Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Linear Time Complexity Time Series Clustering with Symbolic Pattern Forest

Xiaosheng Li'*, Jessica Lin' and Liang Zhao?

'Department of Computer Science, George Mason University, USA
2Department of Information Science and Technology, George Mason University, USA

{x1i22, jessica, 1zhao9} @ gmu.edu

Abstract

With increasing powering of data storage and ad-
vances in data generation and collection technolo-
gies, large volumes of time series data become
available and the content is changing rapidly. This
requires the data mining methods to have low time
complexity to handle the huge and fast-changing
data. This paper presents a novel time series
clustering algorithm that has linear time complex-
ity. The proposed algorithm partitions the data
by checking some randomly selected symbolic pat-
terns in the time series. Theoretical analysis is pro-
vided to show that group structures in the data can
be revealed from this process. We evaluate the pro-
posed algorithm extensively on all 85 datasets from
the well-known UCR time series archive, and com-
pare with the state-of-the-art approaches with sta-
tistical analysis. The results show that the proposed
method is faster, and achieves better accuracy com-
pared with other rival methods.

1 Introduction

Time series data widely exist in various scientific disciplines
and industrial processes, thus the mining of time series data
has attracted substantial interest. Time series clustering is one
of the most important tasks in time series data mining. As an
unsupervised technique, it does not require the data to be an-
notated or have class labels. Time series clustering has been
applied in a variety of domains including astronomy [Reb-
bapragada et al., 2009], finance [Kumar et al., 2002], and so
on [Aghabozorgi erf al., 2015].

Time series clustering problem can be formulated as, given
a set of unlabeled time series instances, to place them into
homogeneous and separated groups. In this paper, we con-
sider the partitional clustering problem of whole time series,
i.e. we regard a time series instance as an object and cluster
the time series objects into pairwise-disjoint groups.

With the advance of technologies, for example the sensors
are becoming lighter, smaller and cheaper, hence widely em-
bedded in various devices and machines, the amount of time
series data becomes huge and the content is changing rapidly.

*Contact Author

2930

This requires the data mining algorithms to have low time
complexity. Although there have been a wealth of work on
time series clustering, little work is on providing a linear time
solution with reasonable performance. Existing super-linear
time complexity methods may not be applicable when the
dataset is large, or when real-time analytics are required.

In this paper we propose a novel time series clustering al-
gorithm, called Symbolic Pattern Forest (SPF), which has lin-
ear time complexity. The approach checks if some randomly
selected symbolic patterns exist in the time series to partition
the data instances. This partition process is executed multiple
times, and the partitions are combined by ensemble to gener-
ate the final partition. We demonstrate that group structures in
the data can emerge from the random partition process. Fur-
ther analysis shows that the ensemble size needed to achieve
good results does not directly depend on the input data size,
and thus we can set the ensemble size to a proper fixed value
for a specific data pattern.

The application of symbolic patterns in SPF has several
benefits. Real-world time series often contain noise, am-
plitude change, phase-shift and irrelevant portion of data.
The normalization step in symbolization can provide scale-
invariance against the amplitude change. In the average and
symbolization step, some noise can be smoothed out. The
symbolic patterns do not preserve the pattern location in-
formation in the time series, thus they are not affected by
the phase-shift. If a time series contains a symbolic pattern
in some portion, changing the values in other portion does
not affect the appearance of the pattern, making SPF robust
against irrelevant data.

Further, the utilization of symbolic patterns makes the pat-
tern space finite, and we can use the symbolic patterns to par-
tition the data without using a distance measure. Checking
the boolean indicating array to assign clusters in SPF is effi-
cient as boolean operations are very fast. Boolean values are
space-efficient which can take more advantage of the CPU
cache to speed up the program.

We evaluate the SPF algorithm on all 85 datasets in the
well-known UCR time series archive [Chen ef al., 2015], and
compare with other state-of-the-art approaches with statisti-
cal analysis. The results show that SPF is better in accuracy
compared with other rival methods.

The rest of the paper is organized as follows. Section 2
provides the background and related work. Section 3 provides

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

the details of the proposed method and some analysis. The
experimental evaluation is presented in Section 4, and Section
5 concludes the paper.

2 Background and Related Work

2.1 Definitions and Notations

This subsection provides the definitions and notations to pre-
cisely describe the problem under investigation and to present
the proposed method.

Definition 2.1. A time series T is a ordered sequence of real-
value data points [t1,ta, . .., ty], where m is the length of the
time series.

Definition 2.2. A subsequence S of time series T is
a sequence of contiguous values taken from T: S =
[titit1y- .-, titi—1), where | is the length of the subse-
quence, 1 < i < m-—-Il+1land1 <1 < m. All the
subsequences of a certain length from a time series can be
extracted using a sliding window of the same length from the
first data point to the (m — | + 1)-th point.

Definition 2.3. Given a set of time series {T;}7—,, where n
is the number of time series instances, time series partitional
clustering assigns a group relationship c; for each T;, with
¢ =15 5 €{1,2,...,k}. rjis a group value and k is the
number of clusters. Usually we have k < m and k < n. For
presentation simplicity, we assume all the time series in the
dataset have the same length m. The proposed algorithm in
the paper can also work on datasets with varying-length time
series.

2.2 Related Work

Some research on time series clustering is based on the k-
means algorithm [MacQueen, 1967]. In the k-means algo-
rithm, the clustering group relationship is generated by an
iterative refinement procedure. In initialization, k centroids
are randomly selected. In each iteration, the distances from
the instances to the centroids are computed and the instances
are assigned to their nearest centroids. Centroids are then up-
dated according to the new assignment.

In the standard k-means algorithm, Euclidean Distance
(ED) [Faloutsos et al., 1994] is used as the distance metric
and arithmetic mean is adopted to calculate the centroids. It
is common for real-world time series data to contain phase-
shift, warping, distortion and amplitude change. The simple
ED may not be able to cope with these situations. Therefore,
many time series distances measures are proposed [Wang et
al., 2013], and one of the most popular ones is the Dynamic
Time Warping (DTW) [Berndt and Clifford, 1994] which can
align the data points from the two time series under compari-
son to find the optimal matching.

Methods of generating centroids under new time series
distance measures have been proposed. Examples of these
methods are NonLinear Alignment and Averaging Filters
(NLAAF) [Gupta er al., 1996], Prioritized Shape Averaging
(PSA) [Niennattrakul and Ratanamahatana, 2009] and Dy-
namic Time Warping Barycenter Averaging (DBA) [Petitjean
etal.,2011].

2931

K-shape [Paparrizos and Gravano, 2015] is one of the
state-of-the-art time series algorithms based on k-means.
It proposes a distance measure called Shape Based Dis-
tance (SBD), which is based on the cross-correlation of the
time series. The centroids are generated by optimizing the
within-cluster squared normalized cross-correlation between
the centroids and the time series instances.

Another category of algorithms on time series clustering
transform the time series into flat features and then apply clas-
sic clustering algorithms on the features to generate the clus-
ter assignment. In [Kumar et al., 2005], the authors transform
a time series into a bitmap, which is composed of the counts
of all the symbolic patterns in time series. The bitmap rep-
resentation provides a new distance measure for the classic
clustering algorithms to run on time series data.

In the work by Zakaria et al. [Zakaria et al., 2012], the au-
thors propose to enumerate all the subsequences in the time
series dataset to select a subset of subsequences called U-
shapelets that can best separate the data. The distances be-
tween the time series and these subsequences are computed
and regarded as new feature values. Finally k-means is ap-
plied on the new feature values to get the clustering result.
Although the shapelet-based method and the proposed tech-
nique both use local shapes in time series for clustering, they
are quite different. The shapelet-based method adopts an it-
erative procedure to refine the clusters, while the proposed
algorithm directly partitions the data and combines the parti-
tions to get the clusters.

In a recent work [Zhang et al., 2016], instead of enu-
merating all the subsequences in the time series dataset, the
shapelets are learned by optimizing an objective function.

2.3 Symbolic Aggregate Approximation

Since our method uses Symbolic Aggregate approXimation
(SAX) [Lin et al., 2007] to transform a time series or subse-
quence to a symbolic pattern, we briefly introduce this tech-
nique. Figure 1 shows an example of transforming a subse-
quence to a symbolic pattern (SAX word). The subsequence
is z-normalized and divided into w segments (w is 2 in this
example). The mean value for each segment is computed (the
green line and yellow line in the figure for the two segments
respectively). These mean values are mapped to symbols ac-
cording to a set of break points (the gray lines in the figure).
These break points divide the value space in equal-probable
regions. In this example the alphabet size of SAX is 4 (with
an alphabet of ‘a’, ‘b’, ‘c’ and ‘d’). The subsequence in the
figure is transformed to the symbolic pattern “da”. The alpha-
bet size ~, number of segments (word length) w, and subse-
quence length [are supplied by the users.

3 Symbolic Pattern Forest

For clarity, we present a small concrete example to illustrate
the idea of the proposed method. Then we provide the formal
description and analysis of the algorithm.

3.1 A Concrete Illustrative Example

Figure 2 (Left) shows a small dataset of 4 time series in-
stances belonging to 2 different classes (in blue and red re-
spectively). These time series are taken from the FaceFour

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Subsequence to SAX Word

Value

osfP MA N A

B My

0 5 10 15 20 25 30 35 40

Figure 1: Transforming a subsequence to a symbolic pattern with
Symbolic Aggregate approXimation (SAX).

dataset from the UCR time series archive [Chen et al., 2015]
and the time series in the dataset reflect the face outlines of
different individuals under different conditions [Ratanama-
hatana and Keogh, 2004].

Given a set of SAX parameters, we can enumerate all
possible symbolic patterns. The proposed method randomly
picks a symbolic pattern from all available patterns, and
checks if the pattern exists in the time series instances. More
specifically, we use a sliding window of pre-defined length
to go through the time series and extract all subsequences of
the length. Each subsequence is transformed to a symbolic
pattern and compared with the randomly chosen pattern.

This process is repeated multiple times so here we can opti-
mize the process by scanning the time series in the beginning
and storing the appearance of each pattern in a boolean in-
dicating array. Boolean false (0) means the pattern does not
appear in the time series, and boolean true (1) indicates the
pattern appears. When checking a specific random pattern,
we can directly look at the boolean array without needing
to scan the time series again. Figure 2 (Center) shows the
boolean indicating arrays for the four time series on the left
respectively.

According to whether the time series contain a certain ran-
domly selected pattern, the time series are partitioned into
two groups. Those containing the pattern go to one group and
the others are assigned to the other group. These two groups
form two clusters. If the number of clusters k is more than 2,
we perform the division with a new random symbolic pattern
on the larger group. Previously chosen symbolic patterns are
excluded from the pool of available pattern candidates. This
process continues until we obtain k clusters, and the tree con-
structed from the procedure is called Symbolic Pattern Tree
(SPT).

The above procedure are repeated multiple times, and mul-
tiple trees are constructed as a result, hence the name Sym-
bolic Pattern Forest (SPF). Each tree is a partition of the data,
and we combine the partitions in the forest by ensemble to
get the final output partition.

The main idea of the symbolic pattern tree is that it uses
a symbolic pattern to separate different time series groups.
If a pattern appears in all the instances, it cannot separate
the instances and thus we can exclude it from the symbolic
pattern candidate pool. The same applies to the patterns that

2932

do not appear in any instances.

In SPFE, the number of occurrences for each pattern in the
dataset is counted, and the patterns with a count greater than
an upper bound or less than a lower bound are excluded from
the symbolic pattern candidate pool. The settings of these two
bounds will be introduced later. Figure 2 (Right) shows the
total occurrence count of each pattern in the dataset, as well
as the final symbolic pattern candidate “da”. SPF will select
“da”, which can separate the two classes into two clusters
correctly.

3.2 SPF Algorithm

Cluster Ensemble

In SPF, each SPT generates a cluster assignment for all the
time series instances, and these clusters are combined by en-
semble to generate the final cluster assignment. Hybrid Bi-
partite Graph Formulation (HBGF) [Fern and Brodley, 2004]
is adopted in SPF to perform the cluster ensemble. HBGF
has a linear time complexity. The idea of HBGF is to build a
graph model where the instances and clusters of the ensemble
are the vertices. Partitioning the graph generates the ensem-
ble consensus clusters. In our implementation, we use Metis
[Karypis and Kumar, 1998] to partition the graph.

Efficient SAX Computation

In SPF, we need to compute the SAX symbolic pattern of each
subsequence in the time series. The cumulative sum tech-
nique in [Li and Lin, 2017] is applied to calculate the sym-
bolic pattern of an arbitrary subsequence in O(1) time (given
the cumulative sums). The cumulative sum series U and cu-
mulative squared sum series V' of a time series 1" can be com-
putedas: u; = > 7_ t;i,v; =57 2, wherej=1,...,m
and ug, vg are set to 0.

For a subsequence © = [t;,...,t;4;—1], the mean value
W, and standard deviation o, can be calculated as: p, =
(Uit — wi—1)/l, 03 = \/(Vigs — vi—1)/l — p2. x is divided
in w segments and each of the segment is mapped to a symbol.
The normalized mean value of a segment y = [t;,...,t;] is
py = ((wj —wi—1)/(j —i+1) — py) /0. Then p, is mapped
to a fixed break points region and transformed to a respective
symbol [Lin et al., 2007].

Parameters of SAX

In SAX the number of segments w, alphabet size v, and sub-
sequence length [are user-set parameters. In SPF, + is set to
4 as previous research [Lin et al., 2007] suggests this value
is suitable for most datasets. A grid search on the combina-
tions of w and [is performed. Each combination will gener-
ate a cluster assignment and all these assignments are com-
bined by ensemble to give the final algorithm output. w takes
the values from wd = {3,4,5,6,7} and [takes the values
from wl = {0.025,0.05,0.075,...,1}m, i.e. an arithmetic
sequence from 0.025m to m with a common difference of
0.025m, where m is the length of the time series. Duplicate
values and values less than 10 are removed. In total at most
200 ! and w combinations are tested.

Algorithm 1 gives the pseudo-code of SPF. Given a time
series dataset D, an ensemble size ¢ and the number of clus-
ters k, the algorithm returns a cluster assignment C' as output.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

N

Class-2
Value
N o N £
Appearance
o N
Appearance-all
o

0 50 100

N

0 50 100

Class-2
Value
N o N S~
Appearance

Class-3
Value

4
2
A
-2

0 50 100 o
o

Class-3
Value

]

4
2
0
2

0 50 100

Appearance Appearance
o - o N
Symbolic Pattern Candidates

Figure 2: An illustrative example of the SPF clustering process. (Left) Time series from 2 classes. (Center) Boolean indicating arrays of the
time series on the left. (Right) Total appearance count of each pattern and final symbolic pattern candidates.

Algorithm 1 Symbolic Pattern Forest (SPF)

Input:
D: time series dataset
q: ensemble size
k: number of clusters
QOutput:
C': cluster assignment of D
1: T = loadData(D)

2: [U,V] = CumulativeSum(T)

3: for each w € wd do

4. foreach! € wl do

5: SP = SymbolicPattern(T,w,l,U, V)
6: PC = PatternCount(SP)

7: SPC = FindCandidates(PC)
8: for i = 1toqgdo

9: CA=SPT(SPC,SP,k)
10: ES.add(CA)

11: end for

12: CA2 = Ensemble(ES)
13: ES2.add(CA2)

14: end for

15: end for

16: C = Ensemble(ES2)

In Line 1, the dataset D is loaded and stored in 7. Line 2
computes the cumulative sum U and cumulative squared sum
V from T, which will be used to calculate the symbolic pat-
terns. Line 3-4 perform the grid search on w and [discussed
before. Line 5 calculates the symbolic pattern appearance
indicating boolean array SP. Line 6 counts the number of
occurrence of each symbolic pattern and stores the result in
PC. Line 7 takes the pattern count PC' to select the symbolic
pattern candidate S PC that will be used in the SPT random
selection process. The patterns that have a count greater than

2933

an upper bound or less than a lower bound are removed from
the candidate pool. In our method, we set the lower bound to
0.25 x n/k where n is the number of instances and k is the
number of clusters. The upper bound is set to n-0.25 x n/k.
These bounds are set so to remove non-distinguishing pat-
terns according to our experiments.

In Line 8-11, SPT uses the symbolic pattern candidates to
generate a cluster assignment C'A, and C'A is added to an en-
semble set F/.S. This process is repeated ¢ times. In Line 12,
we combine the cluster assignments in .S by ensemble and
get the consensus cluster assignment C A2. C'A2 is added to
the ensemble set £/52 in Line 13. Finally in Line 16, the clus-
ter assignments in £.S2 is combined by ensemble to receive
the final cluster assignment C' as the output of the algorithm.

3.3 Analysis of SPF

Time Complexity

Recall n denotes the number of time series instances, and m
denotes the length of time series. & is considered as a constant
much smaller than m and n. In Algorithm 1 the computation
of cumulative sums takes O(nm) time. The number of grid
search combinations is at most 200. It takes O(nm) time
to obtain the symbolic pattern boolean indicating arrays and
the symbolic pattern candidates. SPT takes O(n) time and
the ensemble process also takes O(n) time. So the total time
complexity of SPF is O(nm), which is linear to the input data
size.

Effectiveness of SPF

In this subsection we show that if there exists a group struc-
ture in the dataset related to one pattern or some patterns,
then SPF will output such group relationship. The intuition is
that the unrelated patterns distribute uniformly among the in-
stances so their effects cancel each other out in the ensemble,
and only the structure on the related patterns is maintained

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

and revealed. More formally, We have the following theo-
rem:

Theorem 3.1. Consider two instances T and Ts in the same
class, if they agree with each other on some related patterns,
then SPF will put them in the same cluster.

Proof. Assume [is the percentage of related patterns in the
symbolic candidate patterns. In the random selection process,
if a related pattern is selected, then P(C(T1) = C(T3z)) = 1,
where P(-) is the probability function and C(-) is the clus-
ter assignment function. If an unrelated pattern is selected,
P(C(T1) = C(Ty)) = P(C(Ty) # C(Tx)) = 1/2. So
overall P(C(T1) = C(T2)) = B x 14+ (1 —) x 1/2 and
P(C(Ty) # C(Tz)) = (1 — B) x 1/2. We have:

P(C(Th) = C(Tz)) > P(C(T) # C(T2)) (1)

Each tree is independent, according to the law of the large
numbers, when we have sufficiently large ensemble size:

Count(C(Th) = C(Tz)) > Count(C(Th) # C(T2)) (2)

where Count(C(Ty) = C(T%)) is the count of cases that T}
and 75 are in the same cluster. So in the ensemble result, 717}
and 75 are assigned in the same cluster. O

In the above analysis, we assume the ensemble size is suf-
ficiently large, the following theorem quantifies how large the
size should be.

Theorem 3.2. Assume the ensemble size is q, the lower bound
of q to receive a good clustering result is —21n o/ 32, where
I-«is the confidence level, [is the related pattern percentage
in the symbolic pattern candidate pool.

Proof. Let X denote the random variable where there are X
cases with C(T1) = C(T3). Then X follows the binomial
distribution:

HXz@z(Qﬁa—M“z 3)

where p = P(C(Ty) = C(Tz)). Equation (2) should hold
with high probability, so our goal can be formulated as:

P(X <z2)= H(1—p)P—"< 4
(X <z) ;<i>p(pTi<a @
where z = ¢/2, 1 — « is the confidence level, e.g. 95%. Here
considering Hoeffding’s inequality [Hoeffding, 1994]:

P(E[X] - X >t) < ¢ 2"’ (5)
where t > 0. Considering E[X] = p, we have:
P(E[X] - X >t) = P(qE[X] — ¢X > qt) 6)

=P(X <qp—qt)<e 2 (]
Let 2 = gp — qt, we have t = (qp — 2)/q:
P(X <z) <e 221 < o (8)

Recall z = ¢/2,p = 8 x 1+ (1 —) x 1/2, we can solve the
above inequality and get:
—2Ina

N C))
0

Here is a concrete example of this boundary value: let the
confidence level be 99% and assume 50% of the patterns in
the pattern candidate pool are related patterns. So o = 0.01
and 8 = 0.5, we get ¢ > 36.84.

One observation from equation (9) is that the ensemble size
lower bound does not directly depend on the number of in-
stances n and time series length m. In the experiment part
we will see the accuracy results do not change with fixed en-
semble size and varying instances numbers and time series
lengths, given the same data input type .

4 Experimental Evaluation

4.1 Experimental Setup

To evaluate the proposed algorithm, we run it on all 85
datasets from the UCR time series archive [Chen et al., 2015].
This public archive contains different types of labeled time
series from various fields. Each dataset in the archive contains
a training set and a testing set. We fuse both sets and use all
the data in the experiment. The results of SPF are compared
with other rival methods. The widely used k-means algorithm
[MacQueen, 1967] is selected as the baseline. Standard k-
means adopts ED as the distance metric and uses arithmetic
mean to calculate centroids. K-shape [Paparrizos and Gra-
vano, 2015] introduced in Section 2 is selected for compar-
ison as in [Paparrizos and Gravano, 2015] the authors show
k-shape is superior to other state-of-the-art time series clus-
tering algorithms (including those based on DTW).

The source code of k-shape and k-means are obtained from
the author of [Paparrizos and Gravano, 2015] and the code
is in Matlab. The number of iterations of k-shape and k-
means are set to 100 which is the same as in [Paparrizos
and Gravano, 2015]. The ensemble size of SPF is set to
100 in all the experiments. k& is set to equal the number
of classes of the dataset in use. Following [Paparrizos and
Gravano, 2015], we use the Rand Index to measure the ac-
curacy of the clustering results. Rand Index is defined as:
Rand Index = (TP +TN)/(TP+ TN + FP + FN),
where T'P is the number of instances belonging to the same
class and assigned in the same cluster, 7'V is the number of
instances belonging to different classes and assigned in dif-
ferent clusters, F'P is the number of instances belonging to
different classes but assigned in the same cluster, and F'N is
the number of instances belonging to the same class but as-
signed in different clusters.

To verify the time complexity of SPF, we run it on the
widely used CBF dataset [Saito and Coifman, 1994] of dif-
ferent sizes and record the average running time for each size.
This dataset is a synthetic dataset, so with its underlying data
generation rules in [Saito and Coifman, 1994], we can con-
veniently generate the datasets with different number of in-
stances and time series lengths.

The C++ source code of SPF is available in the supplemen-
tary material'. The experiments are conducted in a batch-
processing cluster. A single core of AMD Opteron Processor
6276 (2299 MHz) and 16 GB memory are used.

'http://mason.gmu.edu/~x1i22/SPF

2934

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2.4235 1.6588 SPF

19176 ychape

kmeans

Figure 3: Critical difference diagram of the comparison on Rand
Index.

4.2 Experimental Results

k-means, k-shape and SPF are run on the 85 datasets 10 times;
the average running time and average Rand Index on each
dataset are recorded. Due to space limitation, the results are
not listed here and all the results are available in the supple-
mentary material'. Here we present the summarization of the
comparison. Figure 3 shows the critical difference diagram
[Demsar, 2006] (at 95% confidence level) for the Rand In-
dex comparison. The value beside each method in the figure
is the rank mean (lower is better) for the respective method.
The methods that are connected by a bold bar have no signif-
icant difference.

From the figure one can see the accuracy of SPF is signif-
icantly better than that of k-means. SPF is also better than
k-shape in rank mean, but the difference is not significant.
So the overall accuracy of SPF is quite competitive. Per-
forming the Wilcoxon signed rank test on the Rand Index
result, the p-values between SPF and k-means, k-shape are
2.15 x 10~% and 5.69 x 1072 respectively. The conclusion
from the Wilcoxon signed rank test coincides with that from
the critical diagram.

The time complexities of k-means, k-shape and SPF are
O(nm), O(max(nm?,m?)), O(nm) respectively. Com-
pared with k-means, SPF has the same time complexity but
is significantly more accurate. Compared with k-shape, SPF
has lower time complexity and slightly better accuracy. The
total actual running time of k-means, k-shape and SPF on the
85 datasets are 1278, 19322, 1241 seconds respectively. Note
that these methods are implemented in different languages so
these time values just show how fast we can cluster the data
using the available source code.

Figure 4 shows the average running time of SPF on the
CBF datasets. The number of instances is changed from 1000
to 10000 and the length of time series is fixed at 1000. In the
figure, the x-axis value is the number of instances and the
y-axis value is the average running time of 30 runs. Linear
regression curve fitting is performed on the data and the black
line in the figure is the fit line. From the figure one can see
the R? value, which is the coefficient of determination of the
fitting, is 0.99356. This value is very close to 1, indicating
the average running time of SPF and the number of instances
have a strong linear relationship.

Figure 5 gives the average running time of SPF on the CBF
datasets of different lengths. The number of instances is fixed
at 1000 and the length is changing from 1000 to 10000. Each
time value in the figure is the average time of 30 runs. The
coefficient of determination R? value is 0.99923. This value
is very close to 1, indicating the average running time of SPF

2935

120 Running time on different number of instances

® SPF
100 F fit line

80

60 [
]

40 y = —1.0227 + 0.01166x

R? = 0.99356

Average running time (seconds)

20
¢

0 L L L L L L L L .
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of instances

Figure 4: Running time of SPF on different number of instances.

80 Running time on different instance lengths
® SPF

70 fit line

60
50

40
y = 4.3719 + 0.0069367z
R? =0.99923

30

Average running time (seconds)

201

10 L L L L L L L L .
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Length of time series

Figure 5: Running time of SPF on different time series lengths.

and the length of time series have a strong linear relationship.

The above results coincide with the time complexity analy-
sis in section 3.3. Also in the experiment we record the aver-
age Rand Index of SPF on different input combinations. The
Rand Index values remain the same at 1 under all the cases.
The ensemble size is fixed in the experiment, and this result is
in accord with the analysis in section 3.3, that given a certain
data type, the ensemble size to receive good accuracy results
does not directly depend on the number of instances or time
series lengths.

5 Conclusion

This paper presents a Symbolic Pattern Forest (SPF) algo-
rithm for time series clustering. The method partitions the
time series instances by checking some randomly selected
symbolic patterns and the partitions of multiple runs are com-
bined to give a final cluster assignment. Analysis is con-
ducted on the time complexity and effectiveness of the al-
gorithm. We evaluate the algorithm extensively on all 85
datasets from the UCR time series archive and the results
show that SPF is very competitive compared with other rival
methods.

Acknowledgments

The experiments were run on ARGO, a research comput-
ing cluster provided by the Office of Research Computing at
George Mason University, VA. (URL: http://orc.gmu.edu)

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

References

[Aghabozorgi ef al., 2015] Saeed Aghabozorgi, Ali Seyed
Shirkhorshidi, and Teh Ying Wah. Time-series clustering—
a decade review. Information Systems, 53:16-38, 2015.

[Berndt and Clifford, 1994] Donald J Berndt and James Clif-
ford. Using dynamic time warping to find patterns in time
series. In KDD workshop, volume 10, pages 359-370.
Seattle, WA, 1994.

[Chen et al., 2015] Yanping Chen, Eamonn Keogh, Bing Hu,
Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, and
Gustavo Batista. The ucr time series classification archive,
July 2015. www.cs.ucr.edu/~eamonn/time_series_data/,
last accessed on 06/25/2019.

[Demsar, 2006] Janez DemsSar. Statistical comparisons of
classifiers over multiple data sets. Journal of Machine
learning research, 7(Jan):1-30, 2006.

[Faloutsos et al., 1994] Christos Faloutsos, Mudumbai Ran-
ganathan, and Yannis Manolopoulos. Fast subsequence

matching in time-series databases, volume 23. ACM,
1994,

[Fern and Brodley, 2004] Xiaoli Zhang Fern and Carla E
Brodley. Solving cluster ensemble problems by bipartite
graph partitioning. In Proceedings of the twenty-first inter-
national conference on Machine learning, page 36. ACM,
2004.

[Gupta et al., 1996] Lalit Gupta, Dennis L Molfese, Ravi
Tammana, and Panagiotis G Simos. Nonlinear alignment
and averaging for estimating the evoked potential. /EEE
Transactions on Biomedical Engineering, 43(4):348-356,
1996.

[Hoeffding, 1994] Wassily Hoeffding. Probability inequal-
ities for sums of bounded random variables. In The
Collected Works of Wassily Hoeffding, pages 409—426.
Springer, 1994.

[Karypis and Kumar, 1998] George Karypis and Vipin Ku-
mar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM Journal on scientific Com-
puting, 20(1):359-392, 1998.

[Kumar et al., 2002] Mahesh Kumar, Nitin R Patel, and
Jonathan Woo. Clustering seasonality patterns in the
presence of errors. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pages 557-563. ACM, 2002.

[Kumar et al., 2005] Nitin Kumar, Venkata Nishanth Lolla,
Eamonn Keogh, Stefano Lonardi, Chotirat Ann Ratanama-
hatana, and Li Wei. Time-series bitmaps: a practical visu-
alization tool for working with large time series databases.
In Proceedings of the 2005 SIAM international conference
on data mining, pages 531-535. SIAM, 2005.

[Li and Lin, 2017] Xiaosheng Li and Jessica Lin. Linear
time complexity time series classification with bag-of-
pattern-features. In 2017 IEEE International Conference
on Data Mining (ICDM), pages 277-286. IEEE, 2017.

2936

[Lin et al., 2007] Jessica Lin, Eamonn Keogh, Li Wei, and
Stefano Lonardi. Experiencing sax: a novel symbolic rep-
resentation of time series. Data Mining and knowledge
discovery, 15(2):107-144, 2007.

[MacQueen, 1967] James MacQueen. Some methods for
classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathemat-
ical statistics and probability, volume 1, pages 281-297.
Oakland, CA, USA, 1967.

[Niennattrakul and Ratanamahatana, 2009] Vit Niennat-
trakul and Chotirat Ann Ratanamahatana. Shape
averaging under time warping. In 2009 6th International
Conference on Electrical Engineering/Electronics, Com-
puter, Telecommunications and Information Technology,
volume 2, pages 626-629. IEEE, 2009.

[Paparrizos and Gravano, 2015] John Paparrizos and Luis
Gravano. k-shape: Efficient and accurate clustering of
time series. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pages
1855-1870. ACM, 2015.

[Petitjean et al., 2011] Frangois Petitjean, Alain Ketterlin,
and Pierre Gancarski. A global averaging method for dy-
namic time warping, with applications to clustering. Pat-
tern Recognition, 44(3):678-693, 2011.

[Ratanamahatana and Keogh, 2004] Chotirat Ann
Ratanamahatana and Eamonn Keogh. Everything

you know about dynamic time warping is wrong. Citeseer,
2004.

[Rebbapragada er al., 2009] Umaa Rebbapragada, Pavlos
Protopapas, Carla E Brodley, and Charles Alcock. Find-
ing anomalous periodic time series. Machine learning,
74(3):281-313, 2009.

[Saito and Coifman, 1994] Naoki Saito and Ronald R Coif-
man. Local feature extraction and its applications using a
library of bases. PhD thesis, Yale University, 1994.

[Wang et al., 2013] Xiaoyue Wang, Abdullah Mueen, Hui
Ding, Goce Trajcevski, Peter Scheuermann, and Eamonn
Keogh. Experimental comparison of representation meth-
ods and distance measures for time series data. Data Min-
ing and Knowledge Discovery, 26(2):275-309, 2013.

[Zakaria ef al., 2012] Jesin Zakaria, Abdullah Mueen,
and Eamonn Keogh. Clustering time series using
unsupervised-shapelets. In 2012 IEEE 12th International
Conference on Data Mining, pages 785-794. IEEE, 2012.

[Zhang et al., 2016] Qin Zhang, Jia Wu, Hong Yang, Yingjie
Tian, and Chengqi Zhang. Unsupervised feature learning
from time series. In IJCAI, pages 2322-2328, 2016.

