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Abstract
Classical semi-supervised video anomaly detection
assumes that only normal data are available in the
training set because of the rare and unbounded na-
ture of anomalies. It is obviously, however, these
infrequently observed abnormal events can actu-
ally help with the detection of identical or simi-
lar abnormal events, a line of thinking that mo-
tivates us to study open-set supervised anomaly
detection with only a few types of abnormal ob-
served events and many normal events available.
Under the assumption that normal events can be
well predicted, we propose a Margin Learning Em-
bedded Prediction (MLEP) framework. There are
three features in MLEP- based open-set super-
vised video anomaly detection: i) we customize
a video prediction framework that favors the pre-
diction of normal events and distorts the prediction
of abnormal events; ii) The margin learning frame-
work learns a more compact normal data distribu-
tion and enlarges the margin between normal and
abnormal events. Since abnormal events are un-
bounded, our framework consequently helps with
the detection of abnormal events, even for anoma-
lies that have never been previously observed.
Therefore, our framework is suitable for the open-
set supervised anomaly detection setting; iii) our
framework can readily handle both frame-level and
video-level anomaly annotations. Considering that
video-level anomaly detection is more easily anno-
tated in practice and that anomaly detection with
a few anomalies is a more practical setting, our
work thus pushes the application of anomaly de-
tection towards real scenarios. Extensive experi-
ments validate the effectiveness of our framework
for anomaly detection.

1 Introduction
Anomaly detection is an important task in computer vision
and machine learning because of its potential applications
∗The authors contribute equally.
†Corresponding author.

in video surveillance, network traffic monitoring, etc. How-
ever, it is a challenging task because anomalies are rare. This
means that abnormal events seldom happen. Further, anoma-
lies are unbounded, which means there are many possibilities
for abnormal events, even under an identical scene. Based on
the availability of labeled data and abnormal events in train-
ing sets [Ienco et al., 2017], anomaly detection can typically
be categorized into unsupervised anomaly detection where
training data labels are not given, semi-supervised anomaly
detection where only normal data are provided in the train-
ing set, and supervised anomaly detection where both normal
and abnormal data are provided and labeled in the training set.
Further, based on where the anomalies in the testing set are
included in there training set, supervised anomaly detection
can be further categorized as either a closed-set setting where
all types of anomalies have been included in the training set
[Sultani et al., 2018], or an open-set setting where some types
of anomalies in the testing set are not included. In practice,
once a few abnormal events occur and are recorded, these ab-
normal events can obviously help with the anomaly detection
of identical or similar anomalies in the future. Meanwhile,
because of the unbounded nature of anomalies, in this paper,
we propose to study open-set supervised anomaly detection.

Now that we have both normal and abnormal data at hand,
an intuitive idea is to formulate supervised video anomaly de-
tection as an (imbalanced) binary video classification prob-
lem. Such a solution, however, only works for closed-set su-
pervised video anomaly detection as it fails in the open-set
setting because of the following two reasons: i) due to the un-
bounded nature of anomalies, the observed data only contains
a few types of anomalies rather than all types of anomalies.
Those unseen types of anomalies may be classified as normal
events by a classifier, and the loss for such false negative is
big; ii) because of the rare nature of anomalies, the distribu-
tion between normal and abnormal data is imbalanced, and
the distributions of those unseen anomalies are unknown. As
as result, it is not easy to properly train a classifier for binary
video classification.

Under the assumption that normal events are predictable
and abnormal events are unpredictable [Liu et al., 2018;
Chandola et al., 2009], we propose a Margin Learning Em-
bedded Video Prediction (MLEP) framework for open-set su-
pervised anomaly detection. Specifically, there are three fea-
tures in our MLEP-based anomaly detection framework: i)
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we carefully design a ConvLSTM [Shi et al., 2015] for video
prediction based anomaly detection. Rather than stacking a
whole video snippet as the input for future predictions [Math-
ieu et al., 2016] [Liu et al., 2018], we propose the sequential
feeding of features of each frame into this ConvLSTM be-
cause this method is better able to encode both temporal and
spatial information [Luo et al., 2017a]. Such a network favors
the prediction of normal frames and distorts the prediction of
abnormal frames; ii) we embed margin learning into our net-
work architecture for the open-set supervised setting. By en-
forcing the margin between the pairwise distance of a normal
events pair and that of a normal and abnormal pair to be larger
than a given margin, our framework tightens the distribution
boundary of normal events and enlarges the gap between nor-
mal and abnormal events. Consequently, our solution helps
with the detection of both observed and unobserved anoma-
lies; iii) our framework can tackle anomaly detection with
both frame-level and video-level anomaly annotations. Since
video-level annotation is much easier, our solution is more
practical in real scenarios.

We summarize our contributions as follows: i) we design
an MLEP framework for open-set supervised video anomaly
detection. By integrating a video prediction module with mar-
gin learning, our framework learns a more compact normal
data distribution and enlarges the margin between normal and
abnormal distributions. Consequently, our framework is ro-
bust to unbounded anomalies. As far as we know, this is the
first work on open-set supervised video anomaly detection;
ii) we delicately design a future prediction framework which
favors the prediction of normal events and distorts the predic-
tion of abnormal events, thereby facilitating the detection of
abnormal events; iii) our framework can tackle both frame-
level and video-level annotations, thus our solution is more
practical in real scenarios; iv) extensive experiments validate
the effectiveness of our proposed framework for anomaly de-
tection.

2 Related Work
Deep Learning Based Semi-Supervised Anomaly Detec-
tion. Almost all of the previous work in computer vision
focuses on semi-supervised anomaly detection in which the
training data only contain normal data. Hasan et al. [Hasan et
al., 2016] propose a Convolutional Auto-Encoder (Conv-AE)
by stacking multiple frames. Further, inspired by the abil-
ity of the spatial representation of Convolutional Neural Net-
works (CNN) and the temporal encoding of Recurrent Neural
Networks (RNN), some works [Luo et al., 2017a] combine
these two networks to model normal spatial and temporal pat-
terns. In [Luo et al., 2017b], a stacked RNN based Auto-
Encoder is proposed for anomaly detection. Liu et al. [Liu
et al., 2018] propose a future frame prediction framework for
anomaly detection, which avoids the identity mapping and
significantly improves their performance on anomaly detec-
tion. In addition, some more popular methods are based on
generative models. For instance, Sabokroul et al. [Sabokrou1
et al., 2018] use Generative Adversarial Networks (GANs)
with a generator and a discriminator to learn the normal dis-
tribution.

Supervised Anomaly Detection. Even though supervised
anomaly detection has been well studied in the network in-
trusion detection [Li and Guo, 2007][Ahmed et al., 2016],
it is seldom studied within computer vision. As far as we
know, the only research along this direction is from [Sultani et
al., 2018], where multiple instance learning is used to tackle
data with video-level ground-truths, but for which all types
of anomalies in the testing set are included in the training set,
thus resulting in a closed-set setting. Because of the rare and
unbounded nature of anomalies, open-set anomaly detection
is a more practical setting. Further, the amounts of normal
and abnormal data are roughly balanced, whereas abnormal
data are more difficult to collect and are thus limited in the
training set. Compared with [Sultani et al., 2018], our open-
set video anomaly detection is more practical, thus it pushes
the application of video anomaly detection towards real ap-
plications.

Imbalanced Classification. Most of the previous research
on imbalanced classification was usually based on a data re-
sampling strategy [Li et al., 2011; Tian et al., 2011; Dong et
al., 2017; Yan et al., 2015], cost-sensitive learning[Krawczyk
et al., 2014; Ren et al., 2018], as well as the combination
of the two [Tang et al., 2009; López et al., 2012; Huang et
al., 2018] . For example, Krawczyk et al. [Krawczyk et al.,
2014] introduce an effective ensemble of cost-sensitive de-
cision trees for imbalanced classification. Recently, many
strategies based on CNNs to ease the issue of imbalance have
been studied. Dong et al. [Dong et al., 2017] develop an
end-to-end deep learning framework that is able to avoid the
dominant effect of majority classes by using batch incremen-
tal hard sample mining of minority classes. Ren et al. [Ren et
al., 2018] propose a novel meta-learning algorithm that learns
to assign weights to the training examples based on their gra-
dient directions.

3 Our Approach
Our MLEP leverages a prediction-based framework for video
anomaly detection, as well as a large margin constraint for
the open-set supervised anomaly detection setting. The whole
framework is illustrated in Figure 1 which includes a future
prediction and a margin learning module.

3.1 Future Prediction Module for Videos
Our assumption is that normal events are predictable while
abnormal ones are unpredictable [Liu et al., 2018; Chandola
et al., 2009]. Most of the existing networks used for video
prediction can be roughly divided into three categories: i)
UNet [Liu et al., 2018]; ii) Auto-Encoder without skip con-
nection [Mathieu et al., 2016]; iii) ConvLSTM [Villegas et
al., 2017]. However, all of these networks are not suitable
for our anomaly detection with only a few anomalies. Specif-
ically, i) UNet with skip connection favors the prediction of
abnormal events; ii) the conventional encoder [Mathieu et al.,
2016] with several convolution layers does not have enough
capacity to encode motion information for prediction even for
normal frames; iii) [Villegas et al., 2017] uses historical mo-
tion information of the observed frames for future video pre-
diction on the test data, so it may perhaps be able to predict
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Figure 1: The network architecture of MLEP contains an encoder, a ConvLSTM and a decoder. Here, features f correspond to the hidden
state of the last input in the ConvLSTM. fa, fp and fn respectively correspond to features of anchor, positive and negative videos. It should
be noted that we do not enforce a larger reconstruction error for abnormal frames.

anomalies.
Some existing research [Donahue et al., 2015] [Luo et

al., 2017a] has shown that combining a 2D convolution and
ConvLSTM can encode both spatial and temporal informa-
tion for action recognition and anomaly detection. Therefore,
we propose the use of such a scheme to favor the prediction
of normal data while distorting the prediction of abnormal
data. Specifically, given a video with normal events of length
T +1, we propose to encode each frame of the first T frames
with an encoder, then we will sequentially feed these fea-
tures into a ConvLSTM, which has previously demonstrated
its strengths in encoding motion features and spatial infor-
mation from videos. Finally, we will feed the output of the
ConvLSTM into a decoder to predict the last frame of a given
video. For the encoder, we leverage the architecture used in
[Zhu et al., 2017] consisting of 3 convolution layers and 6
residual blocks. For a decoder, we use three deconvolution
layers to gradually upscale the resolution and predict the fu-
ture frame. Consequently, as is experimentally shown, our
prediction framework will have a smaller prediction error for
normal frames while having a larger one for abnormal frames.
Thus, it is more suitable for anomaly detection when there are
rare anomalies.

3.2 Margin Learning Module for the Open-set
Supervised Setting

Regularizing normal data under a prediction framework is
not enough to properly discriminate abnormal events. Taking
into consideration that we only have a few abnormal events
at hand and that many types of anomalies are unseen, we, in
addition to the minimization of prediction errors for normal
events, further utilize margin learning to enlarge the margins
between normal-normal and abnormal-normal distance in the
feature space. Last but not least, we propose to embed mar-
gin learning into our future frame prediction framework and
to arrive at a Margin Learning Embedded Prediction (MLEP)
framework.

Abnormal events come with two types of annotated
ground-truths: video-level annotation and frame-level anno-
tation. In video-level annotation, a video comes with a label
to indicate whether it contains abnormal events, but it does

not indicate which frames correspond to the abnormal events.
Frame-level annotation, on the other hand, further indicates
which frames are normal and abnormal. Our MLEP can read-
ily handle annotations of both types as well as mixtures of the
two.

For convenience, we define the notation used in this pa-
per as follows: {It, . . . , It+T } is a video snippet with T + 1
frames sampled consecutively from the training set, and
{St, . . . , St+T |St ∈ [0, 1]} correspond to their normal con-
fidence levels, with higher values indicating that the frames
are more likely to be normal. For frame-level annotation, we
use the ground truth label to define St where St = 1 de-
notes a normal case and St = 0 denotes an abnormal one.
For video-level annotation, since the whole video is anno-
tated with 1 or 0, we also use St to denote a normalized score
for the tth frame. In our implementation, we set St based on
the output of the prediction network trained with only normal
data. ({Iat , . . . , Iat+T }, {I

p
t , . . . , I

p
t+T }, {Int , . . . , Int+T }) de-

notes a triplet in margin learning, where a refers to an anchor
(normal) frame, p refers to a positive (abnormal) one and n
refers to a negative (normal) one. We further use ·̂ to repre-
sent the output of the prediction network. For example, Îat+T

and Înt+T represent the predicted (t + T )th frame for anchor
and negative snippet, respectively. We denote normal scores
as Sn

t+T and Sp
t+T for negative and positive snippets, respec-

tively. Finally, we denote the output features of these video
snippets as fa, fp and fn, respectively.

The goal of the prediction network is to ensure that the pre-
dictions (Îat+T and Înt+T ) are close to the ground-truth (Iat+T

and Int+T ) for normal events. We follow [Liu et al., 2018;
Mathieu et al., 2016] and use a l1 loss to measure the dif-
ference between predictions and ground-truths, and we then
arrive at the following prediction loss:

LPred(Î
a
t+T , Î

n
t+T ) = ‖Îat+T − Iat+T ‖1

+ Sn
t+T ‖Înt+T − Int+T ‖1

(1)

It should be noted that we do not enforce a−‖Îpt+T − I
p
t+T ‖1

constraint in the prediction loss, because in any given scene
normal and abnormal frames share the same background, en-
forcing abnormal data with a large prediction error to fit this
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constraint will distort the prediction of normal data. Thus, we
put the constraint that enlarges the gap between normal and
abnormal distributions in the following margin module.

In the margin learning module, the goal is to decrease the
distance between normal features while increasing the gap
between normal and abnormal features, by leveraging a few
anomalies and a multitude of normal data. Since the assump-
tion is that a large volume of normal data is given, enforc-
ing a small distance between normal data would tighten the
distribution of normal data in the feature space, thus mak-
ing the separation of normal and abnormal data easy. This
consequently facilitates the detection of unknown anomalies
in the open-set setting. Inspired by the successes of triplet
loss [Weinberger and Saul, 2009] in face verification [Schroff
et al., 2015] and person re-id [Cheng et al., 2016], our pro-
posed margin learning method includes a weighted triplet
loss:

LTriplet(f
a, fp, fn) = (Sn

t+T − S
p
t+T )

∗max(0, ‖fa − fn‖22 − ‖fa − fp‖22 + δ)
(2)

Normality Confidence Calculation. In our implementa-
tion, for frame-level annotation, Sn

t+T = 1, Sp
t+T = 0. For

video-level annotation, we use a prediction network trained
with only normal data to predict a normal score for each
frame. If some frames from abnormal videos have normal
scores larger than 0.5, we add them to the candidates of neg-
ative snippets. If some frames from abnormal videos have
normal scores less than 0.5, we add them to the candidates
of positive snippets. Again, for video-level annotation, the
score of a negative (positive) frame Sn

t+T (Sp
t+T ) ranges from

0 to 1, and a smaller Sn
t+T (Sp

t+T ) indicates that the frame
is more likely to be an abnormal frame, and thus the triplet
loss corresponding to this triplet should have a larger weight
((Sn

t+T − S
p
t+T ) is larger).

3.3 Total Loss
By combining the losses corresponding to the future predic-
tion module and the margin learning module, we arrive at the
following objective function for our MLEP:

L = LPred + λLTriplet (3)

where λ balances the weight of triplet loss. Here, λ = 1 in
our experiment.

3.4 Training Phase
Since our objective contains a weighted triplet loss, how
triplets are sampled is important to the performance of our
method. Many previous works have discussed how to sample
triplets in different tasks [Cheng et al., 2016]. In our frame-
work, for frame-level annotation and for samples in each
mini-batch, we simply randomly choose an anchor, and a pos-
itive and a negative snippet to train the network. For video-
level annotation, we first train a prediction-based anomaly
detection network with our method using normal data only,
and in this case, we set λ = 0. Then, we use the trained
model to predict normal scores for both normal and abnormal
data. Finally, we use the sampled triplets to retrain the whole
framework.

3.5 Inference Phase
According to [Liu et al., 2018], the quality of predicted
future frames can measure the degree of an anomaly. The
Peak Signal to Noise Ratio (PSNR), as shown in Equa-
tion 4, is a widely-used measurement for image quality as-
sessment [Mathieu et al., 2016] in which, a higher PSNR for
the t-th frame indicates that it is more likely to be normal.

MSE(It, Ît) =
1

N2

N∑
i=0

N∑
j=0

‖It(i, j)− Ît(i, j)‖22

Pt(It, Ît) = 10 log10
1

MSE(It, Ît)

(4)

Here,N denotes the number of rows (columns) in a frame and
i, j denotes the ith row and jth column in this frame. Since
different surveillance scenes may cause different magnitudes
of PSNR, we normalize the PSNR of all frames under a single
scene into scores, as illustrated in Equation 5.

St =
Pt(It, Ît)− min

Pt∈B
Pt(It, Ît)

max
Pt∈B

Pt(It, Ît)− min
Pt∈B

Pt(It, Ît)
(5)

where B is a set of PSNR of total frames under a single
surveillance camera of view. The backgrounds vary highly
due to different camera views and angles.

4 Experiments
All frames are resized to 224×224 pixels, and intensity values
are normalized to [−1, 1]. The length of each video snippet
T is 4. An Adam [Kingma and Ba, 2015] based stochastic
gradient decent is used for parameter optimization, and the
learning rate α is set to 0.0002. The margin δ is 1.0 and the
coefficient λ is 1.0. An over-sampling strategy is utilized to
deal with the imbalance of data of both our method and all
baselines in this paper. In each iteration, two video snippets
are randomly sampled from a normal data pool as an anchor
and as a negative sample, and one video snippet is randomly
sampled from the abnormal data pool as a positive sample.
All source code will be released as a late date.

4.1 Datasets and Evaluation Metric
In this paper, we use two recently proposed anomaly datasets
CUHK Avenue [Lu et al., 2013] and ShanghaiTech Cam-
pus [Luo et al., 2017b] for evaluation. In addition, these two
datasets are the most challenging ones in terms of the types
of anomalies and the sizes of the datasets.1

Training/Testing Split. Since only normal data are pro-
vided in the training set in the standard training/testing
split for both datasets, in order to validate the performance
of open-set supervised anomaly detection, we evenly split
the abnormal data in the original testing set into K folds:
{A1, . . . , Ak, . . . , AK}. Our criteria is that the kth fold Ak

1In the UCF Crime dataset [Sultani et al., 2018], the proportions
of normal and abnormal data are equal. In addition, many camera
angle changes are present in the videos, which is not ideal for pre-
diction purposes. Thus, we do not evaluate this dataset in this paper.
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only contains a few types of abnormal events rather than
all types of anomalies in the training set. Then we conduct
K(= 10)-folders cross-validation, i.e., and for each instance,
we choose one fold and add it into the training set, and we
use the remainder as the testing set. In other words, we di-
vide the training and testing data K ways. Consequently,
the ratio of normal to abnormal frames in the Avenue train-
ing set is around 50:1 and that of the ShanghaiTech training
set is around 85:1. Therefore the training/testing split strat-
egy guarantees that 1) the testing set must contain the certain
types of abnormal events that are not included in the training
set; and 2) the testing set may contain certain types of abnor-
mal events observed in the training set.

Following [Hasan et al., 2016; Liu et al., 2018], we also
leverage a frame-level AUC for a performance evaluation.

4.2 Comparison with the State-of-the-art
We conduct experiments under two different ground-truth
training set annotations, i.e., frame-level annotation and
video-level annotation. The results of their mixture can be
seen in the supplementary materials. For the test set, all
frame-level annotations are provided for performance evalua-
tion. We compare our method with the following baselines:2

Semi-supervised anomaly detection methods. State-of-
the-art semi-supervised anomaly detection methods, includ-
ing Conv-AE [Hasan et al., 2016], stacked RNNs [Luo et al.,
2017b], Unmasking [Ionescu et al., 2017], and Future Pre-
diction [Liu et al., 2018] (for a fair comparison, we replace
the backbone of [Liu et al., 2018] with ours and denote this
baseline as Future Prediction?). All of these methods only
leverage normal data for anomaly detection in the training
set. For a fair comparison, the testing set is the same over all
baselines.

Imbalanced video classification methods. Closed-set su-
pervised anomaly detection is essentially imbalanced clas-
sification, which typically uses a re-sampling strategy or
cost sensitive learning. [Yan et al., 2015] uses a bootstrap-
ping method for CNN-based imbalanced image classifica-
tion. Thus, we extend it to the video setting and formu-
late our task as imbalanced video classification with data
re-sampling. We denote this baseline as Imbalanced Video
Classification with Over-Sampling (IVC with OS). We also
append a Focal Loss [Lin et al., 2018], which is a form of
cost-sensitive learning for imbalanced object classification,
and we denote this baseline as IVC with OS&Focal. Further,
we leverage an prevalent two-stream based action recogni-
tion [Simonyan and Zisserman, 2014] network to extract fea-
tures and only train a binary classifier, which we call IVC
with OS&Focal&Two-stream.

Triplet Loss + One Class SVM. To further discuss the in-
terlinked effects of the future prediction module and the mar-
gin learning module, we also design a baseline using only a
margin learning module, namely, Triplet Loss. Since mar-
gin learning by itself cannot classify anomalies, we append

2[Sultani et al., 2018] is a closed-set supervised anomaly detec-
tion with even normal/abnormal data in its training set, so we did not
make comparisons with it.

Avenue Shanghai
Tech

Conv-AE [Hasan et al., 2016] 80.0% 60.9%
Unmasking [Ionescu et al., 2017] 80.6% N/A
Stacked RNN [Luo et al., 2017b] 81.7% 68.0%

Future Prediction [Liu et al., 2018] 84.9% 72.8%
Future Prediction? [Liu et al., 2018] 89.2% 73.4%

IVC with OS 82.8% 55.6%
IVC with OS & FL 83.1% 50.0%

IVC with OS & FL & Two-stream 80.6% 49.5%
Triplet loss + OCSVM 80.4% 50.4%

MLEP (Video-level annotations) 91.3% 75.6%
MLEP (Frame-level annotations) 92.8% 76.8%

Table 1: Performance comparison on Avenue and ShanghaiTech
Campus.

an One Class SVM and denote this baseline as Triplet Loss +
OCSVM. This baseline also uses both normal and abnormal
data for anomaly detection.

The performances of these methods under different set-
tings are reported in Table 1. We can make the follow-
ing observations from this table: i) Introducing a few points
of abnormal data in the training set significantly boosts the
performance of anomaly detection. Specifically, our MLEP
significantly outperforms the state-of-the-art semi-supervised
methods (achieving around an 8% and a 4% higher AUC
on the Avenue and ShanghaiTech datasets). Therefore, it
demonstrates the effectiveness of supervised anomaly detec-
tion; ii) The improvement of our method over other imbal-
anced video classification (closed-set supervised anomaly de-
tection) methods demonstrates the effectiveness of our solu-
tion for the open-set setting; iii) By comparing the perfor-
mance of MLEP with different annotations, we can see that
video-level annotation achieves a comparable performance
with frame-level annotation, demonstrating how our method
can handle data that has been more easily annotated; iii) By
replacing the backbone of [Liu et al., 2018] with ours, the
performance on the Avenue and ShanghaiTech dataset in-
creases by around 4.3% and 0.6%, respectively. Therefore,
our proposed network is more suitable for anomaly detection.

4.3 Design of Network Architecture
We compare our proposed network with some state-of-the-
art video prediction networks, including [Villegas et al.,
2017] [Ronneberger et al., 2015] [Isola et al., 2017]. For
fair comparison, we only replace our proposed predictor in
the MLEP with other networks and keep other modules un-
changed. Table 3 shows that our method corresponds to be
the best performance. The reason for the improvement of our
network over UNet is that we do not adopt skip connection
that may ignore the margin learning and favor the prediction
of abnormal frames. In addition, our network has a larger
gap between normal and abnormal scores than other advanced
prediction networks [Villegas et al., 2017] [Isola et al., 2017],
where a larger gap helps the classification between normal
and abnormal events. Thus, our predictor is more suitable for
open-set setting than other ones.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3027



Normal data

Observed types

of anomalies

Unseen types of

anomalies

(a) MLEP (λ = 0)

Normal data

Observed types

of anomalies

Unseen types of

anomalies

(b) Margin Learning Only

Normal data

Observed types

of anomalies

Unknown types

of anomalies

(c) MLEP

Figure 2: The visualization of learned features by different models on the Avenue dataset. The left one is the features learned with only
prediction loss, the middle one is that with only triplet loss, and the right one is that with MLEP. Blue ones presents the features of normal
data, orange ones are the features of observed types of anomalies, and gray ones correspond to that of unseen types of anomalies. We can
see that normal events are grouped together while there is a large gap between normal and abnormal data, even for unobserved types of ones.
Best view in color.

MCNet UNet Cycle GAN Generator Ours
Mean AUC 88.1% 87.2% 88.0% 92.8%

Score on normal frames 0.726 0.771 0.810 0.799
Score on abnormal frames 0.402 0.447 0.485 0.250

Gap between normal and abnormal scores 0.324 0.324 0.325 0.548

Table 2: Evaluation of different network architectures on Avenue. A larger gap means it is easier to tell anomalies from normal events.

N+S N+U N+S+U
MLEP 95.6% 87.8% 92.8%

IVC with OS 96.4% 71.1% 82.8%
IVC with OS & FL 84.3% 82.2% 83.1%

Table 3: Evaluation on different testing subsets of the Avenue
dataset. N denotes Normal while S and U denotes Seen and Unseen
types of anomalies, respectively.

4.4 Robustness to the Open-set Setting
According to the partition criteria of testing data in our ex-
periments, anomalies in the testing set contain both the ob-
served types of anomalies as well as other unseen types of
anomalies. Once our MLEP is trained, we evaluate its perfor-
mance on different subsets of the test data: subset 1 (N + S)
contains both normal data and observed types of anomalies
in the testing set; subset 2 (N + U) contains unseen types of
anomalies and normal data; and subset 3 (N + S + U) is the set
containing both of types of anomalies. We show the results
in Table 3 where our method detects both observed as well
as unseen types of anomalies very well. The reason for this
is that we decrease the distances among normal data while
pushing anomalies far from the normal data in our MLEP.

4.5 The Effect of The Portion of Uneen Anomalies
Next, we further discuss how the proportion of normal and
abnormal data in the training set impacts binary classification.
For 5-fold cross-validation, the training set contains 54.3% of
the anomalies in the testing set in terms of the types of anoma-
lies present. As for the 10-fold case, the number is 34.4%,
which means the most of the anomalies in the testing set have

MLEP IVC with OS IVC with OS & FL
10-fold 92.8% 82.8% 83.1%
5-fold 93.7% 93.9% 91.5%

Table 4: Comparison with Different Portions of Anomalies.

never been seen before. We show the performance under both
settings in Table 4 where introducing more anomalies into the
training set will lead to a higher AUC for all methods. Fur-
ther, by comparing our method with binary classifiers, we can
see that our method is more robust to the case where only a
few types of anomalies are present. In the training phase,
when all types of anomalies are observed, the performance of
our MLEP is similar to that of binary classifiers. In practice,
due to the rare and unbounded nature of anomalies, it is not
feasible to include all types of anomalies in the training set.
Thus, our MLEP is a better solution than binary classifiers in
the open-set setting.

4.6 Visualization of Features
We project features of the test data from the Avenue dataset
onto a 2D space with PCA and show the results in Figure 2.
We can see that our model does a good job of separating nor-
mal and abnormal events, even for unobserved types of ab-
normal events. The reason for this phenomenon is that we
explicitly reduce the distance between normal data. Thus, the
distribution boundary for normal events is tightened. Mean-
while, we enlarge the gap between normal and abnormal data
so that the distance between normal and the observed types of
anomalies is further enlarged, which also helps in pushing the
unobserved types of anomalies far from the normal data. In
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sum, it demonstrates the effectiveness of our proposed MLEP
for anomaly detection with a few anomalies.

5 Conclusion
This paper presents a Margin Learning Embedded Prediction
(MLEP) framework for open-set supervised video anomaly
detection. Specifically, we propose the combination of a
2D convolution encoder with a ConvLSTM for future frame
prediction for video anomaly detection, with triplet loss im-
posed to guarantee a large margin between normal and ab-
normal events as well as tighten the boundary of the normal
data distribution, thus helping with the open-set supervised
anomaly detection. Because of the rare and unbounded na-
ture of anomalies, our problem setting is more closely aligned
with real applications. Extensive experiments validate the ef-
fectiveness of our method.
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