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Abstract

Zero-shot learning (ZSL) aims to build models to
recognize novel visual categories that have no asso-
ciated labelled training samples. The basic frame-
work is to transfer knowledge from seen classes
to unseen classes by learning the visual-semantic
embedding. However, most of approaches do not
preserve the underlying sub-manifold of samples
in the embedding space. In addition, whether the
mapping can precisely reconstruct the original vi-
sual feature is not investigated in-depth. In order to
solve these problems, we formulate a novel frame-
work named Graph and Autoencoder Based Fea-
ture Extraction (GAFE) to seek a low-rank map-
ping to preserve the sub-manifold of samples. Tak-
ing the encoder-decoder paradigm, the encoder part
learns a mapping from the visual feature to the se-
mantic space, while decoder part reconstructs the
original features with the learned mapping. In addi-
tion, a graph is constructed to guarantee the learned
mapping can preserve the local intrinsic structure
of the data. To this end, an L21 norm sparsity con-
straint is imposed on the mapping to identify fea-
tures relevant to the target domain. Extensive ex-
periments on five attribute datasets demonstrate the
effectiveness of the proposed model.

1 Introduction
Image classification has made huge progress in recent years.
With the emergence of large-scale databases, some super-
vised deep learning approaches show their great advantages
in recognizing objects. Such methods generally train a model
by hundreds of samples collected from each category and can
only recognize a fixed number of classes. However, obtaining
a large number of labeled samples is difficult and time con-
suming. In addition, the numbers of samples often follow a
long-tailed distribution [Zhu et al., 2014] and it is usually im-
possible to collect sufficient samples for some rare categories.

∗Contact Author: Q. Gao. (qxgao@xidian.edu.cn)

Zero-shot learning (ZSL) [Palatucci et al., 2009] is de-
signed to identify categories that have no labeled samples dur-
ing the training phase with the aid of seen classes and seman-
tic information, which is inspired by the process of human
recognizing new objects. For example, even if a child has n-
ever seen a panda, if the child is told that the panda looks like
a bear (seen classes) with black and white blocks (semantic
information), he or she can recognize the panda correctly. In
other words, ZSL primarily transfers learned knowledge from
seen classes to unseen classes by establishing the relationship
between seen and unseen classes during the training phase. In
particular, one classic approach is to learn the mapping from
the visual feature space to the semantic space during the train-
ing phase, and then use this mapping to project test samples
into the semantic space during the testing phase [Akata et al.,
2016]. In this case, the ZSL problem becomes a tradition-
al classification problem, which can be achieved by common
classification methods, such as the nearest neighbour (NN)
method.

Most methods only learn the mapping from the visual fea-
ture space to the semantic space, but do not consider the re-
construction of visual features. This can lead to the domain
shift problem [Fu et al., 2015] that adversely affects the fi-
nal classification results. An effective semantic autoencoder
(SAE) [Kodirov et al., 2017] is proposed to solve the problem
by adding the reconstruction constraint on the representation
of visual features. However, SAE does not guarantee that the
learned projection can preserve the underlying sub-manifold
of the samples. For example, in the visual space, the horse
and the zebra are similar and the blue whale looks more like
a dolphin than a horse or a zebra. Thus, the distance between
the horse and the zebra should be close in the visual space. We
hope such a local structure can be preserved in the semantic s-
pace as well (See Figure 1). In the meantime, we hope the pro-
jected data have a low-rank structure, which can be achieved
by minimizing the nuclear norm regularization [Candès et
al., 2011]. Moreover, L21-norm regularization is proved to
be an effective method for feature selection across all sam-
ples with joint sparsity [Nie et al., 2010]. Inspired by these
three points, we propose a framework named Graph and Au-
toencoder Based Feature Extraction method (GAFE) to learn
a low-rank embedding to preserve the local structure of the
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Figure 1: Illustration of our proposed Graph and Autoencoder Based
Feature Extraction (GAFE) framework. Squares and circles of d-
ifferent colors represent samples and prototypes of different cate-
gories in the visual feature space and the semantic space respective-
ly. During the encoding phrase, the graph is constructed to guarantee
the learned projection can preserve the local intrinsic structure of the
projected data, which allows the model to have more discriminating
power.

data and thus has more discriminating power.
The novelty of the proposed model lies in three aspects: (1)

The graph is constructed to guarantee the learned projection
can preserve the local intrinsic structure of the projected data,
which allows the model to have more discriminating power.
(2) The shared discriminative features across unseen and seen
classes can be captured by the low-rank embedding space. (3)
The L21-norm regularization can help to select representative
features that are more conducive to classification. We perfor-
m experiments on five popular datasets and excellent results
demonstrate the effectiveness of the proposed model.

2 Related Works
ZSL aims to recognize unseen classes with no training sam-
ples by transferring knowledge from seen classes with abun-
dant training samples. The semantic space is used to asso-
ciate the seen and unseen classes. There are various semantic
representations available, such as attributes, word vector and
text description. Many experiments show that the attribute is
a valid semantic representation for ZSL [Akata et al., 2015],
which indicates the intrinsic characteristic (e.g., has wings)
of each class or instance. In this paper, we use attributes as
semantic representations of classes.

Based on semantic embedding of class prototypes, exist-
ing ZSL models can be generally categorized as four group-
s: (1) Bayesian models. The Bayesian formulation is used
to learn embedding models with the prior knowledge of
each type of attribute. For example, DAP and IAP [Lam-
pert et al., 2014] first learn per-attribute classifiers using su-
pervised learning methods and then carry out recognition
with Bayesian formulation. (2) Semantic embedding. Se-
mantic embedding aims to learn the mapping from the vi-

sual feature space to the semantic space with different se-
mantic representations. ALE [Akata et al., 2016] is an ef-
fective model and takes attribute-based classification as a
label-embedding problem by minimizing the loss function
between the label and image embedding. SAE [Kodirov et
al., 2017] can effectively solve the projection domain shift
problem by adding the reconstruction constraint on the rep-
resentation of visual features. Motivated by SAE, many mod-
els are proposed recently and show good performance[Liu et
al., 2018b]. (3) Embedding into common spaces. Different
from the semantic embedding, a common intermediate space
can be exploited to learn the relationship between the visu-
al feature space and the semantic space. SJE [Akata et al.,
2015] aims to learn a common space including multiple se-
mantics, such as text, attributes and hierarchical relationship-
s. Other methods such as [Romera-Paredes and Torr, 2015;
Li et al., 2019] also aim to learn common spaces in dif-
ferent ways. (4) Deep embedding. ZSL can also be im-
plemented by deep learning methods. DeViSE [Frome et
al., 2013] is first proposed to solve the problem by pre-
training deep language and visual models. In recent years,
more and more deep learning networks [Norouzi et al., 2014;
Wu et al., 2019] have been proposed to solve ZSL tasks.

3 Approach
3.1 Problem Definition
Suppose there are n labeled samples with c seen classes
{X,S,Y} and nu unlabeled samples with cu unseen class-
es {Xu,Su,Yu}, where X ∈ Rd×n and Xu ∈ Rd×nu are
d-dimensional visual features, while the corresponding labels
are Y and Yu respectively. The seen and unseen classes are
disjoint, i.e., Y ∩ Yu = ∅. S ∈ Rk×n and Su ∈ Rk×nu

are k-dimensional semantic representations of samples in the
seen and unseen classes. The ZSL task aims to learn a clas-
sifier f : Xu → Yu, where classes of testing data Xu are
unseen in the training phrase.

3.2 The Proposed Model
As explained earlier in the introduction, the SAE mod-
el [Kodirov et al., 2017] does not guarantee that the learned
projection can preserve the underlying manifold of the sam-
ples. Then we have the following formulation:

min
W
‖WX− S‖2F +

∥∥WTS−X
∥∥2

F
+ tr

(
WXLXTWT

)
+α‖WX‖∗ + β‖W‖2,1

(1)
where W is the projection from visual feature space to se-
mantic space and L is the Laplacian matrix. L is defined as
L = P − Q, where Q is the similarity matrix and P is the
degree matrix, which is a diagonal matrix whose i-th diago-
nal element is

∑
j qij . α and β are weighting coefficients that

balance these terms.
According to Eq. (1), our motivation can be explained as

follows: (1) The first and the second terms indicate the SAE
model, which can be described as a bidirectional loss between
the feature and semantic representations of samples. (2) The
third term is the graph regularization based on the Locali-
ty Preserving Projection (LPP) [He et al., 2003], which con-
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structs a graph and preserves the local structure of data man-
ifold. It allows the model to have more discriminating pow-
er. (3) The fourth term is the low-rank constraint based on
nuclear-norm, which integrates the merits of both semantic
representation learning and low-rank discriminative embed-
ding. In this way, the shared discriminative features across
unseen and seen classes can be captured by the low-rank em-
bedding space. (4) The last term is the L21-norm regulariza-
tion for feature selection, which can help to select represen-
tative features that are more conducive to classification.

3.3 Optimization Algorithm

In order to solve the objective function, we rewrite the Eq. (1)
as follows:

min
W,B
‖B− S‖2F +

∥∥WTS−X
∥∥2

F
+ tr

(
WXLXTWT

)
+α‖B‖∗ + β‖W‖2,1

s.t. B = WX
(2)

Eq. (2) can be solved effectively by Alternating Direction
Method of Multipliers (ADMM) method [Boyd et al., 2011].
The augmented Lagrangian function of Eq. (2) is formulated
by

L (W,B,Y1) = arg min
W,B,Y1

‖B− S‖2F +
∥∥WTS−X

∥∥2

F

+tr
(
WXLXTWT

)
+ α‖B‖∗ + β‖W‖2,1

+ 〈Y1,B−WX〉+ µ
2 ‖B−WX‖2F

(3)
where Y1 is the estimate of the Lagrange multiplier and 〈·, ·〉
is defined as the inner product operator. µ is a positive scalar.
It is not easy to minimize the Larangian function directly. An
effective method to solve Eq. (3) is the alternating direction
method by optimizing each variable alternatively while fix-
ing others. Then the optimization problem can be solved by
optimizing several subproblems as follows.

Step 1: Update B while fixing the other variables. Problem
(3) is reduced to solve problem (4):

B∗ = arg min
B

‖B− S‖2F + α‖B‖∗ + 〈Y1,B−WX〉

+µ
2 ‖B−WX‖2F

= arg min
B

‖B− S‖2F + α‖B‖∗ + µ
2

∥∥∥B−WX + Y1

µ

∥∥∥2

F

= arg min
B

α
2+µ‖B‖∗ + 1

2 ‖B−M‖2F
= Ωα/(2+µ) (M)

(4)
where M = 2S+µWX−Y1

2+µ , Ωα/(2+µ) (M) =

USα/(2+µ) (
∑

)VT , U
∑

VT is the singular value
decomposition (SVD) of M and the scale shrink-
age operator [Candès et al., 2011] is defined as
Sε (Z) = sign (z) ·max (|z| − ε, 0).

Step 2: Update W while fixing the other variables. In this

Algorithm 1 : ADMM algorithm for GAFE
Input: Data matrix X, semantic matrix S
Parameter: µmax = 106, ρ = 1.1, ε = 10−3, α and β
Output: W

1: Initialize B = W =Y1= 0, and µ = 0.1.
2: while ‖B−WX‖∞ < ε do
3: Update B using Eq. (4).
4: Update W using Eq. (6) by Bartels-Stewart method.
5: Update Y1 and the parameter µ using Eq. (9) and Eq.

(10).
6: end while
7: return W

case, Eq. (3) becomes

W∗ = arg min
W

∥∥WTS−X
∥∥2

F
+ tr

(
WXLXTWT

)
+β‖W‖2,1 + 〈Y1,B−WX〉+ µ

2 ‖B−WX‖2F
= arg min

W

∥∥WTS−X
∥∥2

F
+ tr

(
WXLXTWT

)
+µ

2

∥∥∥B−WX + Y1

µ

∥∥∥2

F
+ β‖W‖2,1

(5)
Taking a derivative of Eq. (5) and set it zero, we have(

2SST
)
W + W

(
2βD + 2XLXT + µXXT

)
= 2SXT + µBXT + Y1X

T (6)

It is worth noting that the derivative of ‖W‖2,1 is defined
as

∂‖W‖2,1
∂W = 2WD (7)

where D is a diagonal matrix with the i-th diagonal element
as

dii = 1
2‖wi‖2 (8)

where wi is defined as the i-th column of W.
Eq. (6) is a Sylvester equation which can be solved effi-

ciently by the Bartels-Stewart algorithm [Bartels and Stewart,
1972].

Step 3: Update Y1 and the parameter µ. They are updated
by Eq. (9) and Eq. (10)

Y1 = Y1 + µ (B−WX) (9)

µ = min (ρµ, µmax) (10)
where ρ > 1 and µmax are constants.

The procedure of solving Eq. (2) is listed in Algorithm 1.
The classification process can be performed in the visual

feature space or the semantic space. In this paper, we use the
first method. That is, when the projection matrix W is well
learned, we use WT to project prototypes of unseen class-
es Su to the visual feature space. Then the label of the test-
ing sample Xi

u can be classified by Nearest Neighbour (NN)
search with the help of following equation:

predict label (Xi
u) = arg min

j
d
(
Xi
u,W

TSju
)

(11)

where Xi
u and Sju are the i-th column of Xu and j-th col-

umn of Su. And d (·, ·) represents the distance between two
vectors. In this paper, we use cosine distance to calculate the
similarity.
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Dataset Attribute dim s/u classes s/u samples

SUN 102 645/72 10320/1440
CUB 312 150/50 7057/2967

AWA1 85 40/10 19832/5685
AwA2 85 40/10 23527/7913
aPY 64 20/12 5932/7924

Table 1: Details of datasets, where s/u means seen/unseen

4 Experiments
4.1 Datasets
The statistics of the five benchmark datasets are shown in Ta-
ble 1.

SUN Attribute (SUN) [Patterson et al., 2014] is a fine-
grained dataset, containing 14,340 samples from 717 cat-
egories and 102 attributes. According to [Lampert et al.,
2014], 645 classes are used for training and others for test-
ing.

CUB-200-2011 Birds (CUB) [Welinder et al., 2010] is a
fine-grained dataset. It has 11,788 samples from 200 different
types of birds and the number of attributes is 312. Following
[Welinder et al., 2010], the training and testing classes are
150 and 50 respectively.

Animals with Attributes 1 (AWA1) [Lampert et al., 2014]
is a coarse-grained dataset, containing 30,475 visual features
and 85 class-level attributes. The number of seen and unseen
classes are 40 and 10 respectively.

Animals with Attributes 2 (AWA2) [Xian et al., 2018] con-
sists of 37,322 visual features and 85 class-level attributes.
Similarly, 40/10 classes are used for training/testing and all
of the 50 categories are the same as AWA1 dataset.

A Pascal and Yahoo (aPY) [Farhadi et al., 2009] is a small
scale coarse-grained dataset, containing 15,339 samples and
64 semantic features, in which 20 classes are used for training
and 12 others for testing.

To make fair comparisons, the class semantics and image
features provided by [Xian et al., 2018] are used in our exper-
iments. Specifically, the visual features are extracted by the
101-layered ResNet [He et al., 2016] and the attribute vectors
are utilized as the class semantics.

4.2 Evaluation Metrics and Comparison Methods
The average per-class Top-1 accuracy is used for the evalua-
tion criteria, which is formulated by

acc (Υ) =
1

‖Υ‖

‖Υ‖∑
c=1

#correct predictions in c

#samples in c
(12)

where Υ and ‖Υ‖ are defined as the set of categories and
number of categories respectively. In other words, Υ consists
of all the unseen classes, i.e. the testing classes.

The generalized zero-shot learning (GZSL) is another e-
valuation criteria, whose search space at testing time is not
restricted to only testing categories (Υts), but consists of the
training ones (Υtr). In this case, we can compute acc (Υts)

Type Method SUN CUB AWA1 AWA2 aPY

Deep

DEVISE 56.5 52.0 54.2 59.7 39.8
CONSE 38.8 34.3 45.6 44.5 26.9

CMT 39.9 34.6 39.5 37.9 28.0
SP-

AEN
59.2 55.4 - 58.5 24.1

PSR 61.4 56.0 - 63.8 38.4
DCN 61.8 56.2 65.2 - 43.6
CCSS 56.8 44.1 56.3 63.7 35.5

Shallow

DAP 39.9 40.0 44.1 46.1 33.8
IAP 19.4 24.0 35.9 35.9 36.6
SSE 51.5 43.9 60.1 61.0 34.0

LATEM 55.3 49.3 55.1 55.8 35.2
ALE 58.1 54.9 59.9 62.5 39.7
SJE 53.7 53.9 65.6 61.9 32.9

ESZSL 54.5 53.9 58.2 58.6 38.3
SYNC 56.3 55.6 54.0 46.6 23.9
SAE 59.7 50.9 53.0 66.0 35.1

GAFE 62.2 52.6 67.9 67.4 44.3

Table 2: Zero-shot learning (ZSL) results on SUN, CUB, AWA1,
AWA2 and aPY datasets. The results report average per-class Top-1
accuracy in %.

and acc (Υtr) by Eq. (12). In addition, the harmonic mean
can be computed as follows

H =
2·acc(Υts)·acc(Υtr)
acc(Υts)+acc(Υtr)

(13)

In the experiment, we compare the proposed model with
many competitive or representative methods, including shal-
low methods DAP [Lampert et al., 2014], IAP [Lampert et al.,
2014], SSE [Zhang and Saligrama, 2015], SJE [Akata et al.,
2015], ESZSL [Romera-Paredes and Torr, 2015], LatEm [Xi-
an et al., 2016], ALE [Akata et al., 2016], SYNC [Changpiny-
o et al., 2016], SAE [Kodirov et al., 2017], GFZSL [Verma
and Rai, 2017], ZSKL [Zhang and Koniusz, 2018] and deep
methods DeViSE [Frome et al., 2013], CMT [Socher et al.,
2013], CONSE [Norouzi et al., 2014], SP-AEN [Chen et al.,
2018], PSR [Annadani and Biswas, 2018], DCN [Liu et al.,
2018a], CCSS [Liu et al., 2019].

4.3 Zero-Shot Learning Classification
We compare our proposed GAFE with other methods under
the same experimental conditions in Table 2.

It can be seen from Table 2, our proposed GAFE out-
performs the other models on all datasets except the CUB
dataset. We owe the success of GAFE to the maintenance
of the manifold structure. Especially on the AWA1 and aPY
datasets, the accuracy has been significantly improved com-
pared with SAE. As a fine-grained dataset, most classes are
very similar in CUB, so less discriminative manifold structure
could be obtained in the visual space by the GAFE. While P-
SR or DCN model learns more complicated classifiers to en-
hance the discriminative property in the visual space.

4.4 Generalized Zero-Shot Learning Classification
To demonstrate the effectiveness of the proposed model, we
also apply our method to the GZSL task.
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Figure 2: The accuracy of ZSL in five datasets influenced by super-
parameter α (β), while β (α) fixed.

It can be seen from Table 3, most compared approaches get
low accuracy on the acc (Υts) and H because of overfitting
the seen classes, while the GAFE method achieves more bal-
anced results between the unseen and seen classes especially
on AWA1, AWA2 and aPY datasets and is comparable to the
best approach on the other datasets. In addition, our proposed
model achieves better results than SAE in all datasets. Specif-
ically, on the AWA1 dataset, the GAFE increases 7.2% and
8.4% in acc (Υts) and H than the existing best method re-
spectively, which demonstrates the maintenance of manifold
structure and selection of effective features benefit the GZSL
task.

4.5 Parameter Settings and Convergence Analysis
Our proposed model has two free parameters: α and β (see
Eq. (1)). Figure 2 shows the variation of the best results for
these two parameters over a small range. From the parameter
analysis on α (see Figure 2 (a)), our GAFE achieves the best
result when α = 1.4 on the AWA2 dataset while the value of
α approaches one on other four datasets. From the parameter
analysis on β (see Figure 2 (b)), our GAFE achieves the best
result when β = 1 on aPY and AWA2 datasets while the value
of β approaches three other three datasets. Empirically, α can
be set to 1 < α < 1.4, while β varies from 1 to 3.

The convergence curve of all datasets is shown in Figure 3.
It is clear that our algorithm converges within only 160 steps
on the AWA2 dataset and 80 steps on other four datasets. The
good convergence guarantees the reliability of our model.
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Figure 3: The convergence curve of GAFE on five datasets.
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Figure 4: Confusion matrices of unseen classes on the AWA2
dataset. The Top-1 accuracy is between 0 and 1.

4.6 Visualized Results
We further provide some visualized results for the proposed
method. Figure 4 shows the confusion matrices of unseen
classes on the AWA2 dataset. For each confusion matrix, the
column represents the ground truth and the row denotes the
predicted results.

According to Figure 4, it is clear that the proposed model
GAFE can identify most of unseen categories, except ”bat”,
”dolphin”, ”seal” on the AWA2 dataset. Considering the fact
that no samples from these unseen classes are used to train
the model, it strongly supports the superiority of GAFE for
effective zero-shot learning.

The prototype of each class usually locate near the sam-
ples that belongs to the corresponding class. In order to check
whether the prototypes are properly learned, we visualize the
prototypes and corresponding samples in the semantic space
with the help of t-SNE method [Der Maaten and Hinton,
2008]. We select 7 seen classes and 5 unseen classes from
the AWA2 dataset. Figure 5 shows the visualization results.

Although the testing classes are unseen in the training
phrase, Figure 5 shows that most samples locate near the
prototypes of the corresponding classes. It demonstrates our
model can learn a proper projection from the visual feature
space to the semantic space.

5 Conclusions
In this paper, we propose a Graph and Autoencoder Based
Feature Extraction (GAFE) method for zero-shot learning.
Extensive experiments on five attribute datasets show the ef-
fectiveness of the proposed method. Our approach can be
summarized as three advantages. First, our model can select
features to establish the relationship with the semantic space.
Second, the learned projection can well preserve the local in-
trinsic structure of the projected data. Third, the shared dis-
criminative features across unseen and seen classes can be
captured by the low-rank embedding space. In general, the
above three advantages can improve the recognition perfor-
mance and makes our model outperforms existing ZSL mod-
els.
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SUN CUB AWA1 AWA2 aPY
Type Method ts tr H ts tr H ts tr H ts tr H ts tr H

Deep

DEVISE 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 4.9 76.9 9.2
CMT 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 0.5 90.0 1.0 1.4 85.2 2.8
CMT* 8.7 28.0 13.3 4.7 60.1 8.7 8.4 86.9 15.3 8.7 89.0 15.9 10.9 74.2 19.0

CONSE 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0
PSR 20.8 37.2 26.7 24.6 54.3 33.9 - - - 20.7 73.8 32.3 13.5 51.4 21.4

Shallow

DAP 4.2 25.1 7.2 1.7 67.9 3.3 0.0 88.7 0.0 0.0 84.7 0.0 4.8 78.3 9.0
IAP 1.0 37.8 1.8 0.2 72.8 0.4 2.1 78.2 4.1 0.9 87.6 1.8 5.7 65.6 10.4
SSE 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 8.1 82.5 14.8 0.2 78.9 0.4

LATEM 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 0.1 73.0 0.2
ALE 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 4.6 73.7 8.7
SJE 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 8.0 73.9 14.4 3.7 55.7 6.9

ESZSL 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0 2.4 70.1 4.6
SYNC 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 10.0 90.5 18.0 7.4 66.3 13.3
SAE 17.8 32.0 22.8 18.8 58.5 28.5 14.2 81.2 24.1 16.7 82.5 27.8 9.9 74.7 17.5

GFZSL 0.0 39.6 0.0 0.0 45.7 0.0 1.8 80.3 3.5 2.5 80.1 4.8 0.0 83.3 0.0
ZSKL 19.8 29.1 23.6 19.9 52.5 28.9 18.3 79.3 29.8 17.6 80.9 29.0 11.9 76.3 20.5
GAFE 19.6 31.9 24.3 22.5 52.1 31.4 25.5 76.6 38.2 26.8 78.3 40.0 15.8 68.1 25.7

Table 3: Generalized Zero-Shot Learning (GZSL) results on SUN, CUB, AWA1, AWA2 and aPY datasets. ts = acc
(
Υts

)
, tr = acc

(
Υtr

)
, H

= harmonic mean (CMT*: CMT with novelty detection). We measure Top-1 accuracy in %.
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Figure 5: Visualization of prototypes and projected samples on the AwA2 dataset in the semantic space by t-SNE. Different projected samples
and class prototypes are represented in different colors. Prototypes is denoted by ”*” and we use black circles to mark them to make them
visible.
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