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Abstract

Clustering is a fundamental research topic in data
mining and machine learning. In addition, many
specific applications demand that the clusters ob-
tained be balanced. In this paper, we present a
balanced clustering model that is to minimize the
sum of squared distances to cluster centers, with
uniform regularization functions to control the bal-
ance degree of the clustering results. To solve the
model, we adopt the idea of the k-means method.
We show that the k-means assignment step has an
equivalent minimum cost flow formulation when
the regularization functions are all convex. By
using a novel and simple acceleration technique
for the k-means and network simplex methods our
model can be solved quite efficiently. Experimen-
tal results over benchmarks validate the advantage
of our algorithm compared to the state-of-the-art
balanced clustering algorithms. On most datasets,
our algorithm runs more than 100 times faster than
previous algorithms with a better solution.

1 Introduction

Clustering is an important problem in a broad spectrum of
applications, such as data mining, machine learning, pattern
recognition and knowledge discovering. Given a set of data
points, a clustering algorithm aims to group them into several
clusters such that points within each cluster are similar to
each other (homogeneity objective) and different from points
in other clusters (separation objective) [Anderberg, 1973;
Spith, 1980]. Usually, data points are in a high dimensional
space and similarity is defined using a distance measure such
as Euclidean distance, Cosine distance, Jaccard distance, etc.

Among many criteria used in cluster analysis, the most
natural and frequently adopted criterion is the minimum sum-
of-squares clustering (MSSC). Given n data points in an Eu-
clidean space R®, MSSC partitions these points into & clusters
such that the sum of squared Euclidean distance of each point
to its cluster mean is minimum. It is a criterion for both
the homogeneity and the separation objectives as explained
in Spith’s book [Spith, 1980]. However, MSSC is NP-hard
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to compute even for ¥ = 2 in general dimension [Aloise
et al., 2009]. In order to deal with large instances, several
hundred heuristic methods for MSSC have been developed
in the literature (see, for instance, Steinley’s half-century
synthesis [2006]). One of the classic heuristics for MSSC
is the famous k-means [Duda and Hart, 1973].

The k-means algorithm is one of the simplest and popular
clustering algorithms and has become a workhorse for the
data analyst in many diverse fields. One drawback to k-means
occurs when it is applied to datasets in high dimensional
space and the number of desired clusters is large. In this
situation, the k-means algorithm often converges with one or
more clusters which are either empty or summarize very few
data points even the data has a balanced distribution [Bradley
et al., 2000]. On the other hand, in many applications,
balanced clustering is expected. Examples can be found in
photo query systems [Althoff et al., 2011], cloud computing
[Su et al, 2015] and the composition of working groups
[Desrosiers et al., 2005]. Applications can also be used in
load balancing algorithms. For example, networking utilizes
balanced clustering to avoid unbalanced energy consumption
[Siavoshi er al., 2016], and the multiple traveling salesman
problem clusters the cities so that each salesman operates in
one cluster and has equal workload [Nallusamy er al., 2010].
Moreover, balanced clustering tends to avoid forming outlier
clusters, and thus has beneficial regularizing effect [Zhong
and Ghosh, 2003]. Pyatkin et al. [2017] also proved that
MSSC is NP-hard in the strictly balanced sense (i.e., the size
of each cluster differs by at most one).

Owing to the wide and essential applications of balanced
clustering, various algorithms are proposed to date with
different approaches to balance the clusters. These algorithms
can be categorized into two types: hard-balanced and soft-
balanced clustering, which vary in the way that balance is
considered over the homogeneity and separation objectives
of the clusters to be found. In hard-balanced clustering,
cluster size balance is strictly required, and the homogeneity
and separation measures such as the sum-of-squares is a
secondary criterion. In soft-balanced clustering, balance is an
aim but not a mandatory requirement. The solution may be
a weighted combination between the homogeneity/separation
objective and the balance.

Representative examples of hard-balanced clustering algo-
rithms include two k-means based algorithms: constrained k-
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means [Bradley er al., 2000] and balanced k-means [Malinen
and Frinti, 2014]; a size constrained clustering algorithm
based on heuristic and integer linear programming [Zhu ez al.,
2010]; a variable neighborhood search heuristic for balanced
minimum sum-of-squares clustering [Costa er al., 2017];
and etc. For soft-balanced clustering, Banerjee and Ghosh
[2002] proposed a method based on a three-steps sampling
procedure. Liu et al. [2017] gave a least square regression
based clustering model with a balance regularization term.
In the work [Li et al., 2018], balanced clusters are obtained
via an exclusive lasso. These algorithms are all soft-balanced
clustering methods.

Among various models for balanced clustering, several
papers [Chen et al., 2006; Liu et al., 2017; Li et al., 2018]
studied the clustering models which adopt a regularization
term for the balance in the objective function. In different
models, the regularization terms may be different and the
algorithms are specified for the models. In this paper, we
consider the balance regularization in a uniform form and
give a fast algorithm to solve the uniform model. The major
contributions of this paper can be summarized as follows:

e We propose a clustering model which can be used for
both hard-balanced and soft-balanced clusterings. The
model adopts uniform regularization functions to regu-
late the clustering results to meet the different balance
requirements.

e Our model can be optimized quite efficiently when the
regularization functions in it are all convex. The opti-
mization algorithm is based on the k-means and network
simplex methods with a novel and simple acceleration
technique.

e Compared with the state-of-the-art balanced clustering
algorithms, experimental results show that our algorithm
is several orders of magnitude faster than the previous
algorithms while producing a better solution.

e The codes and data in this paper are publicly available'.

2 Clustering and k£-Means

In different clustering problems, the objective to be optimized
may be different. In this paper, we mainly consider the clus-
terings with the objective to minimize the sum-of-squares,
which is a frequently adopted criterion. The normal minimum
sum-of-squares clustering problem is defined as follows.

Minimum Sum-of-Squares Clustering (MSSC)

Input: D = {x;}? ; of n points in R® and an integer k;
Object: to find a set C = {C4,Cy,...,C} of k points in
R? such that the sum of the squared 2-norm distance between
each point z; € D and its nearest point C'j,, in C is minimized,

i.e.,
i i =||lzi — Chll3)- 1
C1I,ltl.1.FCk Pl },eg}_l_’l_7k}(2|‘ml hH2) ( )

The points in D are called data points and the points in
C are called center points or cluster centers. We can build a

"https://github.com/zhu-he/regularized-k-means
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mixed integer programming model for MSSC by introducing
a “selection” variable T; ;, for each ¢ € {1,2,...,n} and
h € {1,2,...,k} [Bradley er al,, 1997]. These variables
have binary values of 1 or O and T} ;, = 1 indicates that the
closest center point to the data point z; is C,. We have the
following programming for MSSC:

n k
. 1 9
min ;};Ti,h(§|lwi - Chll3)
k 2
s.t. ZTh =1,i=1,...n
h=1
Tine{0,1}i=1,....n,h=1,... k.

The k-means is a heuristic method to solve the above
programming (2). Given an initial set {C],C3,...,C}} of
center points, the algorithm iteratively executes the following
two steps until no center points change in the update step:

1. Assignment: Based on the current center points C! =
{Ct,C%, ..., C}} in the tth iteration, each data point z;
is assigned to its closest center in Ct. The data points
assigned to the center C} form the cluster h.

2. Update: For each cluster h, let the mean of all data
points in it be the new center point C;’L+1.

It is known that the solution computed by k-means converges
to a local optimum and satisfies the Karush-Kuhn-Tucker
(KKT) conditions [Mangasarian, 1994] for the linear relax-
ation of (2).

However, the standard k-means method may converge
with some empty clusters, in practice, when clustering high-
dimensional data with a large number of clusters. To get
“balanced” clusters, Bradley et al. [2000] proposed a con-
strained k-means method, which is like the k-means, but in
the assignment step, a hard requirement is added that requires
each cluster h to have size at least 75,. So their model for
the clustering problem is obtained from (2) by adding the
following constraint in it:

ZTi,hZTh,hzl,...,k. (3)
i=1

We can see that the model presented by Bradley et
al. [2000] is for the hard-balanced clustering. After adding
the constraint (3), the assignment step is not so easy to solve.
Bradley et al. [2000] considered the assignment step as a
minimum cost flow (MCF) problem [Bertsekas, 1991] and
solved it using a linear programming solver. In addition to
adding the constraint (3), Malinen and Friinti [2014] further
proposed a constraint to restrict the size upper bound of
each cluster. They solved the assignment problem using the
Hungarian algorithm [Kuhn, 19551, which is faster than the
method based on linear programming.

3 Uniform Model

In this section, we give our uniform model for balanced
clustering which does not add a hard requirement in the
constraints but formulate the minimum sum-of-squares clus-
tering in a form of regularization. The idea is to introduce a
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balance regularization term into the objective function in (2).
For k functions f1, fa, ..., fr : ZZ — R, let them act as the
regularizers. We add the item YF_ f,(327_, T;.1) into the
objective function so that the new objective becomes

manZTlh l|z; — Chl3) +th ZTzh

or 1=1 h=1
The regularization functions fi, fo, ..., fr in (4) act on the
size of each cluster and can be used to control the balance
of the clusters. We give some examples where different
regularization functions are adopted.

The L2 Regularization (also known as Ridge Regression)
technique is commonly used in machine learning models in
order to prevent overfitting [Biihlmann and Van De Geer,
2011]. A similar technique is also used in balanced cluster-
ing. Let nj, denote the size of cluster h. The item

k
> nh 5)
h=1

is used as a regularizer in the clustering models in [Liu e al.,
2017] and [Li et al., 2018]. It is easy to see that (5) reaches
its minimal value when n; = ng = --- = ny. It is the same
for our model (4) to let the regularization functions being

fi(z) = = fula) = 2. (6)

Normalized Entropy (Neneo) 1S another concept used to
evaluate the balance performance of clusterings in some
literature [Zhong and Ghosh, 2003]. The Normalized Entropy
of a clustering result is defined as:

k
1 np nh
—_— — log — 7
logk}; n 8T ™

where k is the number of clusters, n, is the number of data
points in cluster h and n is the total number of data points.
We can see that Neyo = 1 indicates a perfectly balanced
clustering result and Nepo = 0 means extremely unbalanced.
We can set —Nepro as the regularization term in (4) by letting

Nentro =

L . ZloeZ ifzx
fl(x):...:fk<x):{logk “log & ifxz >0, ®)

0 ifz=0.

Our model (4) can also act as a hard-balanced clustering
model. Let 7, be the size lower bound of each cluster i and
M be a large number. We define the regularization function
fn as follows for each h:

—-M -z
—M -7,

if x < 7y,

pule) ={ ©)

if x Z Th-

We can see that each function fj,(x) reaches its minimal value
only when z > 7,. If M is a large enough number (such as
the variance of the dataset), our algorithm will be guided to
find a solution which makes each function f,(z) reach its
minimal value. Thus the hard-balanced requirement can be
obtained by selecting a large enough value for M.
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4 Optimization Algorithm

The proposed algorithm to solve the model (4) is also based
on the k-means, it contains two iterative steps: assignment
and update. However, the assignment step will be different
since we have changed the objective function. Assume that
we have center points C{, C%, ..., C} in the tth iteration, our
algorithm regularized k-means (RKM) computes new center
points C’f“, C’é“, RN C,i“ by the following two steps:

1. Assignment: Compute an optimal solution Tf ,, for the

following problem'

mmZZTzh Hxl Ctl|3)

1=1 h=1

Z Zﬂh

s.t. ZTi’h:Li:l,..m (10)

Toe{01)i=1,...nh=1,... k
2. Update: Compute C} " as follows:

i 1 Tz n® : n t
CZ—H = o1 T:h if Zi:l Ti’h >0, (11
cy otherwise.

The update step (11) of the above algorithm is easy to
implement. However, it is difficult to solve (10) directly since
it is an integer programming, even not linear. Next, we show
that if all the functions f1, fo, ..., fr in (10) are convex, i.e.,

fu(@) = fulz = 1) < fu(z +1) — fu(z) (12)
for h = 1,...,k, then problem (10) is equivalent to a mini-
mum cost flow (MCF) problem and can be efficiently solved
by the network simplex algorithm. MCF is a powerful tool to
solve assignment problems with different forms. Examples
of applying MCF to clustering problems can also be found in
[Bradley et al., 2000] and [Feldman et al., 2019].

4.1 Minimum Cost Flow Formulation

In general, a MCF problem is a special linear program which
has an underlying graph structure. Let G = (V, A) be a
directed graph. For each vertex v € V, a number b, is
given, representing the amount of flow produced (if b, > 0)
or consumed (if b, < 0) at v. If b, = 0, vertex v does not
consume nor produce flow, and consequently, it is a transit
vertex. If ZUEV = 0, the problem is feasible (i.e. the
sum of the supphes equals the sum of the demands). Each
arc (u,v) € A has an associated unit transport cost a(u,v)
and an upper limit on maximum flow (i.e., capacity) ¢(u, v).
Let variable y(u,v) indicate amount of flow on arc (u,v),
the cost of sending this flow is a(u,v) - y(u,v). The MCF
problem is to minimize the total cost of the flow over all
arcs: 3, e a @(u, v) y(u,v) subject to the sum of the flow
leaving vertex v minus the sum of flow incoming is equal to
b,,. Specifically, the general MCF is:

myin Z a(u,v) - y(u,v)

(u,w)EA
s.t. Z y(v,u) — Z y(u,v) = by, Yoe v (13)
(v,u)€EA (u,v)EA

0 <y(u,v) < cu,v), Y(u,v) € A
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A= £1(0)

fie = fi(n—1)

1 ,
3l = CEI3
Figure 1: The equivalent minimum cost flow problem.

Now, we start to transform problem (10) into an equivalent
MCEF problem. We construct our flow graph G = (V, A) as
follows. Let each data point x; correspond to a vertex which
produces one unit flow (b, = 1). Let each cluster center C}i
correspond to a transit vertex (bCﬁ = 0). In order to make
the problem feasible, we extra add an artificial vertex s with
bs = —n. For each pair (z;, C}), there is an arc from z; to
C}, with the cost a(z;, C}) = L||z; — C}||3. For each center
vertex C}, there are n arcs (C},s)1,(Ch,s)2,...,(C},8)n
from C} to the artificial vertex s. Let f; be the function
associated with cluster h in problem (10). The cost on the
ith arc (C},s); from C! to s is fn(i) — fn(i — 1). There
are no arcs to or from the data point vertex z; to the artificial
vertex s. The capacity of each arc in the graph G is 1. Figure
1 illustrates this flow graph. Specifically, we have that

V=A{x;,i=1,....n}U{C},h=1,...,k}U{s},
A={(x;,C}),z;,C} € VU
{(C},s):,CL € V,yi=1,...,n},

_ [sllzi = CHIB (u,v) = (2, C}),
o) =BG o= (G
c(u,v) =1, (u,v) € A,

1 ve{x,i=1,...,n},
by=4{0 we{Clh=1,... k}

—-n v=S:.

(14)

Proposition 1. If all the functions f1, fo, ..., fi in problem
(10) are convex, the minimum cost flow problem defined in
(14) is equivalent to problem (10).

Proof. For a solution y of problem (14) and a solution 7" of
problem (10), we use y(y) and £(7T') to denote their objective
function values respectively. First, we show that for any
solution 7" of (10), there is a corresponding solution y of
(14) with ~(y) + 22:1 fr(0) = &(T). Given the solution
T of (10), we construct y as follows. For each arc (z;, C}),
let y(z;,Cf) = T; . For the arcs (Cf,s)1,...,(C}, 8),
from vertex C} to vertex s, let y(C},s). = 1 fori < n,

%

and y(C},s), = 0 fori > ny, where nj, = >0 Ty
denotes the number of data points in cluster h. It is easy
to verify that y is feasible for (14). In the solution y,

the total cost incurred on the arcs (C7,5)1,...,(C],5), is
S (@) = fn(i = 1) = fa(nn) — fr(0). Thus, we have

that v(y) + Zzzl frn(0) = &(T), where Z];:l fr(0) is a
constant.

Since b,,v € V and ¢(u,v), (u,v) € A are all integers,
it follows from Proposition 2.3 in [Bertsekas, 1991] that an
optimal solution y* of the MCF problem (14) is integer-
valued. Next we show that for any optimal integer-valued
solution y* of (14), there is a solution T* of (10) with v(y*)+
Z:Zl fr(0) = &(T™). Let T be the solution with 77, = 1
if and only if y*(z;, C}) = 1. T* is feasible for (10). Since
the functions fi,..., fx are convex, the costs on the arcs
(C},8)1,...,(Ct, s)y, are incremental. As y* is an optimal
solution, one observation is that y*(C}, s); = 1if i < nj, and
y*(Ch,s); = 0if i > ny , where np, = Y o y*(x;, C}).
Thus, we have that vy(y*) + Z’;Zl fn(0) = &(T*). By the
optimality of y*, we conclude that 7™ is optimal for (10). [

Proposition 1 provides a method to solve problem (10)
by solving an easier equivalent MCF problem when the
regularization functions f1, fo,..., fi are all convex. Note
that the functions defined in (6), (8) and (9) all satisfy the
convexity condition.

4.2 Warm Start

Network simplex is a commonly used algorithm for general
MCF problems [Bertsekas, 1991]. To solve the proposed
model more efficiently, we give an acceleration technique
for network simplex and our algorithm regularized k-means
(RKM), which is quite useful in practice.

For a linear programming problem, the feasible region
defined by all feasible solutions is a (possibly unbounded)
convex polytope. An extreme point of the feasible region is
a point that is not the midpoint of two other points of the
feasible region. In this context an extreme point is also known
as a basic feasible solution. It can be shown that for a linear
program, if the objective function has an optimal value on
the feasible region, then it has this value on (at least) one of
the extreme points [Murty, 1983]. It can also be shown that,
if an extreme point is not an optimal point of the objective
function, then there is an edge of the convex polytope which
connects this point to another extreme point with a better ob-
jective function value [Murty, 1983]. The simplex algorithm
applies this insight by starting at a feasible extreme point and
moving along edges of the polytope to extreme points with
better and better objective values. Network simplex is a graph
theoretic specialization of the general simplex algorithm and
works within the same framework.

Going back to our algorithm, it can be seen that the
constraints in the MCF problem defined in (14) do not change
and only the objective function varies in iterations. In other
words, the feasible region of problem (14) is constant, and
hence a basic feasible solution at the tth iteration is also a ba-
sic feasible solution for the (¢ 4 1)th iteration. In practice, we
find out that the optimal solution Titj;l of (10) at the (¢ + 1)th
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Algorithm 1 Regularized k-means with warm start

Input: dataset D, number of desired clusters £ and regular-
ization functions f1, fo, ..., fx

Output: partitioning of dataset

1: Randomly initialize center locations C{,C3, ..., C}.
2: y < atrivial basic feasible solution of problem (14)
3t 1
4: repeat
5:  Obtain solution y* by solving problem (14) with the
start point y.
6:  Compute new center locations O}, C4T1, ... O}t
according to y*.
7. oy« y*
8 t+t+1
9: until center locations do not change
10: return partitioning corresponding to y

iteration differs little from the solution 77 ,, at the tth iteration,
when ¢ is large. This phenomenon is reasonable since the
cluster centers and the assignment of data points converge
gradually in iterations. Instead of solving an MCF problem
independently at each iteration, we take the last iteration’s
solution as the starting extreme point for the current iteration.
Compared with starting from a trivial extreme point, it takes
much less time for network simplex to find the solution of
the current iteration. This technique is called warm start,
which combines the advantages of the k-means and simplex
methods. The detailed algorithm with warm start is shown in
Algorithm 1.

4.3 Convergence

Like the standard k-means, the termination condition of our
algorithm is that Cf = C}™' for h = 1,...,k. We end
this section by proving a finite convergence result similar to
Theorem 7 in [Bradley and Mangasarian, 2000].

Proposition 2. The proposed algorithm regularized k-means
(RKM) converges to a solution in a finite number of iterations.

Proof. Consider the objective function (4). At each iteration,
the assignment step cannot increase the value of (4). The
update step will either strictly decrease the value of (4) or
the algorithm terminates since (11) gives the unique optimal
solution of (4) when variables T; 5, are fixed to T} ;,. Thus, the
value of (4) is strictly decreasing and no repeated clusterings
are permitted in iterations. Since there are a finite number
of ways to assign n points to k clusters, the algorithm must
converge to a solution in a finite number of iterations. O

5 Experiments

In a bid to assess the performance of our method regularized
k-means (RKM), we compare it with three known balanced
clustering algorithms including one soft-balanced and two
hard-balanced methods. The soft-balanced algorithm is lasso
k-means (LKM) proposed by Li et al. [2018]. It is also a k-
means based algorithm with a specific regularization term in
the optimization objective. The two hard-balanced algorithms
are the state-of-the-art balanced k-means (BKM) heuristic by

2991

Malinen and Frinti [2014] which uses the Hungarian algo-
rithm in the assignment step and the variable neighborhood
search based approach “less is more” (LIMA) by Costa et al.
[2017]. Specifically, BKM and LIMA both aim to minimize
the sum-of-squares under the strict balance constraint: cluster
sizes are constrained to || or [ 7], where n is the number
of points and k is the number of clusters. We choose these
algorithms for comparison due to the common optimization
objective: minimizing the imbalance and the sum-of-squares.

5.1 Experiment Setup

Evaluation. We study two performance measures to get a
comparative understanding of our method: one is the com-
mon optimization objective sum-of-squares used to evaluate
the clustering performance and another is the standard devi-
ation in cluster sizes (SDCS) used for the balance evaluation.
Let {ny, }%_, be the sizes of k clusters. SDCS is defined by

k

1
g o= )2 (1s)

h=1

SDCS =

Environment and datasets. The source codes of algo-
rithms BKM and LIMA were used in the experiments while
LKM was re-implemented in C++ by ourselves. Our method
is also implemented in C++. As a platform, Intel Core i7-
8700K 3.70 GHz processor with 16GB memory was used. In
the experiments, we consider ten datasets, including six real-
world UCI datasets?, two artificial datasets s1-s2* which have
Gaussian clusters with increasing overlap and two MNIST
datasets* of handwritten digits. The detailed information of
the datasets can be found in Table 1. The numbers written un-
der the name of a dataset denote the value of (n, s, k, SDCS),
where n refers to the number of points contained in the
dataset, s refers to its dimension, k is the number of clusters
sought in the dataset and SDCS is computed using the true
labels of the dataset.

Regularization settings. To get a contrastive result be-
tween our method and LKM, we set the regularization term
in our model the same as that in LKM by letting

filz) =+ = fulz) = X- 27, (16)

where ) is the balance parameter. In order to obtain different
balancing performance, different values of A are tested.
Specifically, let Var = > | ||a;—p||3 where pp = > | &
be the variance of the dataset {z;}}_,, the values of X are
uniformly chosen from the interval [0, 49%¢"]. For hard-
balanced clustering, we use the following functions to derive

a strictly balanced result:

-M -z ife <|Z],
fo(@) = -M-([3]+ 3] -2) ifz>[3], AD
M- %] otherwise,
for h = 1,...,k, where M is a large real number. In the

experiments, it is sufficient to set M = Var.

“https://archive.ics.uci.edu/ml/index.php
3http://cs.uef.fi/sipu/datasets/
*http://yann.lecun.com/exdb/mnist/



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Dataset Algorithm Best Mean Time
Wine BKM 2.962e+6 2.979e+6 3.20e-1
(178,13, 3, 11.5) RKM 2.962e+6 2.962e+6 2.04e-4
Tonosphere BKM 2.434e+3 2.435e+3 8.08e+0
(351, 34, 2,70.0) RKM 2.434e+3 2.434e+3 2.81e-4
Libra BKM 6.443e+7 6.519¢+7 7.66e+0
(360, 90, 15, 0.0) RKM 6.443e+7 6.518e+7 6.57e-3
User knowledge BKM 7.022e+1 7.097e+1 8.19e+0
(403, 5, 4, 39.5) RKM 7.021e+1 7.096e+1 1.31e-3
Vowel recognition BKM 3.314e+7 3.320e+7 9.68e+1
(871, 3,6, 53.5) RKM 3.314e+7 3.314e+7 8.08¢e-3
Multiple features BKM 1.784e+6 (one run) 1.20e+3
(2000, 240, 10, 0.0) RKM 1.750e+6 1.758e+6 1.87e-1
sl BKM 1.095e+13 (one run) 7.67e+3
(5000, 2, 15, 16.0) RKM 1.089%e+13 1.089%e+13 4.56e-1
s2 BKM 1.431e+13 (one run) 5.24e+3

(5000, 2, 15, 15.8) RKM 1.428e+13 1.428e+13 4.62e-1
MNIST-test BKM - - > 1 day
(10000, 784, 10, 62.4) RKM 2.542e+10  2.546e+10  4.35e+0
MNIST-train BKM > 1 day

(60000, 784, 10, 340.0) RKM 1.536e+11 1.536e+11 3.17e+1

Table 1: Comparisons of BKM and our algorithm RKM.
5.2 Experiment Results

The effect of the balance parameter A on the clustering and
balancing performance of LKM and our algorithm RKM are
demonstrated in Figure 2, where we take four representative
datasets as examples. In Figure 2, a point is obtained by 100
executions of LKM or RKM with random initial solutions
and the corresponding value of A\. The mean of sum-of-
squares (SDCS respectively) of these 100 executions is shown
on the vertical axis. Table 1 gives the comparison results
of BKM and RKM. Column Best and Mean refer to the
best sum-of-squares value and the mean sum-of-squares value
respectively, obtained from 100 runs. Both BKM and RKM
start from the same random initial solutions, which are made
distinct in each execution. The last column (Time) presents
the average CPU time (in sec) used in each run. Finally,
the comparisons of LIMA and RKM are shown in Table
2. Since LIMA is a neighborhood search based heuristic,
the more computing time is given, the better solution it
finds. We compare our algorithm with LIMA in different

Dataset RKM T_RKM LIMA 1x LIMA 100 x
Wine 2.962e+6 2.04e-4 2.973e+6 2.962e+6
Ionosphere 2.434e+3 2.81e-4 2.467e+3 2.434e+3
Libra 6.443e+7 6.57e-3 6.468e+7 6.394e+7
User knowledge 7.021e+1 1.31e-3 7.536e+1 7.033e+1
Vowel recognition 3.314e+7 8.08e-3 2.616e+08 7.652e+07
Multiple features 1.750e+6 1.87e-1 2.582e+06 1.782e+06
sl 1.089%e+13  4.56e-1 5.593e+14 4.776e+13
52 1.428e+13  4.62e-1 4.984¢+14 3.752e+13
MNIST-test 2.542e+10  4.35e+0 2.834e+10 2.543e+10
MNIST-train 1.536e+11  3.17e+1  MEM > 16G ~ MEM > 16G

Table 2: Comparisons of LIMA and our algorithm RKM.
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Figure 2: The effect of the balance parameter A on the clustering
and balancing performance of LKM and our algorithm RKM.

running time limits. The best sum-of-squares value found
in 100 executions of our algorithm is reported in column
RKM. T_RKM is the average CPU time (in sec) used in each
execution of our algorithm. The column LIMA kX gives the
best solution value found in 100 executions of LIMA, with a
running time limit £ x T_RKM for each execution. According
to the experiment results, we have the following observations:

e In the experiments of soft-balanced clustering, our al-
gorithm RKM shares the same objective function with
LKM but they differ in the optimization methods. We
can see that RKM and LKM show similar balancing per-
formance while RKM outperforms LKM in clustering
performance, especially for highly balanced clustering.

e There is an obvious positive correlation between the
balancing performance and the balance parameter A for
both algorithms LKM and RKM. However, the effect
of )\ on the objective function sum-of-squares is not
consistent. It depends on the type of data. For example,
the data points in s2 have a balanced distribution, so
a larger value of A\ may derive a better solution. It
also indicates that the balance regularization may be
beneficial to avoid poor local minima for the standard
k-means algorithm.

e Thanks to the efficiency of network simplex and the
warm start technique, our algorithm is several orders
of magnitude faster than the balanced k-means (BKM)
algorithm. Due to the space limitation, the effect of
warm start is not demonstrated. Roughly speaking, it
gives a 7 to 18 times speedup for RKM on large datasets.

e In order to get better solutions, one way is to execute
RKM many times starting from different initial solu-
tions. Compared with the neighborhood search based
heuristic LIMA, RKM can give a better solution within
less time on most datasets except Libra.
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