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Abstract
Multi-view clustering has attracted increasing at-
tention in recent years by exploiting common clus-
tering structure across multiple views. Most exist-
ing multi-view clustering algorithms use shallow
and linear embedding functions to learn the com-
mon structure of multi-view data. However, these
methods cannot fully utilize the non-linear prop-
erty of multi-view data that is important to reveal
complex cluster structure. In this paper, we pro-
pose a novel multi-view clustering method, named
Deep Adversarial Multi-view Clustering (DAMC)
network, to learn the intrinsic structure embedded
in multi-view data. Specifically, our model adopts
deep auto-encoders to learn latent representations
shared by multiple views, and meanwhile lever-
ages adversarial training to further capture the data
distribution and disentangle the latent space. Ex-
perimental results on several real-world datasets
demonstrate the proposed method outperforms the
state-of art methods.

1 Introduction
Clustering analysis is a fundamental task in a wide range of
fields, such as machine learning, pattern recognition, com-
puter vision and data mining. A great deal of research ef-
forts have been made in this topic, among which multi-
view clustering [Yang and Wang, 2018] is with particular in-
terest. Multi-view data provide complementary information
for the clustering task, which is accessible in many real-
world applications. For example, an image could be charac-
terized by various descriptors, such as SIFT [Lowe, 2004],
histograms of oriented gradients (HOG) [Dalal and Triggs,
2005], GIST [Oliva and Torralba, 2001] and local binary pat-
tern (LBP) [Ojala et al., 2002]. As these features describe the
objects’ characteristics from distinct perspectives, they are re-
garded as multi-view data. Recently, multi-view clustering
(MVC) methods [Zhao et al., 2017; Luo et al., 2018] have
been developed rapidly, the key of which is to explore the
complementary information shared among multiple views.
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On the basis, many advanced MVC algorithms have been in-
vestigated in the last few decades.

For instance, [Liu et al., 2013b] solves this problem from
the perspective of non-negative matrix factorization, which
seeks a common latent factor through non-negative matrix
factorization among multiple views. Consistent and Spe-
cific Multi-View Subspace Clustering (CSMSC) [Luo et al.,
2018] formulates the self-expression property of multi-view
data using a common consistent representation and a set of
specific representations, which better fits real-world multi-
view datasets. Although traditional multi-view clustering al-
gorithms have achieved promising results, they mainly use
shallow and linear embedding functions to reveal the intrin-
sic structure of data, which are unable to model the non-linear
nature of complex data.

Recently, deep clustering has been proposed to exploit
deep neural networks for modeling the relationship among
data samples to get clustering results. For the single-view
clustering methods, DSC [Ji et al., 2017] uses stacked auto-
encoders as their based model and utilizes self-expressiveness
property to learn the affinity of data in a latent space.
DAC [Chang et al., 2017] recasts the clustering problem into
a binary pairwise-classification framework, which pushes to-
wards similar image pairs into the same cluster. DEC [Xie
et al., 2016] designs a new clustering objective function by
minimizing the KL divergence between the predicted cluster
label distribution with the predefined one. On another hand,
several recent attempts have been made to introduce deep
learning for solving the multi-view clustering problem. For
example, [Andrew et al., 2013] proposes a DNN extension of
CCA, termed as deep CCA, for multi-view clustering. For an-
other example, [Abavisani and Patel, 2018] employs convo-
lutional neural networks for unsupervised multi-modal sub-
space clustering. However, learning a low-dimensional latent
space across multiple views via deep neural networks is still
under explored.

In this paper, we propose a novel Deep Adversarial
Multi-view Clustering (DAMC) network to learn the intrin-
sic structure embedded in multi-view data (see Figure 1).
Our model develops multi-view auto-encoder networks with
shared weights to learn effective mapping from original fea-
tures to a common low-dimensional embedding space. Com-
pared with traditional algorithms, the proposed method can
reveal the non-linear property underling multi-view data,
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which is important to handle complex and high-dimensional
data. Moreover, we adopt adversarial training [Goodfellow et
al., 2014] as a regularizer to guide the training of our encoder,
which captures the data distribution of each single view and
further disentangles the common latent space. Experimental
results on image and text datasets demonstrate that the pro-
posed method outperforms other multi-view clustering meth-
ods. We summarize our main contributions as follows.
• We propose a novel Deep Adversarial Multi-view Clus-

tering (DAMC) network. Different from existing multi-
view clustering methods, the proposed method can fully
model multi-layer nonlinear correlations between arbi-
trary views.
• We develop a discriminator network for each view

specifically, which could further capture the data distri-
bution and disentangle the latent space.
• We design a clustering loss to constrain common rep-

resentation by minimizing the relative entropy between
the predicted label distribution with the predefined one.

2 Related Work
2.1 Multi-view Clustering
For traditional multi-view clustering algorithms, we can di-
vide the existing methods into five groups: First, some meth-
ods [Liu et al., 2013b; Zhao et al., 2017] use non-negative
matrix factorization techniques for multi-view clustering,
which seeks a common latent factor among multi-view data.
Another methods are to use the multi-kernel learning (MKL)
strategy to solve this problem. Among the multi-view cluster-
ing, different predefined kernels are used to deal with differ-
ent views. These kernels are combined either linearly or non-
linearly in order to arrive at a unified kernel. The methods
in the third stream firstly project each view of features into
a common low-dimensional subspace, and then conduct clus-
tering in this subspace. A representative method in this stream
is canonical correlation analysis(CCA) for multi-view clus-
tering [Chaudhuri et al., 2009], which uses CCA to project
the multi-view high dimensional data into a low-dimensional
subspace. In addition, the subspace clustering methods have
been proposed to explore the relationships between sam-
ples with self-representation [Elhamifar and Vidal, 2013;
Liu et al., 2013a], the work in [Guo, 2013] formulated the
subspace learning with multiple views as a joint optimization
problem with a common subspace representation matrix and
a group sparsity inducing norm. And the work in [Luo et al.,
2018] simultaneously learned a view-consistent representa-
tion and a set of view-specific representations for multi-view
subspace clustering. At last, most of people exploit the multi-
view features with graph-based models [Xia et al., 2014;
Tao et al., 2017; Tao et al., 2019; Nie et al., 2017a]. This
category of methods seeks to find a fusion graph across all
views and then uses graph-cut algorithms or other technolo-
gies (e.g., spectral clustering) on the fusion graph in order to
produce the clustering result.

2.2 Deep Multi-view Learning
Deep neural networks (DNN) composed of multiple non-
linear transformations can learn a better feature represen-

tation than traditional shallow models. One representative
method is based on deep auto-encoders, where the goal is
to extract a common representation that can reconstruct the
inputs of multiple views. In this scenario, a common en-
coder is utilized to extract common representations for all
views, and different decoders are used to reconstruct view-
specific input features from the common representation. Spli-
tAE [Ngiam et al., 2011] has been presented to be effective
for multi-view learning in speech and vision tasks based on
deep auto-encoder networks. The other is based on canonical
correlation analysis (CCA), such as, [Andrew et al., 2013] ,
which proposes a DNN extension of CCA (DCCA) to learn
the common representation of two views. In DCCA, two net-
works were employed to extract non-linear features for each
view and the correlations between the extracted features were
maximized by CCA on the top layer. Following this line, the
deep canonically correlated auto-encoders (DCCAE) was de-
veloped in [Wang et al., 2016]. Different from DCCA, DC-
CAE optimized the canonical correlation between the learned
features and the reconstruction errors of the auto-encoders for
two views together.

3 Deep Adversarial Multi-view Clustering
3.1 Network Architecture
Given a dataset of V views χ = {X1, . . . ,Xv, . . . ,XV },
where Xv ∈ Rdv×n denotes the n samples of dimension
dv from the v-th view, we build a DAMC network consists
of one fully connected multi-view denoising encoder E, one
fully connected multi-view denoising generator G, V fully
connected discriminators, and one deep embedding clustering
layer on the top of our encoder. Figure 1 illustrates a DAMC
network for the V -views case.

1. Multi-view denoising Encoder E: In our multi-view de-
noising encoder network, for each view, there are M -layer
independent fully connected networks andN -layer fully con-
nected networks with shared parameters. The independent
layers are used to handle the different feature dimensions of
each view. For v-th view, given Xv = {x(v)1 , x2

(v), ..., x
(v)
n },

the multi-view denoising encoder E aims to learn a latent rep-
resentation Zv = {z(v)1 , z

(v)
2 , ..., z

(v)
n }(Zv ∈ Rm×n) for v-th

view. Specifically, it maps the dv-dimensional input data x(v)i

to a low-dimensional representation z(v)i . This mapping could
be represented as Zv = fv(Xv; ΘE), where fv refers to v-th
view’s encoding network parameterized by ΘE .

2. Multi-view denoising generator G: Our multi-view de-
noising generator network has an opposite architecture to our
mult-view denoising encoder E. It consists of N -layer fully
connected networks with the same parameters and M -layer
independent fully connected networks for each view, which
can generate all visual reconstructed samples with the la-
tent representations corresponding to each view. Specifically,
we suppose {Y1,Y2, ...,Yv, ...,YV } = G(Zv), where Yv

represents the reconstructed sample matrix of the v-th view.
3. Discriminator network Dv: The discriminator network

consists of V fully connected-layer discriminators. Each dis-
criminator Dv consists of 3 fully connected layers, and it
should distinguish that y(v)i is a generated sample and x(v)i is
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Figure 1: Illustration of Deep Adversarial Multi-view Clustering (DAMC) network. DAMC consists of one multi-view encoder network
E, one multi-view generator network G, V discriminator networks, and one deep embedding clustering layer. Multi-view encoder network
E outputs a low-dimensional latent layer feature zv for each view. For each zv , multi-view generator network G generates reconstructed
samples. Discriminator network is used to distinguish generated sample or real one. Clustering layer can improve clustering performance by
minimizing the KL divergence between the data distribution with the ideal distribution.

a real instance. Dv feeds back the result to generator network
and updates the parameters of generator. By this means, the
discriminator works as a regularizer to guide the training of
our multi-view encoder network, which enhances the robust-
ness of embedding representations and avoids the over-fitting
issue effectively.

4. Deep embedding clustering layer: In order to seek for
a clustering-friendly latent space, we embed a unique clus-
tering layer in the network. The embedded clustering layer
contains the new clustering centroids after each iteration. We
obtain the current data distribution and target data distribu-
tion based on the common space Z and the cluster centroids
{µj}kj=1. We employ the KL divergence of the current data
distribution and the target data distribution as the objective
function to iteratively update the parameters of the multi-view
denoising encoder network E and multi-view denoising gen-
erator G network.

3.2 Loss Function
The total loss function of our model is defined as follows
L = min

E,G
max

D1,...,DV

LAE + λ1LGAN + λ2LCLU , (1)

which consists of three parts: the AE loss LAE , the GAN loss
LGAN , and the clustering loss LCLU . λ1 and λ2 are two pa-
rameters to maintain the impact of GAN loss and clustering
loss.

Auto-Encoder Loss
AE loss is measured by the mean square error between the
generated sample and the real sample. When inputing the first
view X1, the multi-view denoising encoder E outputs a low-
dimensional latent layer representation Z1 = f1(X1; θE).

Similarly, for the V -th view, the result is ZV = fV (XV ; θE).
After that, the multi-view denoising generator G reconstructs
the V views from any latent representation Zv . The outputs
are {Y1

1,Y
2
1, ...,Y

V
1 } = G(Z1), and {Y1

V ,Y
2
V , ...,Y

V
V } =

G(ZV ), where Y1
1,Y

1
2, ...,Y

1
V are the generated samples

corresponding to the first view, and YV
1 ,Y

V
2 , ...,Y

V
V corre-

spond to the V -th view. Therefore the AE loss is

LAE = min
E,G

V∑
i=1

V∑
v=1
||Xv −Yv

i ||2F. (2)

We minimize the AE loss to optimize our multi-view de-
noising auto-encoders. However, the mean square error may
lead to blurred reconstructed results and cannot model the
data distribution of each view. To alleviate this issue, we
adopt adversarial training to generate (recover) more realis-
tic results and further enhance the model generalization.

The Loss for Generative Adversarial Networks
There are two models in generative adversarial networks
(GANs) [Goodfellow et al., 2014], i.e., a generative model
G and a discriminative model D. Generative model G contin-
uously learns the probability distribution of real data in the
training set. Its goal is to convert the input random noise into
an image that can be faked. The discriminator D determines
whether an image is a real image. In our model, we draw on
this idea and use discriminators to distinguish between gener-
ated samples and real samples. Suppose that the real data dis-
tribution of V views is x1 ∼ P (X1), x2 ∼ P (X2), ..., xV ∼
P (XV ), and the generated data distribution of V views is
y1 ∼ P (Y1), y2 ∼ P (Y2), ..., yV ∼ P (YV ). So the GAN
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loss in our model can be described as

LGAN = min
E,G

max
D1,...,DV

V∑
v=1

(Exv∼P (Xv)[logDv(xv)]+

Eyv∼P (Yv)[log(1−Dv(yv))]).
(3)

The notation E representa: Ex∼P (X)[f(x)] = 1
N

N∑
i=1

f(xi),

whereN is the number of samples. By training the multi-view
denoising encoder and the multi-view denoising generator,
we generate fake data similar to real data of each view. The
discriminators are trained to distinguish the fake data from
the real data of every views. They play a min-max game until
convergence. However, GANs are trained to map the same in-
put to any random permutation of samples from a target data
distribution. Hence, the GAN loss cannot ensure the desired
output at an instance level, which is not suitable for a cluster-
ing task. In light of this, we incorporate GAN loss with the
AE loss to achieve a high reliability of data reconstruction.

Clustering Loss
The AE loss and the GAN loss enable our multi-view denois-
ing generator to generate fake samples that are more simi-
lar to real ones, which encourage our embedding representa-
tions to contain original feature information as much as pos-
sible. However, they cannot guarantee that the encoded low-
dimensional space has a good cluster structure. To seek for a
partitioning friendly space, we encapsulate the clustering loss
measured by KL-divergence in our DAMC network. Specifi-
cally, we learn V latent representations for the V views Z1 =
f1(X1; θE),Z2 = f2(X2; θE), ...,ZV = fV (XV ; θE). Then
we get a common latent representation based on these V
views as

Z = 1
V

V∑
v=1

Zv. (4)

Given the initial cluster centroids {µj}kj=1, according
to [Xie et al., 2016], we use the Student’s t-distribution as a
kernel to measure the similarity between common latent rep-
resentation point zi and centroid µj

qij =
(1 + ||zi − µj ||2/α)

−α+1
2∑

j′ (1 + ||zi − µj′ ||2/α)
−α+1

2

, (5)

where α are the degrees of freedom of the Student’s t-
distribution, qij is interpreted as the probability of assigning
sample i to cluster j, it can be also named soft assignment. In
our all experiments, we let α = 1. We propose to iteratively
refine the clusters by learning from their high confidence as-
signments with the help of an auxiliary target distribution. In
our model, it is trained by matching the soft assignment to
the target distribution. To this end, we define our objective as
a KL divergence loss between the soft assignment qij and the
auxiliary distribution pij as follows

LCLU = min
E,G

∑
i

∑
j

pij log
pij
qij
. (6)

In our experiments, we compute pi by raising qi to its sec-
ond power and normalizing it with the frequency per cluster

as follows

pij =
q2ij/fi∑
j′ q

2
ij′/fj′

, (7)

where fj =
∑

i qij are soft cluster frequencies. In this way,
we can concentrate the same class data by sharping the data
distribution and get a more effective and common representa-
tion for multi-view clustering.

3.3 Training Procedure
Step 1: Training multi-view denoising encoder E and multi-
view denoising generator G by minimizing AE loss. Specifi-
cally, we take {x1, x2, ..., xV } as input for multi-view denois-
ing encoder E and get V latent layer feature {z1, z2, ..., zV },
Then we take {z1, z2, ..., zV } as the input of multi-view de-
noising generator G and get V 2 outputs. For any latent layer
feature zv , it can generate reconstruction samples of V views.
Then we update multi-view denoising encoder E and multi-
view denoising generator G by minimizing AE loss. After
step 1, we get common representation Z, then we save the
clustering centroids {µj}kj=1 for the following training by
performing k-means algorithm on Z.

Step 2: Training multi-view denoising encoder E,
multi-view denoising generator G and discriminators
D1,D2, ...,DV by optimizing the sum of AE loss and GAN
loss. As with the first step, we get V 2 outputs corresponding
to V views by multi-view denoising encoder E and multi-
view denoising generator G. Then, we send these generated
samples and corresponding real samples to the discrimina-
tive networks D1,D2, ...,DV respectively. After that we it-
eratively update the multi-view denoising encoder-generator
network and the discriminative networks by optimizing the
sum of AE loss and GAN loss.

Step 3: Training multi-view denoising encoder E, multi-
view denoising generator G, discriminators D1,D2, ...,DV ,
and embedded clustering layer. Our embedded clustering
layer contains the new clustering centroids after each it-
eration. In the beginning, we use the clustering centroids
{µj}kj=1 from step 1 and the common representation Z to
calculate the clustering loss. Then, we use the total loss func-
tion to train the entire network. In each iteration, we update
the clustering centroids. After the training is completed, we
use the obtained common representation to perform spectral
clustering to obtain the final clustering result.

4 Experiments
4.1 Experimental Settings
Datasets. To demonstrate the performance of the proposed
framework, we evaluate DAMC on four multi-view datasets.
A brief introduction is given as follows. (1) Image dataset:
Handwritten numerals (HW) dataset [Asuncion and New-
man, 2007] is composed of 2,000 data points from 0 to 9
ten digit classes and each class has 200 data points. In the
experiment, we adopt 76 Fourier coefficients of the charac-
ter shapes and 216 profile correlations as two different views.
(2) Image & text dataset: BDGP [Cai et al., 2012] is a two-
view dataset including two different modalities, i.e., visual
and textual data. It contains 2,500 images about drosophila

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2955



Method ACC NMI Purity

SCv=1 0.494 0.286 0.494
SCv=2 0.940 0.894 0.942
ConSC 0.584 0.384 0.584
RMSC 0.602 0.563 0.602
AMGL 0.958 0.904 0.958
MLAN 0.681 0.488 0.681
MVSC 0.948 0.849 0.948
SwMC 0.953 0.887 0.953

CSMSC 0.968 0.911 0.968
DCCA 0.578 0.409 0.578
DMSC 0.681 0.506 0.738
DAMC 0.982 0.946 0.982

Table 1: Experiments on the BDGP dataset.

Method ACC NMI Purity

SCv=1 0.682 0.663 0.699
SCv=2 0.651 0.667 0.691
ConSC 0.828 0.802 0.831
RMSC 0.737 0.708 0.763
AMGL 0.806 0.791 0.828
MLAN 0.741 0.754 0.773
MVSC 0.682 0.569 0.684
SwMC 0.804 0.798 0.829

CSMSC 0.798 0.764 0.812
DCCA 0.814 0.781 0.814
DMSC 0.916 0.855 0.916
DAMC 0.965 0.932 0.965

Table 2: Experiments on the HW dataset.

Method ACC NMI Purity

SCv=1 0.105 0.007 0.107
SCv=2 0.195 0.176 0.220
SCv=3 0.107 0.006 0.108
ConSC 0.106 0.006 0.108
RMSC 0.216 0.180 0.241
AMGL 0.110 0.014 0.117
MVSC 0.193 0.152 0.210
SwMC 0.209 0.155 0.235

CSMSC 0.239 0.187 0.278
DCCA 0.207 0.159 0.219
DMSC 0.175 0.135 0.251
DAMC 0.256 0.225 0.286

Table 3: Experiments on the CCV dataset.

embryos belonging to 5 categories. Each image is represented
by a 1,750-D visual vector and a 79-D textual feature vec-
tor. In our experiment, we use the entire BDGP dataset and
evaluate the performance on both visual and textual feature.
(3) Video dataset: The Columbia Consumer Video (CCV)
dataset [Jiang et al., 2011] contains 9,317 YouTube videos
with 20 diverse semantic categories. In our experiment, we
use the subset (6773 videos) of CCV provided by [Jiang et
al., 2011], along with three hand-crafted features: STIP fea-
tures with 5,000 dimensional Bag-of-Words (BoWs) repre-
sentation, SIFT features extracted every two seconds with
5,000 dimensional BoWs representation, and MFCC features
with 4,000 dimensional BoWs representation. (4) Large-scale
dataset: MNIST is a widely-used benchmark dataset consist-
ing of handwritten digit images with 28 × 28 pixels. In our
experiment, we employ its two-view version (70, 000 sam-
ples) provided by [Shang et al., 2017], where the first view
is the original gray images and the other is given by images
only highlighting the digit edge.
Comparison Algorithms. We choose spectral clustering
and nine state-of-the-art multi-view clustering algorithms
as baselines. (1) Feature Concatenation Spectral Clustering
(ConSC) [Kumar et al., 2011] concatenates the features of
each view, and performs spectral clustering directly on the
concatenated feature representation. (2) Robust Multi-view
Spectral Clustering (RMSC) [Xia et al., 2014] recovers a
latent transition probability matrix from pair-wise similar-
ity matrices of each view through a low-rank constraint. (3)
Auto-weighted Multiple Graph Learning (AMGL) [Nie et
al., 2016] utilizes each single view to construct a graph, and
learns an optimal weight for each graph automatically with-
out introducing additive parameters. (4) Multi-View Cluster-
ing and Semi-Supervised Classification with Adaptive Neigh-
bours (MLAN) [Nie et al., 2017a], which performs clustering
and local manifold structure learning simultaneously, and al-
locates weight for each view automatically. (5) Multi-view
Spectral Clustering (MVSC) [Li et al., 2015] conducts clus-
tering on the subspace representation of each view simulta-
neously, and utilizes a common cluster structure to guaran-
tee the consistence among different views. (6) Self-weighted
Multi-view Clustering (SwMC) [Nie et al., 2017b] proposes
a self-weighted fusion scheme to address multi-view cluster-
ing. (7) Consistent and Specific Multi-View Subspace Clus-

tering (CSMSC) [Luo et al., 2018] formulates the multi-view
self-representation property using a shared consistent repre-
sentation and a set of specific representations, which better
fits real-world datasets. (8) Deep canonical correlation anal-
ysis (DCCA) [Andrew et al., 2013] learns nonlinear trans-
formations of two views such that the resulting represen-
tations are highly linearly correlated. (9) Deep Multimodal
Subspace Clustering (DMSC) [Abavisani and Patel, 2018]
presents CNN based approaches for unsupervised multimodal
subspace clustering.

Evaluation Metrics. We evaluate the clustering perfor-
mance with three standard clustering evaluation metrics, i.e.,
Accuracy (ACC), Normalized Mutual Information (NMI),
and Purity. More details about these metrics could be found
in [Kumar et al., 2011]. For all the metrics, higher value indi-
cates better performance.

Implementation Details. We implement our methods and
other non-linear methods with the public toolbox of PyTorch.
We run all the experiments on the platform of Ubuntu Linux
16.04 with NVIDIA Titan Xp Graphics Processing Units
(GPUs) and 32 GB memory size. We use Adam [Kingma and
Ba, 2014] optimizer with default parameter setting to train
our model and fix the learning rate as 0.0001. We conduct 30
epochs for each training step. All the other linear methods are
tested on the same environment by Matlab.

4.2 Experimental Results
In this subsection, we report the comparison on four real-
world datasets. Since DCCA can only deal with two views,
we choose the best two views on CCV dataset according
to their performance. Particularly, several important observa-
tions could be made as follows.

Compared with Baselines. Learning discriminative fea-
ture representation is crucial for the clustering task. Previ-
ous multi-view clustering algorithms mainly employ linear
methods to learn common representations shared by multiple
views, which cannot handle high-dimensional and complex
data due to its non-linear nature. In light of this, our approach
fully exploits the non-linear property given by deep neural
networks, and further employs adversarial training to capture
the data distribution of each view. As shown in Table 1, Ta-
ble 2 and Table 3, our method significantly outperforms base-
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Figure 2: Visualization of original features for each view and the common latent representations given by different methods with t-
SNE [van der Maaten and Hinton, 2008] on the HW and BDGP datsets, where (1) original data of first view, (2) original data of second
view, (3) MLAN, (4) SwMC, (5) DMSC, and (6) DAMC.

Method ACC NMI Purity

DCCA 0.468 0.426 0.505
AE 0.607 0.524 0.618

AE+GAN 0.635 0.538 0.639
DAMC 0.651 0.562 0.659

Table 4: Clustering performance on large-scale dataset. We compare
our approch with several deep neural network baselines on the two-
view MNIST dataset provided by [Shang et al., 2017].

line methods with a clear improvement, which demonstrates
the superiority of our algorithm. There MLAN is not avail-
able and DMSC can only process one view data on the CCV
dataset due to the limited memory.
Compared with CNN Based Methods. Deep Convolu-
tional Neural Networks (CNN) have shown superior perfor-
mance on learning feature representations for image/video
data recently. However, for the clustering task, CNN based
methods are limited to grid data, which is not straightforward
to handle generic features. For example, DMSC [Abavisani
and Patel, 2018] is specifically designed for image data and
cannot be directly used with irregular data features (e.g., tex-
tual features in BDGP). In our experiment, we adopt zero-
padding to make DMSC available on BDGP, HW and CCV
datasets, which however, lowers its performance inevitably.
Different from CNN based methods, our approach builds on
the top of fully-connected network, and thus achieves higher
flexibility and generalizability for multi-view clustering.
Clustering on Large-scale Dataset. To show our approach
is applicable on the large-scale dataset, we compare the pro-
posed DAMC with DCCA [Andrew et al., 2013] and two
strong deep neural network baselines, i.e., AE and AE+GAN,
on the two-view MNIST dataset provided by [Shang et al.,
2017], where (1) AE empoys the same auto-encoder network
architecture to our approach and (2) AE+GAN employs the
same AE loss and GAN loss in our model. Both AE and
AE+GAN conduct spectral clustering for the final clustering
result. It is worth noting that, the other compared multi-view
methods are not scalable on this dataset due to their optimiza-
tion methods and the limited memory. In contrast, our method

can easily handle large-scale data with mini-batch training.
As shown in Table 4, we consistently outperform other meth-
ods with a clear improvement, which validates the effective-
ness of DAMC on the large-scale dataset.
Impact of Deep Clustering Layer. In this subsection, we
explore the impact of our deep clustering layer. Figure 2 (a)
provides a t-SNE [van der Maaten and Hinton, 2008] vi-
sualization for feature embeddings in terms of each single
view, three competitive compared methods and our proposed
DAMC on the HW dataset. In details, we apply t-SNE on the
common-view feature representations (e.g., the latent layer
features in DAMC) given by different methods, respectively.
As can be seen, our approach exhibits a more clear and com-
pact cluster structure than all the other methods and original
data. The similar observation could be found on the BDGP
dataset as shown in Figure 2 (b). This clearly shows the nice
cluster-structured property given by our deep embedded clus-
tering layer, as it explicitly guides our feature learning pro-
cess with a clustering purpose.

5 Conclusions
In this paper, we proposed a novel Deep Adversarial Multi-
view Clustering (DAMC) model, which includes multi-view
auto-encoders and a set of view-specific discriminator net-
works. By using the shared weights, DAMC jointly embeds
multi-view data to a common low-dimensional subspace with
non-linear mappings. Upon the adversarial training, we em-
ploy discriminators to effectively guide the training of our
encoder network, which captures the data distribution of each
view and further disentangles the latent space. Moreover, we
leverage a KL-divergence loss to explicitly encapsulate the
clustering task in our network. Experimental results on four
real-world datasets demonstrated the superiority of our model
over several state-of-the-art multi-view clustering methods.
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