual net-
works. In 3D Vision (3DV), 2016 Fourth International
Conference on, pages 239-248. IEEE, 2016.

[LeCun et al., 1998] Y. LeCun, L. Bottou, Y. Bengio, and
P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324,
November 1998.

[Lee et al., 2015] Kisuk Lee, Aleksandar Zlateski, Vish-
wanathan Ashwin, and H Sebastian Seung. Recursive
training of 2D-3D convolutional networks for neuronal
boundary prediction. In Advances in Neural Information
Processing Systems, pages 3573-3581, 2015.

[Long et al., 2015] Jonathan Long, Evan Shelhamer, and
Trevor Darrell. Fully convolutional networks for seman-
tic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3431—
3440, 2015.

[Noh et al., 2015] Hyeonwoo Noh, Seunghoon Hong, and
Bohyung Han. Learning deconvolution network for se-
mantic segmentation. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 1520-1528,
2015.

[Ronneberger et al., 2015] Olaf Ronneberger, Philipp Fis-
cher, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 234-241. Springer, 2015.

[Sermanet et al., 2014] Pierre Sermanet, David Eigen, Xi-
ang Zhang, Michael Mathieu, Rob Fergus, and Yann Le-
Cun. OverFeat: Integrated recognition, localization and
detection using convolutional networks. In Proceedings
of the International Conference on Learning Representa-
tions, April 2014.

[Simonyan and Zisserman, 2015] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks for
large-scale image recognition. In Proceedings of the Inter-
national Conference on Learning Representations, 2015.

[Zeiler et al., 2010] Matthew D Zeiler, Dilip Krishnan, Gra-
ham W Taylor, and Rob Fergus. Deconvolutional net-
works. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 2528-2535.
IEEE, 2010.

