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Abstract

Sensor-based human activity recognition is a funda-
mental research problem in ubiquitous computing,
which uses the rich sensing data from multimodal
embedded sensors such as accelerometer and gy-
roscope to infer human activities. The existing ac-
tivity recognition approaches either rely on domain
knowledge or fail to address the spatial-temporal
dependencies of the sensing signals. In this paper,
we propose a novel attention-based multimodal neu-
ral network model called AttnSense for multimodal
human activity recognition. AttnSense introduce the
framework of combining attention mechanism with
a convolutional neural network (CNN) and a Gated
Recurrent Units (GRU) network to capture the de-
pendencies of sensing signals in both spatial and
temporal domains, which shows advantages in prior-
itized sensor selection and improves the comprehen-
sibility. Extensive experiments based on three public
datasets show that AttnSense achieves a competitive
performance in activity recognition compared with
several state-of-the-art methods.

1 Introduction
Using the information extracted from various sensor modali-
ties (accelerometer, gyroscope, etc.), a HAR system can rec-
ognize various activities, such as running, walking, etc. HAR
systems are used in a large number of context-aware applica-
tions, including but not limited to medication intake, health
monitoring and fitness tracker [Khan et al., 2013].
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Most HAR systems split a sensor signal into fixed sized
sequences by a sliding window and classify each sequence
to one activity by a recognition algorithm. Early recognition
algorithms were mainly based on shallow supervised machine
learning methods such as support vector machine (SVM) and
random forest (RF). Such shallow supervised machine learn-
ing algorithms heavily relied on handcrafted features, which
were usually limited by human domain knowledge [Bengio,
2013] and could only capture shallow features [Yang et al.,
2015]. With the rapid development of deep learning [LeCun
et al., 2015], more and more researchers tried to apply Deep
Neural Networks (DNN), especially Convolutional Neural
networks (CNN) and Recurrent Neural Networks (RNNs), to
HAR systems to achieve automatic feature extraction without
human domain knowledge [Wang et al., 2018].

Recently, a novel deep learning model CNN-RNN had been
successfully employed in HAR and outperformed the simple
CNN and RNN model [Yao et al., 2017] [Ordóñez and Roggen,
2016]. This CNN-RNN model used a CNN subnet to form a
feature vector of the input signal at each timestep and feeds all
generated feature vectors in a time window to an RNN subnet.
To deal with multimodal sensing signals, some works [Radu
et al., 2017] [Yao et al., 2017] adopted a modality-specific
architecture, where separate CNN was built for each modality
to first learn modality-specific information and then merged
them to unified feature representation. The sequence of unified
feature representation in a time window was further connected
to the RNN subnet.

Still and all, two issues remain in HAR with the CNN-RNN
model. Firstly, different sensor modalities come from different
domains, and merge them without considering their difference
may limit the model’s ability. For example, the accelerom-
eter features may be more significant in distinguishing the
“walking” and “biking” activities; while the gyroscope features
may be more significant in distinguishing the “turning-left”
and “turning-right” activities. Treating them the same without
distinction may degrade the performance of activity classi-
fication. Secondly, for a sensing signal time series, not all
timesteps contribute equally to the activity recognition task.
For example, the features on some timesteps may show more
salient pattern than the others in distinguishing the “walking”
and “running” activities. Therefore the model should consider
the temporal dependencies for activity recognition.

To address these issues, we propose the usage of attention
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mechanism for activity recognition. Attention model has been
proved to perform well in the areas of speech and natural
language processing [Kim and Lane, 2017], which can be
viewed as weighted averaging of a series of input vectors.
The attention weights represent the relative importance of the
corresponding input, which can be learnt by neural networks.
With such properties, the attention mechanism is suitable to
fuse multi-modal sensing data in temporal-spacial domains.

In this paper, we propose an attention-based deep neural
network model called AttnSense for human activity recog-
nition. The proposed model consists of four parts: (1) an
individual convolutional subnet for each sensor to extract
modality-specific features;; (2) an attention-fusion subnet that
considers the relative importance of each sensor modality to
fuse modality-specific features; (3) an attention-based Gated
Recurrent Units (GRU) subnet that extract the importance
of different timestep and fuse the hidden state of the GRU;
(4) an output layer that uses a softmax function to obtain the
probabilities for activity recognition.

The contributions of our paper are summarized as follows.

• We propose a novel attention-based deep neural network
called AttnSense for multimodal human activity recog-
nition which reasonably applies attention mechanism to
multimodal sensor data fusion and enhancement of GRU.

• By integrating attention layers with both a CNN subnet
and a GRU subnet to recognize multimodal sensing data,
the proposed attention mechanism can capture spatial
and temporal dependencies of the multimodal sensor sig-
nal, which amplifies the more important and informative
modalities and timesteps during classification.

• Extensive experiments are conducted based on three
HAR datasets, which verify the effectiveness and effi-
ciency of AttnSense. Visualized analysis of attention
weights is provided to improve the model’s comprehen-
sibility. Furthermore, we also study the impact of some
hyper-parameters like the structure of CNN and the width
of the sliding window.

2 Related Work
Researches on sensor-based human activity recognition can
be summarized as two categories: shallow machine learning
approaches and deep learning approaches.

Shallow machine learning approaches relied on handcrafted
features, such as mean, variance, maximum, differences and
etc [Figo et al., 2010]. These extracted features are fed into
some shallow supervised machine learning models such as
support vector machine [Bulling et al., 2011], random for-
est [Stisen et al., ] and Hidden Markov Model (HMM) [van
Kasteren et al., 2008] for activity recognition. However, hand-
crafted features is limited by human domain knowledge.

Deep learning approaches applied the deep neural network
(DNN) framework to perform automatic feature extraction
and classification, which provided promising results in HAR
domain [Yang et al., 2015]. Early works primarily targeted to
feature representation learning aspect. Deep Belief Network
(DBN) is used for feature extraction from sensing signals
and show some interesting results [Plötz et al., 2011]. Deep

Convolutional Neural Networks (CNN) was also applied to
human activity recognition, several works took different sen-
sor modalities as an image and fed it to a 2D CNN for feature
extraction, which had been shown to capture salient features in
the spatial dimension and outperforms shallow machine learn-
ing approaches [Hammerla et al., 2016][Yang et al., 2015]. In
the meantime, the RNN with long short-term memory (LSTM)
was proposed and successfully applied in HAR [Hammerla
et al., 2016][Guan and Plötz, 2017], which can capture the
long-term information in time series.

Moreover, a hybrid CNN-RNN model that combined CNN
and RNN had shown promising results in activity recognition
performance [Ordóñez and Roggen, 2016] [Yao et al., 2017].
However, a potential issue with these models is that a neural
network needs to be able to compress all the necessary infor-
mation of a input sequence, but the input sequence usually
involves irrelevant parts in the spatial and temporal dimension.
In this situation, we propose a novel attention-based deep neu-
ral network model called AttnSense for multimodal human
activity recognition.

3 Problem Definition
In this paper, we assume that there are K different sensors that
are attached to the human body and are synchronized to emit
data. For example, a smartwatch or an inertial measurement
unit (IMU) is usually equipped with the accelerometer, gyro-
scope and magnetometer, where each sensor could generate a
signal vector at a time (e.g. accelerometer generates a signal
along the x-axis, y-axis and z-axis). For those sensors, the
sensing data along time can be represented by a multidimen-
sional time series S

S = [ S1, · · · , St, · · · ] (1)

where St = [ st1, · · · , stk, · · · , stK ]T , and stk is the sensing
signal of the k-th sensor at time t. In a real deployment, the
sensor signals can contain noises, and stk can be represented
by

stk = stk
∗ + nt (2)

where stk∗ represents the noiseless sensing signal of k-th
sensor at time t, and nt is a noise of independent, zero-mean
Gaussian random variables with variance σ2.

The activity recognition problem can be described as fol-
lows. Given the sensing signal time series S, detect a series of
activities (e.g., sitting, standing, and walking) that infers the
human behaviours in a duration.

4 Method
We proposed the method of activity recognition based on
attention neural networks, which framework is illustrated in
Fig. 1. The details are explained below.

4.1 Data Preprocessing
To capture the noise pattern and frequency features in the mul-
tidimensional sensing signals, we propose a comprehensive
data preprocessing technique that consists of data augment,
fast Fourier transform, and data segmentation.

(1) Data augment: In order to adapt to different noise pat-
terns, we augment the training dataset by adding Gaussian
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Figure 1: Overview of the proposed method.

random noise to each normalized instance in the training set,
and each normalized instance will generate some noisy in-
stances, we combine the original training dataset with the
generated noisy instances to form a new training dataset.

(2) Fast Fourier transform: A spectrogram of a signal is a
function of time and frequency that represents the changes in
the energy content of a signal [Alsheikh et al., 2016], and it
can capture the intensity differences among the nearest data
points. In order to calculate the spectrogram, we first split the
signal S into small size intervals with width m (m = 0.25s in
our experiment), and apply Fast Fourier transform (FFT) to
each interval to generate frequency features. After applying
FFT, the raw signal S can be transformed into the spectrogram
represented as F .

(3) Data segmentation: A sliding window with width N
and 25% overlap is used to split each spectrogram F into
same size sequences. We represent each sequence as X =
[X1, · · · , Xt, · · · , XN ], whereXt = [xt1, · · · , xtK ] is the fre-
quency representation of K sensors at timestep t. After data
segmentation, each sequence X is used as the input of the
AttnSense model to detect the possible activities.

4.2 The AttnSense Model
In this section, we introduce AttnSense, an attention-based
neural network model for activity sensing. As shown in Fig. 2,
AttnSense consists of an individual convolutional subnet, an
attention-fusion subnet, an attention-based GRU subnet, and
an output layer, which are explained below.

Individual Convolutional Subnet
Convolutional neural networks had shown great potential in
identifying the various salient patterns of sensing signals for
HAR [Yang et al., 2015]. Here we use an individual convolu-
tional subnet to extract features of each sensor. The individual
convolutional subnet consists of several stacked convolutional
layers and pooling layers. The suitable number of convolu-
tional layers will be discussed in section 5. In addition, a batch

normalization layer is applied at each layer to reduce internal
covariate shift.

As shown in Fig. 2, the frequency representation of the
k-th sensor at time t, xtk, is fed into the convolutional subnet,
which outputs a feature vector vtk for each sensor. Then all K
generated feature vectors are used as the input to the attention-
fusion subnet.

Attention-fusion Subnet
In the multimodal activity recognition problem, not all modal-
ities are equally contributed to the classification task. In
order to prioritize the important modalities, we introduce a
self-attention network, which takes the sensors’ feature vec-
tors [vt1, · · · , vtk, · · · , vtK ] as input and outputs an attention
weight for each modality. And the attention weights represent
the importance of different sensors in the HAR task. Then
those feature vectors of all sensors are fused by using their
attention scores as weights to form a uniform feature represen-
tation vector ct. The self-attention structure can be formalized
as follows:

µtk = tanh(W1vtk + b1) (3)

αtk =
exp((µtk)

Tw1)∑
k exp((µtk)Tw1)

(4)

ct =
∑
k

αtkvtk (5)

Here, we compute the hidden representation of vtk through
a one-layer MLP to get µtk, then we measure the weight of
the k-th sensor as the similarity of µtk with a sensor-level
context vector w1 and get a normalized weight αtk through
a softmax function. ct is the uniform representation of all K
sensors which is computed by the sum of all sensors’ feature
vectors weighted by their attention weights. {W1, b1, w1}
are parameters of the attention subnet which are randomly
initialized and jointly learned during the training process.

Attention-based GRU subnet
After attention-fusion layer, the output [c1, ..., cN ] is fed to a
stacked GRU structure (two layers). GRU [chu, 2014] is a
type of RNN. Similar to LSTM [Greff et al., 2015], GRU can
model long-term dependencies in a sequence and solves the
vanishing gradient problem of conventional RNN. Since GRU
has lower computational complexity than LSTM, we choose
it to construct the recurrent layer. The stacked GRU structure
transforms the input into the hidden layer output by various
gate units worked as follows.

zt = σ
(
ctU

(z) + ht−1W
(z)
)

(6)

rt = σ
(
ctU

(r) + ht−1W
(r)
)

(7)

h̃t = tanh
(
ctU

(h) + (rt ∗ ht−1)W (h)
)

(8)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (9)
Here rt is a reset gate, and zt is an update gate. Intuitively, the
reset gate determines how to combine the new input with the
previous memory, and the update gate defines how much of
the previous memory to keep around.

Standard GRU generates hidden state at each timestep [chu,
2014], but only use hidden state at the last timestep as a sin-
gle representation for the whole input sequence, which leads
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Figure 2: The AttnSense model.

to less impact on the classification for the front part of the
sequence. A better method is to calculate the average of all
hidden states, but for HAR problem, input sequence usually
contain irrelevant information and not all timesteps contribute
equally to the activity recognition task, so we again use the
self-attention mechanism to calculate the weighted average
sum of all hidden states.

We represent all GRU’s hidden states as H = [h1, h2, · · · ,
ht, · · · , hN ], where ht represents the GRU’s hidden state at
timestep t. The self-attention for GRU can be formalized as:

γt = tanh(W2ht + b2) (10)

βt =
exp((γt)

Tw2)∑
t exp((γt)

Tw2)
(11)

δ =
∑
t

βtht (12)

Similarly, w2 is a time-level context vector, βt is a normalized
weight through a softmax function and δ is the uniform rep-
resentation of the whole sequence which is computed by the
sum of all hidden state weighted by their attention weights.
{W2, b2, w2} are parameters of the attention-based GRU sub-
net which are randomly initialized and jointly learned during
the training process.

Output Layer
The output of attention-based GRU subnet is further connected
to an output layer.

label = argmax
a∈A

(softmax(W3 · δ + b3)) (13)

Here A is the set of all activities. We use a fully-connected
layer and a softmax function to transform δ to the probability
of each activity, and derive the predicted label by searching
the activity with maximum probability.

5 Performance Evaluation
In order to evaluate the effectiveness of the proposed model,
we conduct extensive experiments based on three HAR

datasets. In what follows, we will first describe the exper-
imental setup and the numerical results.

5.1 Experimental Setup
We build our model using TensorFlow and train it on a GPU
GTX 1070ti. The batch size is set to 64, and the network
is optimized using Rmsprop with learning rate 0.0001. The
parameters in optimizers are initialized by the default setting.

We use F-measure (F1) as the performance metric in the
evaluation. Since the traditional F1 score is used to measure
the performance of binary classification, we extended it to
a weighted F1 score, Fw, by weighting classes according to
their sample proportion. Furthermore, we ran 20 repetitions of
the experiments and report averaged Fw as the final measure
of a model’s performance.

Fw =
1

C
·

C∑
i=1

2 · Precisioni · Recalli
Precisioni +Recalli

(14)

where for a given class i, Precisioni = TPi

TPi+FPi
; Recalli =

TPi

TPi+FNi
; TPi,FPi represents the number of true and false

positive respectively; and FNi is the number of false negatives.

5.2 Dataset Description
We evaluate AttnSense on three public HAR datasets. These
datasets are recorded in different contexts by either worn or
embedded into objects that subjects manipulated. The statistics
of the three datasets are depicted in Table 1.

The first dataset is Heterogeneous [Stisen et al., ]. It con-
tained sensing data of accelerometer and gyroscope collected
from 9 users performing 6 activities. An important fact of
the dataset is that users perform these activities with 12 dif-
ferent smartphones and smartwatches, which increases the
complexity of the task and can test the model’s robustness.
We preprocess the dataset as described and use the whole data
from participant 1 for testing, and the rest of the dataset for
training.
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Figure 3: Confusion matrix of three datasets.

The second dataset is Skoda [Stiefmeier et al., 2008]. It
described the activities of assembly-line workers in a car pro-
duction environment, where each worker wore a number of
accelerometers on both arms while performing 10 activities,
including checking the boot, opening/closing engine bonnet,
etc. In addition, it contained an extra null activity, which
means the subject did nothing in that time. We preprocess the
dataset as described and use 10% of the data in each class for
testing, and the rest 90% data for training.

The third dataset is PAMAP2 [Reiss and Stricker, 2012]. It
recorded signals from three inertial measurement units (IMUs)
located on the hand, chest, and ankle. Each IMU consisted
of an accelerometer, gyroscope, magnetometer, temperature
and heart rate sensor. We select accelerometer, gyroscope,
and magnetometer as input to our model. The dataset was
collected from 9 participants, which includes 12 activities
(“walking”, “lying down”, “standing”, etc) and 6 optional
activities (“watching TV”, “folding laundry”, etc). Since those
optional activities are rarely performed by the participants, we
excluded them from the analysis. We preprocess the dataset as
described and use the whole data from participant 6 for testing,
and the rest of the dataset for training.

Moreover, we perform 4-fold cross-validation for Skoda
dataset and leave-one-subject-out validation for Heteroge-
neous and PAMAP2 dataset to obtain the best model con-
figuration.

5.3 Compared Algorithms
We compare AttnSense with the following algorithms:
• Random forest (RF) [Liaw and Wiener, 2002]: The

random forests are a classical ensemble model which
construt a multitude of decision trees at training time.

Name Subject S. Rate Activity Sample Sensor

Heterogeneous 9 100 Hz 6 43,930,257 A, G
Skoda 1 98 Hz 11 22,000 A

PAMAP2 9 100 Hz 12 2,844,868 A, G, M

Table 1: Description of datasets (A=accelerometer, G=gyroscope,
M=magnetometer).

• SVM [Hearst, 1998]: A simple support vector machine
(SVM) with radial basis function (RBF) kernel.
• CNN [LeCun et al., 2015]: A single CNN model with

three convolutional layers, a pooling layer, and a fully
connected layer.
• LSTM [Hochreiter and Schmidhuber, 1997]: A single

layer LSTM model.
• DeepConvLSTM [Ordóñez and Roggen, 2016]: This

model uses a deep convolutional neural network to ex-
tract feature and a recurrent neural network to learn time
dependencies.
• DeepSense [Yao et al., 2017]: This model is the state-

of-the-art model in Heterogeneous dataset, which used
a CNN network to extract feature of each sensor and
combined them by another merge convolutional layer,
then it used a LSTM network to learn time dependencies.

In addition, for shallow models, we extract all time-domain
features mentioned the literature [Figo et al., 2010], including
mean, std, median, maximum, and etc.

To verify the contributions of different components in our
model, we consider two variants of our model as follows:
• AS-noAF: This model removes the attention fusion layer

and uses naive concatenation to fuse feature vectors of
different sensors.
• AS-noAG: This model removes the attention mechanism

for GRU and uses the average of GRU’s hidden state.

5.4 Numerical Results
We compare AttnSense and its variants with the baseline algo-
rithms on those three datasets. The results are shown in Table
2, and the normalized confusion matrixs are illustrated in Fig.
3. In addition, the F1 scores of DeepSense and DeepConvL-
STM are from those literatures [Yao et al., 2017], [Ordóñez
and Roggen, 2016], and [Guan and Plötz, 2017] accordingly.

As shown in the table, deep models outperform shallow
such as SVM and RF. The hybrid neural network models
such as DeepConvLSTM and DeepSense performs better than
simple CNN and LSTM, but DeepConvLSTM shows poor
performance on the PAMAP2 dataset. AttnSense performs
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Model Heterogeneous Skoda PAMAP2

AttnSense 0.965 ± 0.010 0.931 ± 0.022 0.893 ± 0.013
AS-noAF 0.949 ±0.023 0.919 ± 0.036 0.854 ± 0.011
AS-noAG 0.945 ± 0.018 0.921 ± 0.015 0.867 ± 0.007
DeepSense 0.931 – –

DeepConvLSTM – 0.912 0.748
LSTM 0.812 ± 0.016 0.893 ± 0.041 0.751 ± 0.036
CNN 0.808 ± 0.032 0.845 ± 0.028 0.817 ± 0.041
RF 0.743 ± 0.009 0.827 ± 0.033 0.742 ± 0.022

SVM 0.756 ± 0.017 0.816 ± 0.019 0.706 ± 0.013

Table 2: F1 scores of different algorithms.

the best among all algorithms, which achieves performance
improvement compared to the state-of-the-art. It verifies that
AttnSense has greater capability to capture temporal-spacial
patterns in multimodal sensing data for HAR. It is worth noting
that AttnSense outperforms its variants AS-noAF and AS-
noAG, which indicate that the attention mechanism plays an
important role in our proposed model.

Visualizing Attention Weights
We provide visualized analysis to the attention weights, which
can be used to evaluate the impact of different sensor modali-
ties placed on different parts of the human body. Figure 4(a)
shows the positions of IMUs for PAMAP2 dataset; Figure
4(b) shows the attention weights of different sensor modalities
for the running activity; and Figure 4(c) shows the temporal
attention weights of GRU subnet for the running activity.

According to Figure 4(b), the attention fusion layer puts
a high emphasis on the acc1, acc2 of the hand, acc2 of the
chest, and acc1, acc2 of the ankle, which is intuitively inter-
pretable for running activity. Compared with simple the naive
concatenation mechanism, which treats all the sensor modal-
ity equally, the proposed attention mechanism automatically
learns the priority of different sensors for HAR task, which
works better in feature selection and fusion, and achieves bet-
ter performance in dealing with multimodal high-dimensional
time series. According to Figure 4(c), the temporal attention
model highlights the hidden state close to the beginning of
the signal, which means the beginning of the signal sequence
show more salient pattern of the running activity and our pro-
posed model can capture the important part of the sequence to
increase performance and comprehensibility.
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Figure 4: Visualization of attention weights of running activity in
PAMAP2 dataset.
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Figure 5: The performance of activity recognitions under different
numbers of convolutional layers and different sliding windows size.

Number Parameters of CNN

1 conv3-64→ pool→ FC
2 conv3-32→ conv3-32→ pool→ FC
3 conv3-32→ conv3-32→ pool→ conv3-64→ pool→ FC

4 conv3-32→ conv3-32→ pool→ conv3-64→ conv3-64→
pool→ FC

5 conv3-32→ conv3-32→ pool→ conv3-64→ conv3-64→
conv3-64→ pool→ FC

Table 3: Structure of convolutional layers (conv3 represents convo-
lutional layer with 1× 3 kernel, pool represents max pooling layer
and FC represents fully connected layer).

Parameter Analysis
Here we study the influence of some parameters including the
structure of convolutional subnet and the length of sliding win-
dow (each timestep correspondings to 0.25s). The five kinds
of CNN structures are illustrated in Table 3 and the results are
given in Figure 5. It can be found that increasing the number
of convolutional layers tends to improve the performance of
the model, but it approaches to be stable after a certain number.
The best numbers of convolutional layers for Heterogeneous,
Skoda and PAMAP2 dataset are 3, 2, and 4 accordingly. In ad-
dition, the length of sliding window also influence the model’s
performance, and a small sliding window usually results in
poor recognition accuracy. We get the best performance when
using 20, 15, and 20 width sliding window for Heterogeneous,
Skoda and PAMAP2 accordingly.

6 Conclusion
Recognizing human activities from multimodal sensing data
is a challenging task. In this paper, we proposed an attention-
based deep neural network model called AttnSense and a
comprehensive data preprocessing technique to solve the prob-
lem. AttnSense adopted a hybrid framework to combine the
attention mechanism with CNN-RNN architecture to fuse mul-
timodal sensor information and RNN hidden state, which
has greater capability to capture temporal-spacial patterns in
multimodal sensing data for HAR. The data preprocessing
technique also help our model to capture the noise pattern and
frequency features in the multidimensional sensing signals.
As demonstrated in the experiments, the proposed method
outperformed the state-of-the-art methods.
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