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Abstract

This paper presents ENHAnCE, an algorithm that
simultaneously learns a predictive model of the
input stream and generates representations of the
concepts being observed. Following cognitively-
inspired models of event segmentation, ENHAnCE
uses expectation violations to identify boundaries
between temporally extended patterns. It applies
its expectation-driven process at multiple levels of
temporal granularity to produce a hierarchy of pre-
dictive models that enable it to identify concepts
at multiple levels of temporal abstraction. Eval-
uations show that the temporal abstraction hierar-
chies generated by ENHANCE closely match hand-
coded hierarchies for the test data streams. Given
language data streams, ENHANCE learns a hierar-
chy of predictive models that capture basic units
of both spoken and written language: morphemes,
lexemes, phonemes, syllables, and words.

1 Introduction

The ability of artificial agents to interpret and understand their
surroundings depends on their world models. Their capacity
to learn models from sensory data depends on their ability
to make sense of continuous data streams by learning dis-
cretized concept representations and deriving concept hierar-
chies. In this paper, concepts are defined as predictively use-
ful temporal abstractions of patterns in data streams, where
data streams are data containing sequences of statistically reg-
ular patterns presented in a streaming manner.

Event Segmentation Theory (EST) [Zacks et al., 2007;
Kurby and Zacks, 2008; Radvansky and Zacks, 2014] hy-
pothesizes a process for human concept formation from sen-
sory inputs. EST holds that people manage their world mod-
els using expectation failures. If a person is using the cor-
rect model, incoming observations should match the expec-
tations derived from the model; failures of expectations re-
veal flaws in the model or that a different model should be
applied. This paper proposes a new algorithm for unsuper-
vised concept learning in streaming data domains, inspired
by EST, that uses the notion of transient expectation failures
as an indicator of the need for model revision. In particu-
lar, it forms representations of patterns in an input stream (its
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concepts), at multiple levels of abstraction, generates expec-
tations from those concepts, and learns when expectation fail-
ures reveal that the current concepts are no longer relevant.
This process could apply, for example, learning to recognize
a hierarchy of units in language understanding, such as mor-
phemes, lexemes, phonemes, syllables, and words, to support
an expectation-driven understanding process.

The proposed algorithm, ENHAnCE (“Expectation driveN
HierarhicAl Concept 1Earning”), uses a shallow gated-
recurrent neural network (GRNN) as its base prediction
mechanism for learning and maintaining a statistical model
of inputs from a data stream, following existing computa-
tional models of event segmentation [Reynolds et al., 2007;
Metcalf and Leake, 2017]. ENHAnCE extends such models
with the capacity for segmenting input streams at multiple
levels of temporal abstraction and learning a decomposable
hierarchy of discrete, temporally extended concepts. Thus
ENHAnCE performs unsupervised learning of discrete con-
cept hierarchies and builds the foundation for a hierarchical
world model. ENHAnCE uses expectation failures simultane-
ously to guide concept boundary recognition and to generate
of a hierarchy of concept representations.

ENHAnCE was evaluated on language data because lan-
guage streams are an instance of streaming data with tem-
poral dependencies for which previously-defined concept hi-
erarchies can be used as a reference for assessing perfor-
mance. The existing language concept hierarchy (e.g., char-
acters, phones, syllables, and words) was used as ground truth
to assess learning performance. The results show that, us-
ing prediction error alone as the signal for concept formation,
ENHAnCE can learn concept hierarchies closely matching
existing concept hierarchies with high accuracy and without
any explicit supervision.

The following sections review the relevant background and
define the necessary vocabulary; discuss related work; detail
the specifics of ENHAnCE; present the experimental design
used for evaluation; and discuss results. The paper closes by
sketching potential areas for future work.

2 Background

There is a long tradition of Al research on the role of expecta-
tions and use of expectation failures—discrepancies detected
between expectations and observations—to guide processing,
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including areas such as early work on natural language under-
standing (e.g., [Martin, 1989; Schank and Leake, 2002]) and
recent work on goal reasoning (e.g., [Aha, 2018]). Much of
that work processes input that has already been segmented
to assign structure, using pre-existing semantic knowledge.
However, processing streaming sensory data may require seg-
mentation for which pre-existing semantic knowledge is in-
sufficient. This motivates the development of data-driven pro-
cesses for learning the needed structures.

Deep neural network research has made great strides for
learning features and representations, enabling prediction
quality surpassing humans in some domains (e.g., [He et al.,
2015; Silver et al., 2017]). However, unsupervised discretiza-
tion (i.e., event segmentation) and concept learning remain
open challenges for network methods. To address this, we
turn to Psychology and Cognitive Science for inspiration,
specifically to EST [Radvansky and Zacks, 2014].

According to EST, people learn to process streaming in-
put by first learning a low-level predictive model, and then
learning hierarchies of concepts, where concept refers to a
summarized representation of the underlying temporal pat-
tern [Newtson, 1973]. The learned predictive model is used
to maintain beliefs about which concepts are being observed,
supporting, e.g., an expectation-driven understanding pro-
cess. When a person’s expectations are violated in a con-
sistent way, observations leading up to and following the vio-
lation are mentally marked as belonging to two different con-
cepts.

3 Related Work

Several approaches have been proposed for learning structure
from streams of sensory information. Gumbsch ef al. (2017)
present a method for learning event taxonomies from contin-
uous sensorimotor information. The model is learned to mini-
mize the amount of free energy. It can learn conceptual struc-
ture at multiple levels of precision, and is used to understand
how actions impact and change the world. Mohseni-Kabir et
al. (2018) present a method for learning a hierarchy of actions
and action primitives through demonstration and narration of
the demonstration; it depends on the narration to detect ac-
tion boundaries. Ha et al. (2015) present a method for learn-
ing hierarchical knowledge that is grounded both in vision
and language. The method is grounded in incremental graph
construction where concepts higher in the graph are more ab-
stract than those at lower levels. Lee et al. (2016) take the ap-
proach of modulating between fast-changing local behaviors
and slow-changing global patterns to learn a deep model for
abstract concepts that correspond to locations, sub-locations,
and activities. The model is updated and maintained via on-
line learning and relies on a dual memory architecture to al-
leviate the effect of “catastrophic forgetting” sometimes ob-
served in deep networks [Goodfellow er al., 2013].

The design of ENHANCE has key similarities with multi-
scale recurrent neural networks (MRNN) [Schmidhuber,
1992; El Hihi and Bengio, 1996; Koutnik ef al., 2014], al-
though it learns models for a different purpose. MRNNs are
premised on some parts of the world changing rapidly and
being sensitive to precise local timing relative to others that
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change more slowly [El Hihi and Bengio, 1996]. Taking ad-
vantage of this, multi-scale RNNs chunk hidden units into
groups that update according to different schedules, which are
managed via hyper-parameters [El Hihi and Bengio, 1996;
Koutnik er al., 2014; Bahdanau et al., 2016], learned dy-
namic variables [Schmidhuber, 1992; Chung er al., 2015;
Chung er al., 2016], or via learning the latent hierarchical
structure [Chung ef al., 2016]. The hierarchical MRNN is
able to learn hierarchical structure from the sequences with-
out any explicit information about the locations of temporal
boundaries.

The approach presented in this paper is most closely related
to hierarchical voting experts (HVE) [Miller and Stoytchev,
2008a; Miller and Stoytchev, 2008b]. HVE extends the vot-
ing experts (VE) algorithm [Cohen et al., 2007], which first
learns the frequency of sequences of size n, and then seg-
ments streams of tokens into chunks that minimize internal
entropy and maximize boundary entropy. HVE operates over
sequences of any token type and constructs complex tokens
out of those constructed by lower-level VE algorithms. Com-
plex tokens may be composed of a sequence of characters or
other complex tokens. Each level in the VE hierarchy seg-
ments the tokens presented to it, chunks those tokens that
have been segmented together, and passes the sequence of
chunks onto the next level to be further segmented. All to-
kens and chunks of tokens correspond to some meaningful,
discrete unit in the original sequence, e.g. a word. Unlike
HVE, ENHAnCE is able to operate on continuous observa-
tions and does not require a priori knowledge of the number
of levels.

Previous work introduced unsupervised methods for event
segmentation [Zacks et al., 2007; Metcalf and Leake, 2017;
Franklin et al., 2019]. The Zacks et al. model was trained
to predict the next observation and used expectation fail-
ures (SSE) to trigger memory updates. Metcalf and Leake
(2017) built upon the Zacks et al. (2007) GRNN architec-
ture by replacing the externally set threshold with a reinforce-
ment learned (RL) policy. The policy observed the GRNN’s
SSE, controlled the gate’s behavior, and was rewarded based
on the SSE. Their RL+GRNN architecture demonstrated it
is possible to learn the gating mechanism for identifying
event boundaries. Furthermore, the RL+GRNN architecture
demonstrated that it is possible to learn the gating policy with-
out encoding any knowledge about the true location of event
boundaries into the reward function.

4 ENHAnCE

ENHAnCE builds a predictive model of its observations and
exploits that model to learn to segment its observations into a
hierarchy of temporal concepts. The learning objective is to
derive concepts such that, when a known concept is being ob-
served, the model can predict (1) the next observation(s) and
(2) the next concept. As an example of a task for which such
prediction is useful, consider building a model of financial ar-
ticles for expectation-driven natural language understanding.
In this domain, references to interest rates are common. Con-
sequently, observation of the word “interest” might predict
that the next word will be “rates” and that the current concept



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

erroryp
Po —
A

o |( AL h
il

I_ A

gatep

error
pP1 =
yy l
0o RL1 L SOM;
r : hy l+ e ® -
| Y Y gates

Figure 1: Iterative learning architecture for EVNHAnCE, consisting of SRNN, RL+GRNN, and SOM structures: (1) the dark blue SRNN layer
is learned, (2) the light blue RL+GRNN structure is added and learned, (3) light blue SOM is learned to cluster event states into concepts, (4)
the dark pink SRNN is added and learned, (5) the light pick RL+GRNN structure is added and learned, and (6) the light pink SOM to learn
event representations is added and learned. Additional SRNN, RL+GRNN, and SOM structures can be added until desired depth is reached.

is interest rates. Such a multi-level expectation-driven under-
standing process has been applied to NLP using pre-defined
concept hierarchies [Martin, 1989]. The task of ENHAnCE is
to generate suitable hierarchies automatically.

Figure 1 depicts how ENHAnCE learns in an iterative,
bottom-up fashion, which forces it to learn a hierarchy that
has at its lowest level concepts that cannot be decomposed
into smaller, meaningful units. This aligns with theories
about how humans develop complex concepts [Reynolds
et al., 2007]. Initially a simple recurrent neural network
(SRNN) is used to learn a predictive model of the observa-
tions. The SRNN contains a single hidden state and a single
context (recurrent) state, as illustrated in Figure 1 (dark blue).
The model learns to predict its next observation based on cur-
rent observations and its “memory” and is updated based on
the error in its predictions. The SRNN is learned until con-
vergence (operationalized as two successive gradients within
10712). Learning until convergence prior to adding additional
architectural components encourages the SRNN to have some
degree of stability before its output are used to learn more ab-
stract temporal patterns.

Once the SRNN stabilizes, it is modified to include a
world state embedding and a gating mechanism, resulting in
a RL+GRNN layer (Figure 1, light blue). The role of the em-
bedding and gating mechanism is to reduce prediction error
by maintaining a stable representation of observations. The
RL gating mechanism learns to encode information about the
SRNN’s error; it learns to take actions based on how “con-
fused” the SRNN is about its next predictions. Both the world
state and the gating mechanism are learned using the same
prediction error signal used to learn the initial SRNN.

The RL+GRNN is learned until convergence (same crite-
rion as RL+GRNN) at which point concepts are derived from
the RL+GRNN’s world state embeddings using a Growing
Self-Organizing Map (GSOM) [Dittenbach et al., 2000] to
cluster the representations (Figure 1, light blue). A GSOM
was selected for this task because it can dynamically select
to add a node to the network to account for new concepts.

The GSOM nodes summarize the world states and are treated
as prototypical representations of world state embeddings.
The nodes continue to be updated over the course of the life-
time of the GSOM. The addition of the GSOM completes the
first level of concept learning. After the first level of con-
cepts has been learned, another level is introduced. A second
RL+GRNN layer is learned using the same strategy as for
the first. An initial SRNN learns a temporally extended pre-
dictive model of the world (Figure 1, dark pink); instead of
taking as input direct elements of the observation stream, it
takes as input the world state embedding maintained by the
previous layer along with the associated GSOM prototypes.
It is tasked with predicting the previous layer’s next event
state. The second RL+GRNN layer receives input from the
previous layer whenever the previous layer’s gating mecha-
nism indicates that a new concept is being observed. The
layer is evaluated based on how well it can predict the pro-
totype of the concept the previous layer will observe next.
As a result, layers higher in the RL+GRNN hierarchy make
predictions about which concept will be observed next. The
higher into the hierarchy the RL+GRNN is, the more tem-
porally extended its predictions are, and the further into the
future the layer’s predictions are targeted.

As with the first layer, once the SRNN is learned and has
stabilized, RL+GRNN architectural components are added
(Figure 1, light pink). Once the added world state compo-
nent and the gating mechanism stabilize, the world state em-
beddings are clustered using the GSOM to learn prototypical
world states for the layer (Figure 1, light pink).

Additional RL+GRNN layers are learned and stacked upon
the first two layers following the procedure outlined above
until either of two termination conditions. First, if a desired
depth is known a priori, learning is terminated by halting the
addition of levels once the desired depth is reached. Other-
wise, RL+GRNN layers continue to be added and evaluated
until added layers cease to converge. At such a point, the
top of the concept hierarchy can be considered to have been
reached as there are no longer strong statistical regularities to
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Data Source Coding One Coding Two

Saffran Infant | char. — Morse
word — phons. | phon. — int. code
1984 char. — Morse

word — phons. | phon. — int. code

Table 1: Combinations of data sources and coding techniques used
to evaluate ENHAnCE.

be learned. Once the last RL+GRNN layer has been added
to the hierarchy, the set of world state prototypes learned
through clustering with the GSOMs is the concept hierarchy.
Tracking when the gating mechanisms trigger at each layer in
the RL+GRNN hierarchy provides hierarchical annotations
for the observations identifying when each concept at each
level in the hierarchy is observed.

5 Training for Evaluation

In the configuration for evaluation, the model was trained it-
eratively one level at a time following a three-step process:
(1) learn the SRNN, (2) learn the RL+GRNN, and (3) learn
the GSOM. The levels in the model were learned iteratively
so that each subsequent level could learn from stable input
signals. In addition, learning one level at a time reduces the
complexity of the gradient estimate helping to make back-
propagation more stable.

The SRNN was learned to make one step predictions with a
memory of what it has seen, but no explicit representation of
the concept it is seeing; whereas the GRNN used a memory
of what it had seen and an explicit summary representation of
the type of concept it was seeing when making predictions.
The GRNN'’s event representation was controlled by the gat-
ing policy learned to minimize the GRNN’s loss.

At the first level, prediction error was measured according
to the L1 norm between the predicted next observation and
the true next observation. At all later levels, the L, norm was
used to compute the error between the predicted next con-
cept and the correct GSOM node for the concept. The error
functions were selected based on their ability to minimize the
SRNN’s error measured as SSE.

The architecture of the SRNN and the GRNN followed
that of previous work [Zacks et al., 2007; Metcalf and Leake,
2017] except for one change. Instead of a sigmoidal activa-
tion on the input layer a linear activation was used. This was
chosen because it better minimized the SRNN’s error. Back-
propagation was handled using the Adam optimizer. The
model was implemented using Tensorflow (1.2.0).

Also following the previous work, the RL policy based gat-
ing mechanism was learned using Expected Sarsa [Sutton and
Barto, 2015; Metcalf and Leake, 2017]. The reward function
was designed to encourage the policy to trigger the gate such
that the GRNN’s error was minimized. The reward at each
time step was equivalent to the negative value of the GRNN’s
loss, i.e., —SSE. The input to the policy was the ratio of the
GRNN’s current loss and its average loss:

SSFE:;_1

Sta/tet = AS‘S’T 5
avg

ey

where SSE;_q is the last observed error in the GRNN and
SSEqyq4 is the average error in the GRNN computed using
the moving average [Zacks et al., 2007]. Both the state and
the reward match those used in Metcalf and Leake (2017).
At each step in the learning process, each component was
learned until convergence. For the SRNN, the GRNN, and the
gating mechanism’s policy, the convergence condition was:

|[Loss; — Loss;_1|[> < le™'2, (2)

where Loss; and Loss;_; are the current and previous loss,
respectively. The GSOM was considered to converge when
the ratio of variance within any node relative to the variance
in the entire data set was less than 0.05.

6 Evaluation

The primary evaluation goal was to assess the ability of
ENHAnCE to segment continuous observations into mean-
ingful discrete concepts at multiple levels of temporal ab-
straction. ENHAnCE was evaluated on text- and speech-
based data streams, using existing data streams for which
concept hierarchies were already available for use as ground
truth for each level of temporal abstraction (i.e., charac-
ters, phonemes, syllables, words, etc.). The specific data
sources were selected to allow for a direct comparison to
experimental results on HVE [Miller and Stoytchev, 2008a;
Miller and Stoytchev, 2008b]. The first data source was the
first 30,000 words (4748 unique words) in George Orwell‘s
1984. The second was the sequence of 90 words (8 unique
words) used in Saffran‘s infant speech comprehension ex-
periment [Saffran er al., 1996]. The 1984 data contained
roughly 12,000 unique syllables and 26 unique characters.
The Saffran infant data set contained 12 unique syllables and
13 unique characters. The text data was pre-processed by re-
moving all non-alphabetic characters and converting all char-
acters to lowercase.

6.1 Encoding the Data

To assess the robustness of the methods on different input
representations, each data source was coded according to two
different coding mechanisms [Miller and Stoytchev, 2008a;
Miller and Stoytchev, 2008b]. The coding techniques were:
(1) character to Morse code and (2) word to phonemes +
phoneme to numeric code. In the character to Morse code
coding, each alphabet letter was replaced by its Morse code
counterpart. Dots and dashes were represented by inte-
ger ones and zeros, respectively. Each individual 1 and
0 was treated as a single observation. The phoneme cod-
ing was designed to mimic variable length phone articula-
tion, represent that there are multiple sample observations
of a phone, and to evaluate ENHAnCE in a continuous do-
main. The word to phonemes coding mapped words to se-
quences of phonemes according to the CMU Pronouncing
Dictionary. The CMU Dictionary represents over 125,000
words with 39 different text-based phoneme representations.
Any word not in the CMU dictionary was excluded; such
words were rare and mostly proper nouns. The phoneme
to numeric code technique mapped the CMU Dictionary’s
character-based phoneme sequences to continuous observa-
tion sequences. Each phoneme was mapped to a sequence of
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GRNN Prediction Error
Data Encoding Type
Morse code Phonemes
L1 L2 L3 L1 L2 L3
Infant | .021 | 0.26 | 0.48 | 0.300 | 0.311 | 1.572
1984 | 024 | 033 | 055 | 034 0.43 1.11
Number of Learned Concepts
Data Encoding Type
Morse code Phonemes
L1 L2 L3 L1 L2 L3
Infant | 16 10 8 14 11 9
1984 28 | 11823 | 3255 42 10732 | 4862
Similarity to True Next Concept
Data Encoding Type
Morse code Phonemes
L1 L2 L3 L1 L2 L3
Infant - 0.76 | 0.89 - 0.401 | 1.032
1984 - 0.58 | 0.67 - 0.26 0.92

Table 2: GRNN Error & Learned Concepts - Reports the average
prediction error in the GRNN, the number of nodes/prototypical
concepts learned by the GSOM, and the similarity of predicted next
concepts to the true next concept per data source and encoding type.
Performance is reported per-level in the RL+GRNN hierarchy. Sim-
ilarity to the next concept is not reported at Level 1, as no concept
representation feeds into the first level.

observations whose values were randomly sampled accord-
ing to a normal distribution. Each phoneme was assigned a
unique mean, (i, on the range [—0.5, 0.5] such that phonemes
with similar articulations had similar means. There were 4
features per observation and the number of observations was
determined by 4 - |p|, where |p| is the number of characters
used by the CMU Dictionary to encode the phoneme. For ex-
ample, the phoneme ‘0’ in ‘odd’ is encoded as ‘AA’ therefore
its numeric representation contained 8 observations each of
length 4. The combination of data sources and coding tech-
niques is outlined in Table 1.

The coded data were presented to the GRNN in a streaming
fashion. For example, when observing the word ‘odd,” coded
phonetically as ‘AA D, the network received as input the nu-
meric vector for ‘AA, predicted what it would observe next
(e.g., ‘D), the RL gating mechanism made a decision about
whether to open or close the gate, and observed the error in
its prediction.

6.2 Evaluation Criteria

For each data set and encoding, ENHAnCE was evaluated for
three capabilities: (1) minimizing GRNN prediction error, (2)
segmenting observations near ground truth concept bound-
aries, and (3) producing meaningful concept representations.

Minimizing GRNN prediction error: Error in the network
was measured as the sum squared error (SSE) between the
predicted next observation and the true next observation. Ro-
bust weights and effective control of the gating mechanism
should improve the predictive power of the GRNN and reduce
its overall error. Consequently, the level of GRNN prediction
error evaluates both the quality of the learned weights and of
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learning by the RL gating mechanism.

Segmentation near ground truth boundaries: The ability
to trigger the gate near ground truth boundaries indicates
whether the RL gating mechanism is able to segment con-
tinuous observations corresponding to the known underlying
concepts. For example, if the gate is triggered at the point
where the numeric code for ‘AA’ transitions to the numeric
code for ‘D’ then the RL+GRNN model has learned to rec-
ognize when the concept underlying the network’s input has
changed. The quality of gate triggering was evaluated accord-
ing to the average number of observations between a gate trig-
ger and the closest true boundary—scaled by the true length
of the concept—(average distance), the rate at which gate
triggers lined up with true boundaries (accuracy), the rate at
which true boundaries were triggered on (hit rate), and an F-
score summarizing the hit rate and accuracy.

Producing meaningful concept representations: A concept
representation is considered to be meaningful to the extent
that it can be used to predict what will be observed next. A
concept representation is predicatively useful if the next level
in the hierarchy of RL+GRNNs can use it to predict the next
concept. The correctness of a predicted next concept is mea-
sured as its distance (euclidean) from the GSOM node closest
to the true next event representation. The model is evaluated
relative to each level in the hierarchy.

7 Results and Discussion

Table 2 reports the total average loss, both within concepts
and at concept boundaries. We observed that at each level,
prediction error between boundaries was lower than it was at
boundaries. On average, the difference between the GRNN
errors was 1.023. The total average error in the GRNNSs in-
creased and the difference in error signals between boundary
points versus at boundary points became less pronounced at
higher levels in the hierarchy. The performance of the model
decreases, but not substantially so, as the complexity of the
input observations and the concepts increases.

Comparing the performance of the gating mechanism
across levels in the concept hierarchy shows that each level
involves its own difficulties and results in different gating
mechanism behaviors. The performance of the gating mech-
anism across metrics and the location of gate triggers, espe-
cially for the phoneme coding, indicates that ENHAnCE is
able to learn concepts corresponding to phonemes or char-
acters, syllables, and words. For example, at the first level
in the model, the gating mechanism is able to hit many of
the true event boundaries (HR). However, the model tends to
over estimate the number of true event boundaries (Acc.). At
the second level, the gating mechanism almost always trig-
gers on true event boundaries, but misses some. However,
it is likely that the missed boundaries are near misses based
on the average number of observations between the triggered
and true event boundaries. The ability to learn at higher lev-
els in ENHAnCE indicates that mistakes a lower levels did not
completely block the learning of concepts at higher levels.

Whereas HVE struggled to handle observations of se-
quences structured as Morse code, which contains common,
shared subsets, the performance of ENHAnCE is less im-
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Morse code
Model . L1 . L2 . L3
Dist. Acc. HR F Dist. | Acc. | HR F Dist. | Acc. HR F
Infant | ENHARCE | 0.197 | 0.53 | 0.743 | 0.63 021 | 048 | 0.63 | 0.54 | 0.94 | 041 0.56 0.47
1984 | ENHAnCE | 0.89 0.52 0.78 0.62 1.02 | 0.51 | 048 | 049 | 142 | 0.34 0.39 .36
HVE - 0.444 | 0.358 | 0.397 - - - - 0.107 | 0.095 | 0.100
Phonemes
Model . L1 - L2 . L3
Dist. Acc. HR F Dist. | Acc. | HR F Dist. | Acc. HR F
Infant | ENHAnCE 0.2 .82 .98 .88 0.075 ] 0.95 | 0.73 | 0.81 | 0.23 | 0.724 | 0.85 | 0.789
1984 | ENHAnCE | 0.089 | 0.88 0.95 091 | 0.064 | 098 | 0.89 | 0.93 | 0.12 | 0.93 0.91 0.92
HVE - - - - - - - - 0.808 | 0.806 | 0.807

Table 3: Segmentation - The average distance, accuracy, hit rate, and F-score between gate triggers and true concept boundary points. Average
distance reports average number of observations between a gate trigger and a true boundary, accuracy reports how many gate triggers overlap
with true boundaries, hit rate reports the number of true boundaries triggered at, and F-score summarizes accuracy and hit rate. Performance
is reported per-level in the RL+GRNN hierarchy and, where possible, compared against the reported HVE results. HVE does not report
average distance and only reports word segmentation for phonemes and character and word segmentation for Morse code.

paired. ENHAnCE maintains a representation of what it has
seen (in the recurrent layer and the event representation) and
makes predictions based on how surprising the current ob-
servation is relative to previous observations. The predic-
tion error is in a sense a measure of familiarity; the net-
work is better able to predict observations that are part of pat-
terns the network has seen frequently. In contrast to HVE,
ENHAnCE*s performance is not perturbed by the fact that
true sub-sequences do not have lower internal entropy than
false sub-sequences.

Overall, as with HVE [Miller and Stoytchev, 2008a; Miller
and Stoytchev, 2008b], ENHAnCE performed better on more
natural representations of language. This is true for both the
encoding type (i.e. Morse code vs. phoneme) and the data
source (i.e. 1984 vs. Infant Experiments). Performance
was considerably better on the phoneme encoding than on
the Morse code encoding. This is reasonable as Morse code
requires the knowledge of true boundary points to decipher
(phonemes do not) and, therefore, does not include the infor-
mation theoretic context humans require to segment streams
of data. On the phoneme-based encoding, ENHAnCE also
performed better on /984 than on the Infant experiment data
source whereas ENHAnCE performed better on the Infant
data for the Morse code encoding. This difference may ini-
tially seem counter-intuitive, as /984 is more complex. How-
ever, ENHAnCE operates on points of expectation failures.
As the Infant experiment data source was simpler and com-
posed of a more regular pattern, we expect fewer expectation
failures for ENHAnCE to operate over.

8 Conclusion and Future Work

This paper has presented a domain-independent method for
detecting meaningful patterns in streams of data and learning
a hierarchy of concepts from those patterns. Results demon-
strate that for the test domains and encodings, (1) ENHAnCE
is able to learn, without explicit supervision, behaviors that
minimize errors in predictions about future observations, (2)
that it is able to identify concepts and concept boundaries near
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ground truth concepts across levels in the hierarchy, and (3)
that the learned concepts are meaningful in that they are pre-
dictively useful to higher levels in the model.

Future work includes evaluation for additional data sets
and baselines, further investigation of the relationship be-
tween model levels and ground truth levels, and study of the
performance contributions of particular steps. Longer-term
work includes incorporating a feedback loop to bring infor-
mation about higher hierarchy levels into the decision process
at lower levels (to provide greater context for low-level deci-
sions), and incorporating the model into one-shot learning—
using ENHAnCE’s prediction mechanisms to identify previ-
ous familiar concepts, and, based on them, construct predic-
tions relevant to the new concept. This moves beyond evalu-
ating the immediate predictive usefulness of the learned con-
cepts to evaluate the power of the representations for more
extended reasoning tasks.
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