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Abstract
Koopman theory asserts that a nonlinear dynamical
system can be mapped to a linear system, where
the Koopman operator advances observations of the
state forward in time. However, the observable func-
tions that map states to observations are generally
unknown. We introduce the Deep Variational Koop-
man (DVK) model, a method for inferring distri-
butions over observations that can be propagated
linearly in time. By sampling from the inferred dis-
tributions, we obtain a distribution over dynamical
models, which in turn provides a distribution over
possible outcomes as a modeled system advances
in time. Experiments show that the DVK model is
effective at long-term prediction for a variety of dy-
namical systems. Furthermore, we describe how to
incorporate the learned models into a control frame-
work, and demonstrate that accounting for the un-
certainty present in the distribution over dynamical
models enables more effective control.

1 Introduction
In order to analyze, control, and predict the evolution of dy-
namical systems, we require knowledge about their governing
equations. For many complex systems of interest, the exact
governing equations are either unknown or are prohibitively
expensive to accurately evaluate. These challenges have in-
spired recent interest in learning system dynamics directly
from data. In particular, neural network dynamics models
have garnered widespread attention due to their ability to
model complex functions with high-dimensional inputs such
as image data [Krishnan et al., 2017; Rangapuram et al., 2018;
Moerland et al., 2017; Karl et al., 2017; Fraccaro et al., 2017].

Data-driven dynamics modeling is of particular interest to
the field of reinforcement learning (RL), where the goal is
to automatically learn control policies that satisfy predefined
objectives. Model-based RL algorithms, which attempt to
explicitly model environment dynamics, have the potential to
solve complex tasks while requiring significantly less experi-
ence than model-free algorithms. However, the difficulty of
constructing accurate data-driven dynamics models has so far
allowed model-free approaches to outperform model-based
approaches on many problems. Nonetheless, recent work has

demonstrated that planning algorithms combined with neural
network dynamics models can achieve strong performance on
a variety of tasks while requiring less environmental interac-
tion than state-of-the-art model-free RL algorithms [Chua et
al., 2018; Hafner et al., 2018].

The exact form of a dynamics model has strong implica-
tions for how easily the model can be incorporated into a
control or planning framework. Neural networks are nonlin-
ear functions, meaning neural dynamics models might not
be well suited for many control methods designed for linear
systems. For this reason, approaches such as E2C [Watter
et al., 2015] and RCE [Banijamali et al., 2018] train neural
networks to map states to a latent space where the dynamics
can be evolved according to locally linear models that enable
action selection through iLQR. Koopman theory [Koopman,
1931] offers an alternative viewpoint through which nonlinear
dynamics can be mapped to linear dynamics. It posits the
existence of a linear operator that acts on observable functions
of the state to advance them forward in time. The exact form
of the observable functions is usually not known, but recent
work has sought to learn them automatically using neural net-
works [Lusch et al., 2018; Takeishi et al., 2017; Li et al., 2017;
Otto and Rowley, 2017]. Furthermore, it has been shown that
data-driven models that leverage Koopman theory can be used
for control in a wide array of applications [Kaiser et al., 2017;
Korda and Mezić, 2018; Morton et al., 2018].

In this work, we introduce the Deep Variational Koopman
(DVK) model, a method for inferring distributions over Koop-
man observations that can be propagated linearly in time. Our
method requires the training of a single neural network model,
but enables the sampling of an ensemble of linear dynam-
ics models in the space of observations. Taken together, this
model ensemble effectively provides a distribution over the
system dynamics. In evaluations on benchmark problems,
we demonstrate that DVK models can be used for accurate
long-term prediction with reasonable uncertainty estimates.
Additionally, we explain how the linear model ensembles can
be easily incorporated into an existing control framework,
and we empirically demonstrate that controller effectiveness
improves as the size of the model ensemble grows.

2 Dynamics Modeling
In this section, we provide background on the Koopman opera-
tor and its relation to forced dynamical systems. Subsequently,
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we derive an objective function for inferring distributions over
Koopman observations, which yields a practical training pro-
cedure for inferring Koopman observations from data.

2.1 The Koopman Operator
Consider a nonlinear discrete-time dynamical system sub-
ject to control inputs described by xt+1 = F (xt,ut), where
xt ∈ Rn and ut ∈ Rp. Koopman theory asserts that there
exists an infinite-dimensional linear operator K that advances
all observable functions h of the state and control inputs for-
ward in time. Under the assumption that the control inputs
are not evolving dynamically, this update equation takes the
form [Proctor et al., 2018]:

Kh(xt,ut) = h(F (xt,ut),0) = h(xt+1,0). (1)

If there exist a finite number of observable functions
{h1, . . . , hm} that span a subspace H such that Kh ∈ H for
all h ∈ H, then H is considered to be an invariant subspace
and K becomes a finite-dimensional operator K.

In this work, we assume that the observables take the form
h(xt,ut) = g(xt) + Lut, where g(xt) represents an obser-
vation of state xt and L ∈ R1×p is a matrix. Under the
assumption of a finite-dimensional Koopman operator and
defining the vector-valued observables h = [h1, . . . , hm]ᵀ

and g = [g1, . . . , gm]ᵀ, we have the update equation:

g(xt+1) = Kh(xt,ut) = [A B]

[
g(xt)
ut

]
= Ag(xt) +But.

(2)

The above expression describes the forward-time evolution
of the observations g(xt); if A is invertible we can likewise
describe the reverse-time evolution as

g(xt) = A−1 (g(xt+1)−But) . (3)

Consider a sequence of control inputs u1:T−1 applied to
a system with a finite-dimensional Koopman operator, re-
sulting in a sequence of states x1:T . Define the matrices
Z ∈ R(m+p)×(T−1), Y ∈ Rm×(T−1) as:

Z =

[
g(x1) g(x2) . . . g(xT−1)
u1 u2 . . . uT−1

]
Y = [g(x2) g(x3) . . . g(xT )] .

(4)

Under the assumptions outlined above, we can recover A and
B through [A B] = Y Z† for sufficiently long sequences,
where Z† is the Moore-Penrose pseudoinverse of Z. Unfortu-
nately, the true form of the observables is generally unknown.
In this work, we attempt to infer the sequence of observations
g(x1), . . . ,g(xT ) based on a sequence of control inputs and
the time evolution of the state of a dynamical system. Note that
we do not model the functions g directly, but instead attempt
to infer the value of the observations.

2.2 Inference Procedure
Consider a system subjected to a sequence of control inputs
u1:T−1, causing it to traverse a set of states x1:T . We assume
there exist observations of the states g(xt) such that the sys-
tem can be simulated linearly in time as outlined in Eq. (2)

gt gt+1

ut

zt zt−1

xt

gt ut

t = 1 : T t = 1 : T − 1

Figure 1: Graphical model. Each observation gt is a function of the
previous observation and control input. Because the dynamical model
that governs the time evolution of z1:T−1 is derived directly from
g1:T and u1:T−1, influence flows from these variables to z1:T−1.

and Eq. (3). Furthermore, we assume that the sequence is
sufficiently long such that, when we form the matrices Z and
Y as defined above, we have [A B] = Y Z†, i.e. we can find
the true A and B matrices directly from the observations and
control inputs. Let gt be a latent variable representing the
observation g(xt). Additionally, we introduce z1:T as a set of
latent variables that enforce that multi-step predictions made
with the derived dynamics model allow for accurate reconstruc-
tions of the states x1:T . Because we would expect prediction
error to grow with time, we simulate the zt’s backward in time
such that the lowest reconstruction error is generally obtained
at time T , which in turn will allow more accurate predictions
for how a system will evolve in future, unobserved time steps.
The values of z1:T can be determined through:

zT = gT , zt = A−1 (zt+1 −But) . (5)

Finally, we assume that xt = g−1(zt), i.e. the states xt are
generated by inverting the observable function g(·). Figure 1
shows the graphical model for this problem.

We desire a model that maximizes the likelihood assigned
to a sequence of observed states x1:T conditioned on actions
u1:T−1. In modeling this density, we need to account for the
presence of latent variables g1:T and z1:T . We can write the
expression for the likelihood L = p(x1:T | u1:T−1) in terms
of the observed and latent variables as:

L =

∫
p(g1:T , z1:T ,x1:T | u1:T−1)dg1:T dz1:T . (6)

By the chain rule, the integrand can be factored into:

p(g1:T , z1:T ,x1:T | u1:T−1) = p(g1:T | u1:T−1)×
p(z1:T | g1:T ,u1:T−1) p(x1:T | g1:T , z1:T ,u1:T−1)

(7)

Each term can be simplified using the conditional indepen-
dence assumptions encoded by the graphical model. The first
term can be simplified to:

p(g1:T | u1:T−1) = p(g1)
∏T

t=2
p(gt | gt−1,ut−1). (8)

Each factor in the above expression can be thought of as a
(conditional) prior over an observation at time t. The second
term in the integrand describes the distribution over variables
z1:T , whose values can be determined exactly using Eq. (5) if
g1:T and u1:T−1 are known. Thus, we find:

p(z1:T | g1:T ,u1:T−1) = δ(zT | gT )×∏T−1

t=1
δ(zt | zt+1,g1:T ,u1:T−1),

(9)
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where δ(· | ·) represents a deterministic relationship. From
the structure of the graphical model, the last term becomes:

p(x1:T | g1:T , z1:T ,u1:T−1) =
∏T

t=1
p(xt | zt). (10)

Even with these simplifications, evaluating the likelihood
expression is generally intractable because it requires marginal-
izing over the latent variables. Therefore, instead of optimizing
this objective directly, we use variational inference to optimize
a lower bound. We introduce q(g1:T , z1:T | x1:T ,u1:T−1),
an approximation of the true posterior distribution over the
latent variables. Multiplying and dividing the likelihood ex-
pression by this quantity, taking the logarithm of both sides,
and invoking Jensen’s inequality, we find a lower bound on
the log-likelihood ` = log p(x1:T | u1:T−1):

` ≥E
[∑T

t=1
log p(xt | zt)

]
+ E

[
log p(g1) +

∑T

t=2
log p(gt | gt−1,ut−1)

]
− E [log q(g1:T , z1:T | x1:T ,u1:T−1)] ,

(11)

where the expectations are taken with respect to samples of
z1:T and g1:T drawn from q.

We now consider simplified expressions for the approximate
posterior distribution. The chain rule tells us that:

q(g1:T , z1:T | x1:T ,u1:T−1) =

q(g1:T | x1:T ,u1:T−1)q(z1:T | g1:T ,x1:T ,u1:T−1).
(12)

As stated previously, given knowledge of g1:T and u1:T−1,
z1:T are known exactly. Thus, we know log q(z1:T |
g1:T ,x1:T ,u1:T−1) = 0. Additionally, we can factorize
q(g1:T | x1:T ,u1:T−1) as:

q(g1:T | x1:T ,u1:T−1) = q(g1 | x1:T ,u1:T−1)×∏T

t=2
q(gt | g1:t−1,x1:T ,u1:T−1).

(13)

Since all variables gt are assumed to be parents of variables
z1:T−1, influence can flow from all states and actions to each
gt, and thus the above expression cannot be simplified any fur-
ther based on conditional independence relationships. Taking
the logarithm of the quantities in Eq. (13) and incorporating
these into Eq. (11), we arrive at the following lower bound on
the log-likelihood objective:

` ≥ E
z1:T∼q

[∑T

t=1
log p(xt | zt)

]
−DKL [q(g1 | x1:T ,u1:T−1) || p(g1)]−

∑T

t=2
Dt

KL,

(14)

where Dt
KL represents the KL-divergence between q(gt |

g1:t−1,x1:T ,u1:T−1) and p(gt | gt−1,ut−1) for t =
2, . . . , T . Thus, we have found a lower bound on our true
objective that is comprised of the likelihood of the observed
states x1:T given z1:T , as well as the KL-divergence between
the approximate posterior and (conditional) prior distributions
over the observations gt. The following section provides a
practical training procedure for maximizing this objective.

2.3 Optimization Procedure
The expectation in the derived lower bound can be estimated
through Monte Carlo sampling. To raise the lower bound,
we simultaneously optimize the parameters of six neural net-
works, which together comprise the Deep Variational Koop-
man model. The size of each neural network, which is held
constant across all experiments, is listed after the name of
each model (e.g. [64, 64] would represent a two-layer neural
network with 64 neurons in each layer).

1. The Decoder Network [64, 32] is parameterized by θ and
outputs µt, the mean of a Gaussian distribution over state
xt given zt, represented by pθ(xt | zt). We assume that
the distribution over xt has constant covariance. Hence,
maximizing the log-likelihood is equivalent to minimiz-
ing the square error between µt and xt.

2. The Temporal Encoder Network [64] is a bidirectional
LSTM that maps a sequence of states x1:T and actions
u1:T−1 to a low-dimensional encoding that summarizes
the system time evolution.

3. The Initial Observation Inference Network [64] is param-
eterized by ϕ and outputs the parameters to a Gaussian
distribution over observation g1 given the output of the
temporal encoder, represented by qϕ(g1 | x1:T ,u1:T−1).

4. The Observation Encoder Network [64] is a recurrent
neural network that takes in observations g1:t−1 and out-
puts an encoding describing their time evolution. The
encoding is updated as more observations are sampled.

5. The Observation Inference Network [64, 64] is parameter-
ized by φ and outputs the parameters to a Gaussian dis-
tribution over observation gt given the output of the Tem-
poral and Observation Encoder Networks, represented
by qφ(gt | g1:t−1,x1:T ,u1:T−1).

6. The Conditional Prior Network [64, 32] is parameterized
by ψ and outputs the parameters to a Gaussian condi-
tional prior distribution over observation gt. The output
distribution is conditioned on the previous observation
and action, and is represented by pψ(gt | gt−1,ut−1).

Given a sequence of states x1:T and actions u1:T−1, we
can sample observations g1:T from the Observation Inference
Network and subsequently find the A and B matrices that
govern the observation dynamics through [A B] = Y Z† and
A−1 = (Y − BΓ)X†, where Γ = [u1, . . . ,uT−1] and X =
[g(x1), . . . ,g(xT−1)]. Finally, z1:T can be found through
Eq. (5), and the Decoder Network can output state predictions.

Each time a new set of observations g1:T is sampled, we
obtain a new, globally linear dynamics model. By sampling
many times, we obtain an ensemble of linear models that can
provide a distribution over future outcomes for a given system.
This notion of uncertainty can be appealing for a variety of
tasks, including prediction and control in circumstances where
data is limited. The next section details how the DVK model
can enable uncertainty-aware control.

3 Control
Our goal is to select a sequence of control inputs u1:H that
minimizes C =

∑H
t=1 c(xt,ut), the total incurred cost, where
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c(xt,ut) is the instantaneous cost. Designing controllers for
nonlinear systems can be challenging, while many techniques
exist for controlling linear systems. DVK models provide
linear dynamics models, which makes them amenable for in-
corporation into many control frameworks. Below we outline
considerations relating to using DVK models for control.

3.1 Cost Function
While the DVK model provides us with linear dynamics, the
dynamics are linear in the latent variables zt. Thus, we require
a cost that is a function of zt, not xt. Specifying such a cost
function can be difficult; a common choice is to define the
cost to be the L2-distance between the latent representation of
the current state and the representation for a goal state. Such
a choice is restrictive but can be justified when the states are
represented as visual inputs [Nair et al., 2018].

However, it is often easier to specify the cost as a function of
the state directly. For this reason, we define the cost as a func-
tion of the state and construct local quadratic approximations
of the cost ĉ(zt,ut) in the latent space. Building these local
approximations requires finding the gradient and Hessian of
the state cost with respect to zt, which in turn requires nonzero
second derivatives of the activation functions in the Decoder
Network, precluding piecewise linear ReLU activations.

3.2 Optimizing Action Sequences
We use the Differential Dynamic Programming (DDP) trajec-
tory optimization algorithm to find an action sequence that
minimizes the total predicted cost C. The DDP algorithm
starts with an action sequence to form an initial reference
trajectory, and uses the dynamic programming principle to it-
eratively update the action sequence and reference trajectory to
minimize the predicted cost [Tassa et al., 2012]. DDP requires
locally quadratic approximations to the system dynamics and
cost at all points along the reference trajectory. The DVK
model provides us with linear dynamics models and the ability
to find locally quadratic approximations to the cost, and thus
can be readily incorporated into the DDP algorithm.

A further consideration is that some systems may have con-
straints on the control inputs. To account for the presence
of such constraints, we optimize the action sequence ũ1:H ,
where we define ut = umaxtanh(ũt), and umax represents
the control saturation limits. Because of the presence of the
hyperbolic tangent in this expression, the DDP algorithm re-
quires us to make a quadratic approximation of the system
dynamics with respect to the control inputs ũ1:H .

3.3 Accounting for Uncertainty
The standard DDP algorithm assumes the existence of a sin-
gle, (locally) linear dynamics model. However, DVK models
give us the ability to sample many possible dynamics mod-
els, which taken together can encode uncertainty about how a
system will evolve in time. Accounting for such uncertainty
can enable more effective control. Below are two methods we
considered for performing uncertainty-aware control.

Optimize for expected cost. Given k models with
{[A,B]i}i=1:k and {z1,i}i=1:k, construct an augmented state
zt,aug that represents the concatenation of the zt-values across

all models. The dynamics of the augmented state will be
described by creating a block-diagonal matrix out of the A-
matrices and stacking the B-matrices into a single matrix. A
similar procedure can be performed with the cost gradients and
Hessians to find quadratic approximations to the cost function
along the reference trajectory. The action sequence can be
optimized according to the expected cost across all models.

Optimize for worst-case cost. Given an initial action se-
quence and k models, find the model predicting the largest
cost and use that model to update the state and action trajec-
tory. Subsequently find the model predicting that largest cost
under the new action sequence and repeat until convergence.

3.4 Model Predictive Control
In the presence of disturbances or model errors, executing
an entire action sequence determined through DDP may be
inadvisable. Because DVK dynamics models will not pro-
vide perfect predictions for the time evolution of a system,
we perform model predictive control (MPC) for closed-loop
trajectory planning. At each time step, we feed the last T
observed states and actions into the DVK model to find an
ensemble of dynamics models {[A,B]i}i=1:k and initial states
{z1,i}i=1:k. Next, we use the DDP procedures outlined above
to solve for action sequence u1:H , execute the first action in
the sequence, and replan at the next time step.

4 Experiments
This section evaluates the performance of the Deep Variational
Koopman models on benchmark problems for dynamics mod-
eling and control. We have limited these experiments to low-
dimensional problems because it is easier to visualize whether
the models have provided reasonable uncertainty estimates.
However, there is no reason why DVK models could not be
applied to high-dimensional systems. Future work will focus
on higher-dimensional problems such as fluid flow control, as
it has already been shown that Koopman-based approaches
can be effective for such applications [Morton et al., 2018].

4.1 Dynamics Modeling
We evaluate the ability of DVK models to learn dynamics
on three benchmark problems: inverted pendulum, cartpole,
and acrobot (or double pendulum). We use the OpenAI
Gym [Brockman et al., 2016] implementation of each en-
vironment, and modify the cartpole and acrobot environments
to give them continuous action spaces.

Baseline Models
We benchmark the performance of DVK models against three
baseline models. For a fair comparison, whenever a baseline
shares a component with the DVK model, such as the bidirec-
tional LSTM and decoder in the DVBF and LSTM models, we
use the exact same hyperparameters across all models. In our
experiments, all latent states were set to be four-dimensional.

The Deep Variational Bayes Filter (DVBF) model [Karl et
al., 2017] assumes the presence of latent states zt with locally
linear dynamics zt+1 = Atzt +Btut + Ctwt, where At, Bt,
andCt are functions of the current latent state and wt is a noise
vector. The distribution over w1 is output by a bidirectional
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Figure 2: Results from the acrobot environment. The first 64 steps
are reconstruction and the final 64 steps are prediction. Black lines
indicate true state values, blue lines represent mean predictions, and
shaded regions represent the range of predictions across all models.

LSTM that encodes information about the sequence of states
x1:T , and z1 is assumed to be a function of w1.

The Long Short Term Memory (LSTM) model propagates
a latent state zt with a recurrent neural network and uses a
decoder network to map zt to xt. The latent state at each
time step is a function of the previous latent state, the previous
control input, and the network hidden state. The initial latent
state z1 is drawn from a distribution output by a bidirectional
LSTM that encodes information about states x1:T .

We train an ensemble of 10 Multilayer Perceptrons (MLPs).
Each model is a fully-connected network trained to map the
current state and action to the next state. We can use the
range of predictions in the model ensemble as a measure
of uncertainty. Recent work has shown that ensembles of
MLPs can serve as probabilistic dynamics models that enable
effective control on a variety of tasks [Chua et al., 2018].

Training Details
All models were implemented in TensorFlow [Abadi et al.,
2015]. In each environment, 1000 trials were run for 256 time
steps with random control inputs. Models were trained on
subsequences of states and actions extracted from the trial
data. Knowledge about a sequence of states x1:T is required
to sample the initial latent state in the DVK, DVBF, and LSTM
models (and the dynamics model for DVK). For this reason,
we must draw a distinction between reconstruction, in which
a model simulates the evolution of states x1:T about which
it already has knowledge, and prediction, in which a model
predicts the evolution of states xT+1:T+H .

In calculating Z† and X†, a small scalar value may need
to be added to the diagonal entries of Z and X to avoid con-
ditioning issues, meaning that the A−1 matrix found by the
DVK model might not be the true inverse of A. If the model
is trained only for reconstruction, in which it simulates the
system backward in time withA−1, it may not perform well in
prediction when it uses A for the forward-time dynamics. To
ensure that the system can be simulated accurately with both
A and A−1, we train the DVK model to minimize the sum
of the reconstruction and prediction errors for states x1:T+H ,

where we often set T = H . We found that employing a similar
training procedure inhibited learning for the LSTM model, but
did improve the predictive performance of the DVBF, and as
such all DVBF results are from models trained in this manner.

Results
We evaluate the trained models on 5000 64-step test sequences
from each environment. For each test sequence, we generate
10 predictions with each model. For each prediction, the
DVBF and LSTM models sample different initial latent states
z1, and the DVK model samples different values of zT and
dynamics matrices. We obtain distinct predictions from the
MLP ensemble by generating recursive predictions with each
trained model. Figure 2 provides a qualitative picture of the
DVK model’s ability to simulate the dynamics on one test
sequence. We can observe strong agreement between the
model’s predictions and the true time evolution of the system,
with higher uncertainty present near local minima and maxima.

The predictive performance of the models are quantified
according to two metrics: (1) mean squared error (MSE) as a
function of prediction horizon, averaged across the 10 predic-
tions and 5000 trials, and (2) negative log-likelihood (NLL)
of the test data as a function of prediction horizon, summed
across trials. The likelihood is calculated by fitting a Gaussian
distribution to the 10 predictions generated by each model and
determining the probability density that distribution assigns to
the true state value. Figure 3 shows model performance accord-
ing to these metrics on the three studied environments. The
likelihood results for the LSTM model are omitted because its
fitted distributions assigned zero likelihood to some of the test
data, which corresponds to infinite negative log-likelihood.

The MLP ensemble performs quite well, achieving low pre-
diction error and assigning high likelihood to the test data.
However, the results for the pendulum problem, where the pre-
diction error grows exponentially, illustrate one drawback of
using models trained to make single-step predictions. The pre-
diction errors for such models can grow exponentially when
they are used to make multi-step predictions due to errors com-
pounding over time [Venkatraman et al., 2015]. In fact, over
a horizon of 128 time steps in the pendulum environment the
mean-squared prediction error for the MLP ensemble grows to
values on the order of 106. The DVK model achieves competi-
tive performance with the MLP ensemble, while not suffering
from the same instabilities and also providing linear dynamics
models that can be used more easily for control.

The DVBF outperforms the LSTM baseline, and attains
performance that is often close to that of the DVK model, but at
a much higher computational cost. The DVK model computes
a single dynamics model that it uses to propagate the latent
state for all time steps, while the DVBF must compute a new
dynamics model, which is a nonlinear function of the current
latent state, at each time step. Therefore, the computational
graph for the DVBF takes significantly longer to compile, and
furthermore in our experiments the time required to perform a
forward and backward pass during training was approximately
an order or magnitude longer for the DVBF.

4.2 Control
We evaluate the effectiveness of the control procedure detailed
in Section 3 on the inverted pendulum environment, in which
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Number of Models Cost Fraction of Time Vertical Falls per Trial

Worst Case Expected Worst Case Expected Worst Case Expected

1 - 370.7 - 0.632 - 0.353
5 307.5 285.7 0.710 0.732 0.312 0.111
10 291.9 274.3 0.733 0.748 0.218 0.063
30 251.6 270.9 0.771 0.748 0.061 0.055

Table 1: Control Performance

the goal is to swing up and balance an underactuated pendulum.
The cost function penalizes deviations of the pendulum from
vertical, as well as nonzero angular velocities and control
inputs. In each episode, the pendulum is initialized in a random
state and the system is simulated for 256 time steps.

We ran 50 trials with random control inputs and trained a
DVK model on the trial data with a reconstruction and predic-
tion horizon of T = H = 16. Because the original dataset did
not contain many instances where the pendulum was near the
goal state, we ran 20 additional trials where the actions were
selected through MPC optimizing for expected cost with five
sampled models. We then finetuned the DVK model on data
from these trials before carrying out the final experiments.

The results for different ensemble sizes and optimization
procedures, taken from 1000 seeded trials, can be found in
Table 1. We quantify performance according to (1) the average
cost incurred in each trial, (2) the fraction of the time the
pendulum was vertical (θ ∈ [−π/8, π/8]) across all trials, and
(3) the average number of falls per trial. A fall is classified as
a scenario where θ 6∈ [−π/8, π/8] after being in the interval
for more than 20 time steps. The best performance according
to each metric is highlighted in bold.

The results show a clear benefit from sampling more models.
The trend in performance improvement is more pronounced
for the worst-case optimization scheme; when optimizing for
expected cost we do see a benefit to sampling more models,
but with diminishing returns. The best performance is obtained

with 30 models, with the lowest average cost achieved through
a worst-case optimization procedure. However, optimizing for
expected cost leads to much better performance for smaller
model ensembles, and thus could be a preferable approach if
the goal is to obtain satisfactory performance while keeping
the number of sampled models low.

5 Conclusions
We introduced the Deep Variational Koopman model, a
method for inferring Koopman observations and sampling
ensembles of linear dynamics models that can be used for
prediction and control. We demonstrated that DVK models
were able to perform accurate, long-term prediction on a series
of benchmark tasks, and that accounting for the uncertainty
encoded by multiple sampled models improved controller per-
formance on the inverted pendulum task. Future work will
focus on applying the DVK models to higher-dimensional
problems and more complex tasks, such as fluid flow con-
trol. Source code associated with this project can be found at
https://github.com/sisl/variational_koopman.

Acknowledgments
This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program
under Grant No. DGE- 114747 and the Stanford Energy Al-
liance. The authors would like to thank Zac Manchester for
valuable feedback.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3178



References
[Abadi et al., 2015] Martın Abadi, Ashish Agarwal, Paul

Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
et al. Tensorflow: Large-scale machine learning on hetero-
geneous systems. arXiv preprint arXiv:1603.04467, 2015.

[Banijamali et al., 2018] Ershad Banijamali, Rui Shu, Mo-
hammad Ghavamzadeh, Hung Hai Bui, and Ali Ghodsi.
Robust locally-linear controllable embedding. In Interna-
tional Conference on Artificial Intelligence and Statistics,
(AISTATS), 2018.

[Brockman et al., 2016] Greg Brockman, Vicki Cheung, Lud-
wig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym. arXiv preprint
arXiv:1606.01540, 2016.

[Chua et al., 2018] Kurtland Chua, Roberto Calandra, Rowan
McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics mod-
els. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

[Fraccaro et al., 2017] Marco Fraccaro, Simon Kamronn, Ul-
rich Paquet, and Ole Winther. A disentangled recognition
and nonlinear dynamics model for unsupervised learning.
In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

[Hafner et al., 2018] Danijar Hafner, Timothy Lillicrap, Ian
Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning
from pixels. arXiv preprint arXiv:1811.04551, 2018.

[Kaiser et al., 2017] Eurika Kaiser, J Nathan Kutz, and
Steven L Brunton. Data-driven discovery of Koop-
man eigenfunctions for control. arXiv preprint
arXiv:1707.01146, 2017.

[Karl et al., 2017] Maximilian Karl, Maximilian Soelch,
Justin Bayer, and Patrick van der Smagt. Deep variational
Bayes filters: Unsupervised learning of state space models
from raw data. In International Conference on Learning
Representations (ICLR), 2017.

[Koopman, 1931] B. O. Koopman. Hamiltonian systems and
transformation in Hilbert space. Proceedings of the Na-
tional Academy of Sciences, 17(5):315–318, 1931.
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