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Abstract
Hashing can compress high-dimensional data into
compact binary codes, while preserving the sim-
ilarity, to facilitate efficient retrieval and storage.
However, when retrieving using an extremely short-
length hash code learned by the existing methods,
the performance cannot be guaranteed because of
severe information loss. To address this issue, in this
study, we propose a novel supervised short-length
hashing (SSLH). In this proposed SSLH, mutual
reconstruction between the short-length hash codes
and original features are performed to reduce se-
mantic loss. Furthermore, to enhance the robustness
and accuracy of the hash representation, a robust
estimator term is added to fully utilize the label in-
formation. Extensive experiments conducted on four
image benchmarks demonstrate the superior perfor-
mance of the proposed SSLH with short-length hash
codes. In addition, the proposed SSLH outperforms
the existing methods, with long-length hash codes.
To the best of our knowledge, this is the first linear-
based hashing method that focuses on both short-
and long-length hash codes for maintaining high
precision.

1 Introduction
With the exponential growth of data, the approximate nearest
neighbor (ANN) search in which the ANNs of a query sample
are determined within a large database has become vital in
many applications, including web image and video retrieval
[Li et al., 2015] [Hao et al., 2017]. Hashing provides high
efficiency with respect to both storage cost and query speed,
and has received significant attention in information retrieval.
Hashing encodes media data into a string of complex binary
codes, while preserving the similarity of the original media
data. The distance in binary codes is calculated using the Ham-
ming distance, which can be implemented on hardware using
bit-wise XOR operations, and provides highly efficient com-
putation, compared to the other distance calculations [Wang
et al., 2018].
∗Corresponding Author.
†Corresponding Author.

Learning-based hashing, which aims at generating binary
hash codes by learning the projections under the guidance
of the original data, is one of the extensively-used hashing
methods that can provide superior retrieval performance by
analyzing the underlying data characteristics. The existing
learning-based hashing methods can be roughly divided into
two main categories: unsupervised and supervised. Unsuper-
vised hashing does not use label information for the training
samples, while supervised hashing methods make full use of
the class labels. In general, supervised hashing can perform
significantly better than the unsupervised. Therefore, many
supervised hashing methods [Shen et al., 2015], [Gui et al.,
2018], [Gui et al., 2018], [Luo et al., 2018a], [Lin et al., 2019]
been proposed in recent years.

Compactness, which implies that the obtained hash code
should be compact and as short as possible, is a crucial factor
in learning-based hashing. In general, given a dataset with c
categories, the length, L, of the hash code should be greater
than log2(c); else, the hash codes cannot distinguish the sam-
ples. Therefore, in this study, we define short-length as the
length, which is slightly greater than log2(c). For example,
for dataset, CIFAR-10, which has 10 categories, log2(10)=3.3,
and a length of four can be considered as a short length. Gen-
erally, when the hash-code length is smaller than the number
of categories, c (note that it is always considerably greater
than log2(c)), or even smaller than the feature representation
dimension, the performances of the existing hashing methods
degrade significantly. Therefore, the length of the hash codes
learned by the existing methods is always considerably greater
than the number of categories c (e.g. 48, 64, or 128).

Short-length hash codes can reduce the storage cost and
computation complexity, and accelerate the retrieval speed
[Luo et al., 2018b]. However, retrieval with short-length hash
codes usually leads to unexpected poor performance due to
the following: 1) Weak classification: Classification ability
is important in information retrieval, and hash codes with
shorter length lead to weaker classification ability. Therefore,
enhancing the classification ability is vital for short-length
hashing. 2) Severe information loss: Due to considerable
dimension reduction, representing a sample using a short-
length hash code leads to severe information loss. 3) Easy to
achieve suboptimal solution: Trivial solutions are generally
easier suboptimal solutions during short-length hash learning,
particularly, when the hash code length, L, is considerably
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smaller than the number of categories, c.
In order to address the aforementioned issues, we propose a

novel discrete hashing method, termed supervised short-length
hashing (SSLH). In the proposed SSLH, a robust estimator is
presented with label information to enhance the classification
ability, and mutual reconstruction between the hash codes and
original features is performed for reducing information loss. In
addition, to avoid suboptimal solutions, the balance constraint
and regularization are utilized during hash learning.

The SSLH significantly surpasses the existing hashing meth-
ods with short-length hash codes. In addition, considerable
improvement in performance is achieved with long-length
hash codes. To the best of our knowledge, the SSLH is the
first linear-model hashing that focuses on both long- and short-
length hash codes for maintaining high precision. The main
contributions of this study are summarized as follows:
• We propose a new supervised discrete hashing method for

short-length hash learning. In the proposed method, to
achieve better performance, robust and mutual regression,
matrix factorization, discrete optimization, and balance
constraint are seamlessly combined for short-length hash
learning.
• Stable and high-precision for both short- and long-length

hash codes are achieved using the proposed method. Ex-
periments based on four large-scale datasets demonstrate
that the proposed method can significantly improve the
performance with short-length hash codes, while consid-
erably improving the performance with the long-length
ones, under various scenarios.

2 Proposed Method
2.1 Formulation
Assume that we have a training set, X, consisting of n in-
stances; i.e., X = {xi}ni=1, each instance can be repre-
sented by an m-dimensional feature. Moreover, a semantic
label matrix, Y = {yi}ni=1, is available, with yi = {yij} ∈
{−1,+1}c being the label vector of the i-th instance, where
c is the number of categories in the training set. If the i-th
instance belongs to the j-th semantic category, yij = 1, and
−1 otherwise. The hash matrix is defined as H = {hi}ni=1.
||H|| and HT denote the `2-norm and transpose of matrix, H,
respectively.

To utilize the label information effectively, least squares
regression is widely adopted in the existing hashing methods.
However, the ordinary least squares regression might be sensi-
tive to outliers [Lawson and Hanson, 1995], [He et al., 2012],
[Gui and Li, 2018]. Therefore, in this study, we adopt the
concept of “correntropy” [Liu et al., 2007] to enhance the clas-
sification ability with a robust estimator. Given a hash matrix,
H, and label matrix, Y, a linear projection, W, is defined for
describing the relationship between them. Then, the robust
estimator can be formulated as follows:

min
W,H

G(Y,WTH) = min
W,H

Tr(EDET )

s.t. H ∈ {−1,+1}L×n
,

(1)

where Tr(·) is the trace of “·”, E = Y −WTH, D is a
diagonal matrix of size n× n and the i-th diagonal element is

defined as

Di = exp(−
∥∥(Y −WTH)i

∥∥2 /δ2), (2)

δ is a hyperparameter, which will be set empirically, and (Y−
WTH)i is the i-th column of (Y −WTH).

Moreover, the kernel trick is adopted to deal with the loss
of feature information. The kernel trick can capture the lo-
cal structure of the data and reduce the feature dimension
with nonlinear projections. Given a training set, X, a radial
basis function is used to map an m-dimension feature to d-
dimension features. Specifically, we first randomly select d
anchor points, {pi}di=1, from the training set, and each training
sample can be transformed into a new representation through

ϕ(x) = exp(−‖x− pi‖22 /2σ
2)di=1, (3)

where {pi}di=1. This process can be calculated in advance;
we use V to represent ϕ(X) in the following sections for
conciseness.

According to the matrix factorization theory [Deerwester
et al., 1990], the latent semantic feature from source datasets
can be learned by matrix factorization. As the hash matrix, H,
is a semantic representation of the samples, it can be consid-
ered as the latent semantic feature of the data. We then have
the following equation, according to the matrix factorization
theory:

V = UTH, (4)

where U is a projection. For out-of-sample extension, we need
to learn a projection, P, from the original feature to the hash
code, which is

H = PTV. (5)

Obviously, Eqs. (4) and (5) can be considered as mutual
reconstructions between the original feature and the hash ma-
trix. Therefore, minimizing the reconstruction loss will reduce
information loss in short-length hash learning. Then, this
problem can be formulated as follows:

min
H,P,U

α
∥∥H−PTV

∥∥2 + β
∥∥V −UTH

∥∥2
s.t. H ∈ {−1,+1}L×n

,

(6)

where α and β are parameters. Compared to the existing
hashing methods that only use one type of reconstruction, the
proposed method can preserve more information.

Furthermore, according to the balance property of hash
codes, each hash bit has a 50% chance of being −1 or +1 in a
hash vector [Shen et al., 2017] [Jiang and Li, 2017]. In this
study, the balance property can be formulated as

min
H
‖H1‖2 s.t. H ∈ {−1,+1}L×n

, (7)

where 1 is a all-ones vector. Balance constraint can avoid
trivial solutions. In addition, the utilization of projection,
U, can avoid trivial solutions because trivial solutions for H
cannot reconstruct the feature well and will render the loss
considerable.
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In order to obtain a smooth solution, prevent over-fitting,
and improve the stability of linear regression [Hoerl and Ken-
nard, 1970], the `2-norm regularization is adopted in this study.
The regularization for W, P, and U can be formulated as

min
W,P,U

R(W,P,U) = min
W,P,U

λ(‖W‖2 + ‖P‖2 + ‖U‖2),
(8)

where λ is a hyperparameter.
Finally, the SSLH is formulated as

min
W,H,P,U

G(Y,WTH) + α
∥∥H−PTV

∥∥2
+ β

∥∥V −UTH
∥∥2 + γ ‖H1‖2 +R(W,P,U)

s.t. H ∈ {−1,+1}L×n
,

(9)

where α , β, and γ are parameters.

2.2 Optimization
It is challenging to optimize Eq. (9) directly because it is
nonconvex and noncontinuous. However, we try to solve this
nondifferentiable problem with an iterative framework using
the following steps .

W-Step: Learn the projection, W, with the other variables
fixed. The problem in Eq. (9) becomes

min
W

Tr((Y −WTH)TD(Y −WTH)) + λ ‖W‖2 . (10)

Setting the derivative of Eq. (10) with respect to W as zero
yields

W = (HDHT + λI)−1HDYT . (11)
H-Step: Learn the binary code, H, with the other variables

fixed. The problem in Eq. (9) becomes

min
H

Tr((Y −WTH)TD(Y −WTH))

+ α
∥∥H−PTV

∥∥2 + β
∥∥V −UTH

∥∥2 + γ ‖H1‖2

s.t. H ∈ {−1,+1}L×n
.

(12)

Eq. (12) can be reformulated as

min
H

Tr((WTH)D(HTW)) + α(‖H‖2 − 2Tr(HTPTV))

+ β(−2Tr(HTUV) +
∥∥UTH

∥∥2 + γ ‖H1‖2)

s.t. H ∈ {−1,+1}L×n
.

(13)

As ‖H‖2 = L ∗ n, Eq. (13) can be rewritten as

min
H

Tr((WTH)D(HTW)) + β
∥∥UTH

∥∥2 − Tr(HTQ)

+ γ ‖H1‖2 s.t. H ∈ {−1,+1}L×n
,

(14)

where Q = WY + αPTV + βUV.
Although Eq. (14) is difficult to solve because H is discrete,

we can directly leverage the discrete cyclic coordinate descent
(DCC) approach [Shen et al., 2015] to learn H bit-by-bit
iteratively, until convergence or a fixed number of iterations.

Algorithm 1 Supervised Short-Length Hashing (SSLH)

Input: Training set: X; semantic label: Y; code length: L;
hyperparameters: δ, d, α, β, γ, and λ; number of itera-
tions: T .

1: Initialize W, P, and U as random zero-centered matrices,
and H as a random {−1, 1}L×n matrix. Calculate V
using the kernel function according to Eq. (3).

2: repeat
3: W-Step Use Eq. (11) to solve W, while the other

variables are fixed.
4: H-Step Use Eq. (16) to solve H bit-by-bit, while the

other variables are fixed.
5: P-Step Use Eq. (18) to solve P, while the other vari-

ables are fixed.
6: U-Step Use Eq. (20) to solve U, while the other vari-

ables are fixed.
7: D-Step Use Eq. (2) to solve D, while the other vari-

ables are fixed.
8: until Convergence or a fixed number of iterations.

Output: Hash matrix: H; projection matrix: P.

Specifically, define hT as the l-th row of matrix, H, l =

1, · · · , L, and H
′

as matrix, H, excluding h. Analogously,
define qT as the l-th row of matrix, Q. Next, define wT as
the l-th row of matrix, W, and W

′
as matrix, W, excluding

w. Then, define uT as the l-th row of matrix, U, and U
′

as
matrix, U, excluding u. The problem in Eq. (14) becomes

min
h

hT (DH
′TW

′
wT + βH

′TU
′
uT + γH

′T1− qT )

s.t. h ∈ {−1,+1}n×1
.

(15)

The analytic solution of h can be expressed as

h = sgn(q−wW
′TH

′
DT − βuU

′TH
′
− γ1TH

′
), (16)

where sgn(·) is a sign function.
P-Step: Learn the projection matrix, P, while holding the

other variables fixed. The problem in Eq. (9) becomes

min
P

∥∥H−PTV
∥∥2 + λ ‖P‖2 . (17)

The closed-form solution of P is

P = (VVT + λI)−1VHT . (18)

U-Step: Learn the projection matrix, U, while holding the
other variables fixed. The problem in Eq. (9) becomes

min
U

∥∥V −UTH
∥∥2 + λ ‖U‖2 . (19)

The closed-form solution of U is

U = (HHT + λI)−1HVT . (20)

D-Step: D can be solved as Eq. (2).
In summary, we try to solve the nonconvex mixed integer

optimization problem using above steps . Convergence is
reached within a few iterations, which is demonstrated in the
“Experimental” section. The algorithm for solving the SSLH
is presented as Algorithm 1.
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Method
CIFAR-10 CALTECH-101

4 bits 6 bits 8 bits 10 bits 32 bits 48 bits 8 bits 10 bits 12 bits 14 bits 32 bits 48 bits

LSH 0.1897 0.1986 0.2215 0.2349 0.2102 0.2474 0.0929 0.1064 0.1260 0.1281 0.1455 0.1801
SH 0.2564 0.2801 0.2772 0.2838 0.2898 0.2961 0.2043 0.2053 0.2450 0.2744 0.2048 0.2089

PCA-ITQ 0.1581 0.2062 0.2283 0.2657 0.3398 0.3562 0.0530 0.0777 0.0936 0.1035 0.1390 0.1681
PCA-RR 0.1897 0.2081 0.2538 0.2533 0.2938 0.3172 0.1196 0.1085 0.1301 0.1601 0.1637 0.1900

MFH 0.2590 0.2643 0.2766 0.2816 0.3473 0.3623 0.2187 0.2558 0.2750 0.2914 0.2724 0.2964
SDH 0.1683 0.3222 0.3220 0.4177 0.6507 0.6626 0.1016 0.1151 0.1448 0.1369 0.2792 0.3060

COSDISH 0.2510 0.3006 0.3899 0.3898 0.6154 0.6595 0.2220 0.2194 0.2312 0.2404 0.2745 0.3452
FSDH 0.2166 0.3014 0.4768 0.5727 0.6526 0.6632 0.1133 0.1307 0.1399 0.1587 0.2917 0.4108
SSDH 0.2413 0.2965 0.4166 0.4094 0.6022 0.6124 0.2849 0.3002 0.3396 0.3298 0.3851 0.4104
SSLH 0.4356 0.5215 0.5722 0.6058 0.6641 0.6700 0.3695 0.4078 0.4330 0.4458 0.4926 0.5256

Table 1: Performance in terms of mAP score on single-label datasets. The best results for mAP are shown in bold.

Method
MS-COCO NUS-WIDE

7 bits 8 bits 9 bits 10 bits 32 bits 48 bits 5 bits 6 bits 7 bits 8 bits 32 bits 48 bits

LSH 0.4663 0.4665 0.4670 0.4712 0.4833 0.4838 0.3096 0.3157 0.3243 0.3372 0.3424 0.3541
SH 0.6426 0.6646 0.6777 0.6795 0.6529 0.6800 0.5415 0.5678 0.5689 0.5874 0.6058 0.6070

PCA-ITQ 0.4789 0.4894 0.4979 0.5090 0.6578 0.6907 0.3095 0.3095 0.3095 0.3095 0.4544 0.6016
PCA-RR 0.5333 0.5533 0.5392 0.5480 0.6481 0.6594 0.3796 0.4172 0.4192 0.4335 0.5500 0.6282

MFH 0.6054 0.6118 0.6221 0.6231 0.6470 0.6500 0.5382 0.5450 0.5557 0.5636 0.6244 0.6315
SDH 0.5246 0.5505 0.5327 0.6001 0.6489 0.6531 0.5023 0.5240 0.5775 0.6100 0.7159 0.7350

COSDISH 0.4703 0.4867 0.4764 0.5693 0.6390 0.7164 0.3096 0.3696 0.4242 0.5242 0.7242 0.7274
FSDH 0.5225 0.5664 0.5754 0.6004 0.7197 0.7235 0.5976 0.6125 0.5977 0.5938 0.7219 0.7588
SSDH 0.6588 0.6578 0.6680 0.7127 0.7219 0.7588 0.5964 0.6263 0.6384 0.6579 0.7574 0.7763
SSLH 0.8080 0.8199 0.8252 0.8254 0.8644 0.8683 0.6635 0.6969 0.7197 0.7331 0.8042 0.8129

Table 2: Performance in terms of mAP score on multi-label datasets. The best results for mAP are shown in bold.

2.3 Time Complexity
The time complexity for learning projection, W, is T ·
O(2nL2 + ncL), whereas the time complexities for learn-
ing projections P and U are T · O(2nd2 + ndL) and
T · O(2nL2 + ndL), respectively. The time complexity for
learning hash code, H, is T ·O(ndL2+ncL2). As d is consid-
erably greater than c and L, the total training time complexity
of the proposed method can be simplified as T ·O(ndL2). The
time complexity is linearly related to the size of the dataset,
making the proposed method scalable to larger datasets.

3 Experiments
In this section, we present the experimental settings and re-
sults. The hyperparameter settings employed are listed below.
Extensive experiments were conducted on four image datasets
to evaluate the proposed method and compare it with several
state-of-the-art methods. The experiments were performed
on a computer with an Intel(R) Core(TM) i7-4790 CPU and
32-GB RAM.

3.1 Datasets and Experimental Settings
Four extensively-used image datasets were utilized in the
experiments: CIFAR-10 1 [Krizhevsky and Hinton, 2009],
CALTECH-101 2 [Fei-Fei et al., 2007], MS-COCO 3 [Lin et

1 https://www.cs.toronto.edu/∼kriz/cifar.html.
2 http://www.vision.caltech.edu/Image Datasets/Caltech101/.
3 http://cocodataset.org/.

al., 2014], and NUS-WIDE 4 [Chua et al., 2009].
CIFAR-10 is a single-label dataset containing 60,000 im-

ages belonging to 10 classes, with 6,000 images per class.
We randomly selected 5,000 and 1,000 images (100 images
per class) from the dataset as the training and testing sets,
respectively.

CALTECH-101 is a single-label dataset including 8,677
images belonging to 101 categories, with 40 to 800 images
per category. We randomly selected 5,000 and 1,000 images
from the dataset as the training and testing sets, respectively.

The MS-COCO dataset is a multilabel dataset containing
82,783 images belonging to 91 categories. For the training
image set, images with no category information were dis-
carded and 82,081 remained. We randomly selected 10,000
and 5,000 images from the dataset as the training and testing
sets, respectively.

The NUS-WIDE dataset contains 269,648 web images asso-
ciated with 1,000 tags. In this multilabel dataset, each image
may be annotated with multiple labels. We selected only
195,834 images belonging to the 21 most frequent concepts.
We randomly selected 10,500 (500 from each concept) and
2,100 (100 from each concept) images from the dataset as the
training and testing sets, respectively. For multi-label datasets,
two images were defined as a similar pair, if they shared at
least one common label.

For the CIFAR-10, MS-COCO, and NUS-WIDE, we used

4 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm.
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Figure 1: Performance in terms of the precision score based on four benchmark datasets.
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Figure 2: Precision score with different settings of α and β, for four benchmark datasets. The hash code length is 8 in the first row (a-d), and
128 in the second (e-h).

CNN-F model [Chatfield et al., 2014] to perform feature learn-
ing. For the CALTECH-101, each image was represented
as a 512-dimension GIST feature. We performed ten runs
of our method and averaged the performances, for compar-
ison. As the experimental parameters, we empirically set
α = β = γ = λ = 10−4 and δ = 2.

3.2 Evaluation Metric
To evaluate the proposed method, we used an evaluation met-
ric called mean average precision (mAP). mAP includes the
mean of the average precision (AP) values obtained for the top
retrieved samples. The AP is defined as

AP =
1

Z

K∑
r=1

Precision(r)σ(r), (21)

where Z is the number of relevant instances in the retrieved K
samples. σ(r)=1, if the r-th instance is relevant to the query

and σ(r)=0, otherwise. Precision(r) is the precision score for
r samples; the precision score is defined as

Precision =
N(TP)

N(TP) +N(FP)
, (22)

where N(·) is the number of the specific type. TP represents a
true positive, whereas FP represents a false positive. In addi-
tion, Precision@n considers only the most relevant retrieved
n samples.

Then, the mAP is defined as follows:

mAP =
1

M

M∑
r=1

AP(i), (23)

where M is the number of query samples and AP(i) is the
average precision of the i-th instance.
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Figure 3: Convergence curves of the proposed SSLH for short and
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3.3 Experimental Results and Analysis
We compared the proposed SSLH with the following methods:
locality-sensitive hashing (LSH) [Indyk and Motwani, 1998],
spectral hashing (SH) [Weiss et al., 2009], principle compo-
nent analysis (PCA)-iterative quantization (PCA-ITQ)[Gong
and Lazebnik, 2011], PCA-random rotation (PCA-RR) [Gong
and Lazebnik, 2011], collective matrix factorization hashing
(MFH) [Ding et al., 2014], supervised discrete hashing (SDH)
[Shen et al., 2015], column sampling based discrete super-
vised hashing (COSDISH) [Kang et al., 2016], fast supervised
discrete hashing (FSDH) [Gui et al., 2018], and scalable super-
vised discrete hashing (SSDH) [Luo et al., 2018a]. LSH is a
data-independent method. SH, PCA-ITQ, PCA-RR and MFH
are unsupervised hashing methods, whereas SDH, COSDISH,
FSDH, and SSDH are supervised ones. Only nondeep meth-
ods were considered for comparison because the proposed
method is a linear-model-based method.

All the hyperparameters were initialized as suggested in the
original methods. In the experiments, the short length, L, was
slightly greater than the log2(c) value that was approximately
3.3, 6.7, 6.5, and 4.4 in the four datasets, respectively. We
approximately set the short-length not greater than 10. In
addition, the performances of long-length (e.g. 32 and 48)
hash codes was also demonstrated in the experiments.

Table 1 lists the mAP values for each method, for single-
label datasets, CIFAR-10 and CALTECH-101. The mAP
performance of the SSLH was considerably better than those
of the other methods for these two benchmark datasets, with
short-length hash codes. Specifically, the SSLH exhibited
more than 80% improvement with an extremely short-length
hash code (4-bit in CIFAR-10). In addition, the proposed
SSLH demonstrated considerable improvement with long-
length hash codes.

In the CALTECH-101 dataset, whose training set is limited
and the number of categories is large, most of the previous
methods exhibited weak precision due to the controlled ex-
perimental setting. However, the proposed SSLH showed
significant improvement for CALTECH-101 with short-length
as well as long-length hash codes.

Table 2 depicts the mAP value for each method, for mul-
tilabel datasets, MS-COCO and NUS-WIDE. The proposed
SSLH method outperformed the other methods for these two
benchmark datasets. It demonstrated significant improvement
with short-length hash codes, and considerable improvement
with the long-length ones.

Substantial improvement can also be seen in Figure 1, in
terms of the precision score, where the comparison between
the proposed SSLH and the existing methods are depicted
for different hash lengths. The SSLH exhibited considerably
better performance, when the hash code length was shorter.
With the increase in length, the improvement reduced, indi-
cating that the proposed SSLH has a distinct advantage with
short-length hash codes.

In order to verify the stability of the proposed method, we
conducted experiments with different parameter settings. Fig-
ure 2 shows the precision score of the SSLH, when α and β
ranged from 10−i (i is the number on the coordinate axis); the
SSLH method exhibited satisfactory stability and sensitivity
with short-length hash codes, and distinguished stability and
sensitivity with the long-length ones.

Figure 3 depicts the changes in the objective values achieved
by the SSLH for four datasets, where CIF, CAL, MSC, and
NUS represent CIFAR-10, CALTECH-101, MS-COCO, and
NUS-WIDE, respectively. S and L indicate hash codes with
lengths of 8 and 128, respectively. As the number of iterations
increased, the objective values become small and stable, indi-
cating that the SSLH appeared to reach convergence rapidly
during training, thereby considerably reducing the time re-
quired for training.

4 Conclusion
In this study, we proposed a method called supervised short-
length hashing (SSLH), wherein the semantic label informa-
tion was leveraged by robust regression, while the information
loss was restrained by mutual reconstruction. The proposed
method achieved more stable and precise performances for
short-length hash codes, while satisfactorily performing for
long-length hash codes. Experiments conducted on four bench-
mark datasets indicated that the proposed method exhibits su-
perior performance, compared to the other existing methods.
In future, we will attempt to extend the proposed framework
to nonlinear-based models.
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