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Abstract
With the increasing popularity of streaming ten-
sor data such as videos and audios, tensor fac-
torization and completion have attracted much at-
tention recently in this area. Existing work usu-
ally assume that streaming tensors only grow in
one mode. However, in many real-world scenar-
ios, tensors may grow in multiple modes (or dimen-
sions), i.e., multi-aspect streaming tensors. Stan-
dard streaming methods cannot directly handle this
type of data elegantly. Moreover, due to inevitable
system errors, data may be contaminated by out-
liers, which cause significant deviations from real
data values and make such research particularly
challenging. In this paper, we propose a novel
method for Outlier-Robust Multi-Aspect Streaming
Tensor Completion and Factorization (OR-MSTC),
which is a technique capable of dealing with miss-
ing values and outliers in multi-aspect streaming
tensor data. The key idea is to decompose the
tensor structure into an underlying low-rank clean
tensor and a structured-sparse error (outlier) ten-
sor, along with a weighting tensor to mask miss-
ing data. We also develop an efficient algorithm
to solve the non-convex and non-smooth optimiza-
tion problem of OR-MSTC. Experimental results
on various real-world datasets show the superiority
of the proposed method over the baselines and its
robustness against outliers.

1 Introduction
Tensors (or multi-way arrays) are higher order generalization
of vectors and matrices. They are used to model multi-modal
information in many real-world applications including rec-
ommendation systems [Karatzoglou et al., 2010], image pro-
cessing [Lahat et al., 2015], social network analysis [Ermiş et
al., 2015] and chemometrics [Mørup and Hansen, 2009]. A
fundamental challenge is how to process, analyze and utilize
such high-volume tensor data effectively and efficiently. In
order to tackle this challenge, many algorithms such as CAN-
DECOMP/PARAFAC (CP) factorization [Kolda and Bader,
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2009] and Tucker factorization [Kolda and Bader, 2009] have
been developed.

Due to the nature of data or cost of the data collection, the
data tensor may be incomplete (i.e., tensor with missing val-
ues or partially observed tensor). The problem of filling the
missing entries of incomplete tensor is called tensor comple-
tion, which has received much attention from researchers and
practitioners in many domains such as recommender systems
[Rendle et al., 2009] and image recovery [Liu et al., 2013].

(a) Single-Aspect Streaming Tensor (b) Multi-Aspect Streaming Tensor

Figure 1: Illustration of Single-Aspect Streaming Tensors (tradi-
tional settings) and Multi-Aspect Streaming Tensors (t denotes the
time-step) with missing data. The grey blocks represent the data at
the previous time steps, while green ones represent the data at cur-
rent time step. Black shapes with question marks are the missing
entries.

For many modern applications, data is collected in a
streaming fashion carrying time-varying information. For in-
stance, in restaurant recommendation system, data is natu-
rally structured as tensor with three modes (or dimensions),
and number of users and restaurants may grow as time goes.
In Facebook, users post 684,478 messages per minute. Be-
cause of increasingly massive amount of newly created data
instances in streaming setting, using static algorithms for ten-
sor completion and factorization is computationally expen-
sive from time and space complexity perspectives. Learning
latent factors in a streaming manner has benefit of avoiding ir-
relevant information and computational overhead of the long-
past data. This raises a fundamental challenge for machine
learning: how to obtain the complete tensor effectively and
efficiently given incomplete streaming tensor.

Existing work on streaming tensor completion and factor-
ization can be roughly classified into two categories: single-
aspect approach and multi-aspect approach. Single-aspect
approach [Kasai, 2016; Mardani et al., 2015] is usually based
on the assumption that the streaming tensor evolves over
one mode, while multi-aspect approach [Song et al., 2017;
Nimishakavi et al., 2018] is built upon the fact that the tensor
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data may stream across multiple modes. Figure 1 shows an
example of single-aspect and multi-aspect streaming tensors
with missing values.

Following the first assumption, single-aspect streaming
tensor completion and factorization have been extensively
studied under the CP factorization. There are many work have
been done for this track [Kasai, 2016; Mardani et al., 2015;
Zhou et al., 2016]. These approaches iteratively update the
latent factors of static modes with partial decomposition of
the incremental mode.

Different from single-aspect approach, multi-aspect
streaming tensor completion and factorization usually suffer
from a high computational and space complexity as multiple
modes evolve over time. Also, the incremental part may not
be well-structured and therefore cannot be directly factorized.
Song et al. [Song et al., 2017] proposed a method, named as
MAST, that combines dynamic CP factorization and low-rank
tensor completion to fill the missing entries of the incomplete
streaming tensor and learn its latent factors without the whole
tensor data reconstruction from scratch. MAST uses dynamic
tensor factorization to update the model with the incremental
part of multi-aspect streaming tensor sequence and track its
low-rank subspace via nuclear norm for completion purpose.
By leveraging the learned model in the previous time step,
MAST accelerates filling the missing entries, while having
comparable performance to traditional methods.

A challenging problem may arise when the incomplete ten-
sor is contaminated by outliers. Outliers can be defined as
significant deviations from real data values. Due to sen-
sor failures, malicious tampering and system errors, real-
world data can encounter outliers [Balcan and Zhang, 2016].
With outliers, although errors exist only on several parts of
data, they can adversarially affect learning from data. Ex-
isting streaming tensor completion and factorization meth-
ods concentrate only on clean multi-aspect streaming tensors
or outlier-corrupted single-aspect streaming tensors, which
leads to the problem of outlier-contaminated streaming ten-
sor completion and factorization. Hawkins et al. [Zhang
and Hawkins, 2018] developed a method, named as BRST,
for erroneous single-aspect streaming tensor via variational
Bayesian inference. BRST models the whole single-aspect
erroneous streaming tensor as the sum of a low-rank stream-
ing tensor and a time-varying sparse component. To learn
these two parts, bayesian statistical model is applied. This
model imposes low-rank and sparsity using the hyperparam-
eters and prior density functions. Then, the posterior den-
sity function of the latent factors is obtained by variational
Bayesian method.

Nonetheless, BRST cannot be directly applied to multi-
aspect erroneous streaming tensors. To handle outliers in in-
complete multi-aspect streaming tensors, we propose a novel
Outlier-Robust Multi-Aspect Streaming Tensor Completion
and Factorization (OR-MSTC) method based on CP. Differ-
ent from MAST, OR-MSTC decomposes the data tensor into
a low-rank clean tensor and an error tensor, and imposes
`2,1 on the error tensor, aiming to learn better latent factors,
while improving the robustness of completion and factoriza-
tion against outliers. A clean tensor is the low-rank tensor
without outlier for an outliers-corrupted tensor.

Symbol Definition and description

[1 : M ] set of integers in range of 1 toM inclusively
x lowercase letter represents a scale
x boldface lowercase letter represents a vector
X boldface uppercase letter represents a matrix
X ∈ RI1×...×IN each calligraphic letter represents a tensor
〈·, ·〉 inner product
◦ tensor product (outer product)
∗ Hadamard (element-wise) product
� Khatri-Rao product
X(n) An(AN � ...An+1�An−1...�A1)

>

(Ak)
�k 6=n AN � ...�An+1 �An−1 � ...�A1

(Ak)
∗k 6=n AN ∗ ... ∗An+1 ∗An−1 ∗ ... ∗A1

(an)in ithn row of An

|·| denotes absolute value
‖X‖F =

√∑
i,j,k |xi,j,k|2 (Frobenius) norm of a 3rd order tensor

‖X‖2,1 =
∑
j ||X (: j, :)||F `2,1 norm of a 3rd order tensor

‖X‖∗ sum of the singular values of X
‖X‖∗ convex envelop of tensor avg. rank within

unit ball

Table 1: List of basic symbols

The error tensor captures the outliers in the tensor data,
while the clean low-rank tensor encodes the underlying low-
rank structure of the streaming tensor data. Without loss of
generality, we assume that outliers are distributed on the 2nd

mode of the tensor. We can hence use `2,1 to characterize
this sparsity property. The proposed OR-MSTC method im-
poses `2,1 norm on error tensor. The decomposition into two
parts and applying `2,1 norm make the corresponding objec-
tive function of the proposed OR-MSTC method challenging
to optimize. We present a new efficient optimization algo-
rithm based on Alternating Direction Method of Multipliers
(ADMM) [Boyd et al., 2011] to solve it. Our main contribu-
tions can be summarized as follows:

• To the best of our knowledge, OR-MSTC is the first
work that recovers clean tensor under low-rank sub-
space, while capturing outliers for outlier-contaminated
multi-aspect streaming tensors.

• OR-MSTC is the first method based on CP factorization
that isolates the clean low-rank tensor from outliers for
an outlier-corrupted multi-aspect streaming tensors.

• We propose a new efficient optimization algorithm based
on ADMM to solve the objective function.

• Through extensive experiments on real-world datasets,
we show that OR-MSTC is superior to several state-of-
the-art methods in tensor completion and factorization
and robust against outliers.

2 Outlier-Robust Multi-Aspect Streaming
Tensor Completion and Factorization

We begin with some necessary notations and concepts of ten-
sor algebra. Table 1 lists basic symbols that will be used
throughout the paper. Specifically, an element of a vector x,
a matrix X, or a tensor X is denoted by xi, xi,j , xi,j,k etc.,
depending on the number of modes.

Given an N th order tensor X ∈ RI1×I2×···×IN and an in-
teger R (rank), the CP factorization is defined by latent factor
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matrices Xn ∈ RIn×R for n ∈ [1 : N ], respectively, such
that X =

∑R
r=1 x

r
1 ◦ xr2 ◦ · · · ◦ xrN = JX1,X2, · · · ,XN K,

where xrn ∈ RIn is the rth column of the latent factor ma-
trix Xn, and J·K is used for shorthand notation of the sum of
rank-one tensors. For convenience, in the following, we write
x1 ◦ x2 ◦ · · · ◦ xN as

∏N
n=1 ◦xn.

We will first systematically propose a novel outlier-robust
streaming tensor completion and factorization method, fol-
lowed by a new efficient iterative algorithm to solve the for-
mulated objective function.

Given a multi-aspect streaming N th order tensor X ∈
RI1×I2×···×IN with missing entries and possibly outliers,
where X (t) is the snapshot of the tensor at time-step t and
for any t ∈ Z+, X (t−1) is a sub-tensor of X (t), the goal is to
recover the missing and corrupted entries, and learn its latent
factors.

2.1 Outlier-Robust Low-Rank Tensor Completion
The low-rank tensor completion aims at learning the low-rank
complete tensor given an incomplete tensor, can be formu-
lated as a rank-minimization problem as follows:

min
X c

rank(X c) s.t. Ω ∗ X c = X (1)

where X c ∈ RI1×I2×···×IN denotes the complete low-rank
tensor, X indicates the incomplete tensor which is a partial
observations of X c. Ω is a binary tensor with the same size as
X c whose entries indicate whether each corresponding entry
in X c is observed or not, where ωi1,··· ,iN = 1 if xci1,··· ,iN is
observed and ωi1,··· ,iN = 0 otherwise. ∗ denotes the element-
wise product. Since rank(X c) is non-convex, the objective
function in Eq. (1) is an NP-hard problem [Håstad, 1990].
One way is to replace rank(X c) with the summation of the
nuclear norm of its factorized matrices and factorization error
as follows [Liu et al., 2013]:

min
X c,A1,...,AN

‖X c − JA1, ...,AN K‖2F +
N∑
n=1

αn ‖An‖∗ (2)

s.t. Ω ∗ X c = X

where αn are hyperparameters that balance impact of each
mode.
X c might be also erroneous so that some of its entries are

perturbed. As shown in Figure 2, we assume that the com-
plete N th order tensor X c is a mixture of clean low-rank ten-
sor L and error tensor E that captures sparse outliers in X c.
For example, in network traffic, the clean low-rank tensor is
the usual traffic flow and outliers are anomalies [Zhang and
Hawkins, 2018]. This decomposition technique is called low-
rank tensor decomposition and is formulated as X c = L+ E .

Without loss of generality, our assumption is that outliers
are distributed on 2nd dimension of tensor X c (and thus X )
and they are very sparse in comparison to the data size. We
can thus impose `2,1 on the error tensor to characterize this
sparsity property, which is defined as ‖E‖2,1. Our proposed
method can be easily extended to deal with multi-way out-
liers. Specially, similar to 2nd mode, we can make similar

consideration and formulation for other modes. It can be seen
that the sparsity-inducing property of `2,1-norm pushes E to
be sparse in each slice along 2nd mode. More specifically,
2nd mode shrinks to zero if the corresponding entries belongs
to outliers. Using this decomposition, tensor completion is
a rank minimization problem that can be approximated us-
ing tensor nuclear norm. The objective function for low-rank
clean tensor decomposition can be stated as follows:

min
L,E
‖L‖∗ + λ ‖E‖2,1 s.t. X c = L+ E (3)

where ‖L‖∗ is the convex envelop of the tensor average rank
within the unit ball [Lu et al., 2016] and λ is the hyperparam-
eter to balance impact of the error tensor.

Figure 2: Low-rank decomposition of error-corrupted tensor, where
error could exhibit as outliers, into the clean low-rank tensor and
error tensor.

By replacing tensor nuclear norm minimization with Eq.
(2), Eq. (3) can be written as follows:

min
X c,E,A1,...,AN

‖X c − E − JA1, ...,AN K‖2F +
N∑
n=1

αn ‖An‖∗

+λ ‖E‖2,1 s.t. Ω ∗ X c = X (4)

We refer to the above loss as LORLTC . Due to outliers and
missing entries in X , latent factors A1,A2, ..., and AN may
not be exact. Thus, instead of using binary tensor Ω in Eq.
(2), we define weighting tensorW with the same size as X c
and follow an iterative approach to obtain better latent factors
by taking incomplete nature of data into account as follows:

wi1,...,iN =

{
0 if Ωi1,...,iN = 0,

val otherwise
(5)

The weighting tensorW represents the reliability of the en-
tries in tensorX . If a tensor entry is not missing, we set initial
weight to not be 0. because that entry might be contaminated
by outlier, which is set to 0.001 in our experiments. Other-
wise, the weight of entry is set to be 0 as missing entry is not
reliable. Having latent factors A1,A2, ..., and AN , the goal
is to keep the most reliable entries in X , while iteratively up-
dating those that have very low reliability. Inspired by [Shao
et al., 2015], we useW to update X c as follows:

X c =W ∗X c + (1−W) ∗ X̂ c s.t. X̂ c = JA1, ...,AN K (6)
where 1 is a tensor with all ones. As the iteration goes up,
more weight is assigned to less reliable entries. We then re-
vise the weight tensor at the end of each iteration as follows:

W = 1− (β × (1−W)) (7)
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Algorithm 1 Outlier-Robust Streaming Tensor Completion
and Factorization (OR-MSTC)
Input: X , Ω
Parameter: {Ãn}Nn=1, R, {αn}Nn=1, β, µ, λ, η, ηmax, ρ, tol
Output: X c, {An}Nn=1, E

1: A
(0)
n = Ãn, A(1)

n = rand(dn, R), Zn = Yn = 0 where
dn denotes the size of incremental part in mode n

2: repeat
3: η = min(η ∗ ρ, ηmax)
4: for n = 1 to N do
5: Update A

(0)
n and A

(1)
n using Eq. (13)

6: end for
7: Update X c using Eq. (6)
8: UpdateW using Eq. (7)
9: Update E = prox l21λ(JA1, ...,AN K−X c)

10: for n = 1 to N do
11: Yn = Yn + η(Zn −An)
12: Zn = SV Tαn

η
(An − Yn

η )

13: end for
14: until ‖

X cpre−X
c‖
F

‖X cpre‖F
< tol

where β is a decay parameter, which we fix to 0.97 in our
experiments. As the number of iterations increases, W con-
verges to 1. The resulted objective function can be formulated
as minX c,E,A1,...,AN

LORLTC , where X c is updated using
Eqs. (6) and (7).

2.2 Dynamic CP Factorization
In streaming settings, a dynamic CP method obtains latent
factors in an efficient and effective fashion. We use X̃ and X
to represent two consecutive snapshots X (t−1) (tensor at time
step t− 1) and X (t) (tensor at time step t) such that X̃ ( X .
The general CP factorization objective function for tensor X
is defined as minA1,...,AN

‖X − JA1,A2, ...,AN K‖2F .

Figure 3: Subtensors created by partitioning of incremental part (su-
perscript tuples with the same size as N are used to refer to the
subtensors of N th order X ).

In CP factorization for X̃ , we have X̃ ≈ JÃ1, Ã2, ..., ÃN K
(Ã1, Ã2, ..., and ÃN denote latent factors for the former
snapshot). We take advantage of former snapshot latent fac-
tors to learn latent factors for X by incorporating X̃ into CP
factorization of X . This in fact accelerates factorization of
current snapshot. Dynamic CP factorization for X can be
hence rewritten as summation of two terms: factorization re-
lated to former snapshot and factorization for the incremental

part i.e., part in snapshot at time step t that didn’t exist in
snapshot at time step t − 1. The resulted objective function
for X can be stated as follows (θ indicates entries of the in-
cremental part):

min
A1,...,AN

∥∥∥X̃ − JA(0)
1 , ...,A

(0)
N K
∥∥∥2
F

(8)

+
∑

i1,i2,...,iN /∈θ

(‖Xi1,...,iN − J(a1)i1 , ..., (aN )iN K‖2F )

where A>n = [A
(0)
n

>
,A

(1)
n

>
]. Let dn denote increment along

nth mode at time step t in comparison to time step t − 1.
A

(0)
n ∈ R(In−dn)×R refers to partition of the latent factor

w.r.t. tensor snapshot at time step t − 1 in the tensor snap-
shot at time step t, while A

(1)
n ∈ Rdn×R is for incremental

part. Using CP factorization for X̃ in Eq. (8) results in the
following objective function:

min
A1,...,AN

µ
∥∥∥JÃ1, Ã2, ..., ÃN K− JA(0)

1 , ...,A
(0)
N K
∥∥∥2
F

(9)

+
∑

i1,i2,...,iN /∈θ

(‖Xi1,...,iN − J(a1)i1 , ..., (aN )iN K‖2F )

where µ ∈ [0, 1] is a forgetting factor to control trade-off
between previous and current factorizations for time step t−
1. As shown in Figure 3, second term can be defined as a
summation of CP factorization for a set of sub-tensors [Song
et al., 2017].

2.3 Problem Formulation
We combine outlier-robust low-rank tensor completion and
dynamic CP factorization as follows:

min
X c,E,A1,...,AN

µ
∥∥∥JÃ1, ..., ÃN K− JA(0)

1 , ...,A
(0)
N K
∥∥∥2
F

(10)

+
∑

i1,i2,...,iN /∈θ

(‖(Xc −E)i1,...,iN − J(a1)i1 , ..., (aN )iN K‖2F

+
N∑
n=1

αn ‖An‖∗ + λ ‖E‖2,1 = min
X c,E,A1,...,AN

LORDLTC

where X c is updated using Eqs. (6) and (7). In the second
term, we use X c − E as substitution of X .

2.4 Optimization Procedure

Using ADMM, by inducing Z>n = [Z
(0)
n

>
,Z

(1)
n

>
] ∈ RIn×R

and Lagrange multipliers Y>n = [Y
(0)
n

>
,Y

(1)
n

>
] ∈ RIn×R,

the augmented Lagrangian function for Eq. (10) is as follows:

min
X c,E,{An},{Zn},{Yn}

LORDLTC +

N∑
n=1

(αn ‖Zn‖∗ (11)

+〈Yn,Zn −An〉+
η

2
‖Zn −An‖2F ) s.t. Zn = An
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(a) NT-M10-E10 (b) NT-M10-E20 (c) NT-M20-E10

(d) NT-M20-E20

Figure 4: Performance of the methods, where MX denotes missing percentage = X% and EX indicates outlier percentage =X%. For example,
NT-M10-E20 denotes network traffic dataset with missing percentage 10% and outlier percentage 20%.

Dataset CMRI Yelp Network Traffic
Missing 10% 20% 10% 20% 10% 20%
Outlier 10% 20% 10% 20% 10% 20% 10% 20% 10% 20% 10% 20%

Static
CP-ALS 6.74 11.29 6.79 12.80 661.41 567.05 604.09 790.00 1.26 1.37 1.25 1.23

Tucker-ALS 0.21 0.21 0.23 0.27 107.61 150.78 274.76 332.87 2.99 2.46 5.03 3.90
NNCP 2.12 4.23 2.50 4.54 273.70 309.40 327.18 457.00 4.81 2.62 3.65 1.96

Dynamic

OLSTEC 1.20 1.06 1.10 1.08 0.11 0.38 0.13 0.65 0.18 0.20 0.19 0.29
TeCPSGD 0.72 0.92 0.95 0.87 0.06 0.22 0.09 0.43 0.24 0.22 0.23 0.38

MAST 0.46 0.32 0.43 0.51 17.21 20.00 16.95 23.00 0.60 0.60 1.26 0.72
BRST 3.04 2.47 3.04 2.62 NA NA NA NA 10.76 11.12 9.03 6.69

OR-MSTC 0.20 0.20 0.19 0.23 21.01 20.00 25.01 22.00 0.40 0.34 0.82 0.33

Table 2: Average running time of different methods on the datasets

where η is penalty parameter and X c is updated by Eqs. (6)
and (7). Let P1,P2,P3 denote the following (L = X c − E):

P1 = Ãn[(Ãk
>
A

(0)
k )∗k 6=n],P3 =

∑
i∈S0

n

(L)i(n)((ak)ik)�k 6=n

P2 = (A
(0)
k

>
A

(0)
k + A

(1)
k

>
A

(1)
k )∗k 6=n (12)

The update rules for A(0)
n and A

(1)
n are as follows:

A(0)
n =

µP1 + ηZ
(0)
n + Y

(0)
n + P3

P2 − (1− µ)(A
(0)
k

>
A

(0)
k )∗k 6=n + ηIR

(13)

A(1)
n =

∑
i∈S1

n
(L)i(n)((ak)ik)�k 6=n + ηZ

(1)
n + Y

(1)
n

P2 + ηIR

where S0
n = {(s1, ..., sN )|

∑N
k=1 sk 6= 0, sk ∈ {0, 1}, sn =

0} and S1
n = {(s1, ..., sN )|∀k ∈ [1, ..., N ], sk ∈ {0, 1}, sn =

1} are sets of tuples to refer to subtensors. Zn can be
updated as Zn = SV Tαn

η
(An − Yn

η ), n = 1, 2, ..., N ,
where SV Tαn

η
is the singular value thresholding operator

defined as SV Tω(A) = U(diag{σi − ω})+V>, where
U(diag{σi})1<=i<=rV

> is the singular value decomposi-
tion of A. X+ = max{X, 0}, where max{., .} is an
element-wise operator. The update rule for E can be stated
as E = prox l21λ(JA1, ...,AN K − X c) for incremental part.
For 3rd order tensor R, prox l21λ(R) approximates Ri =
||Ri||F−λ
||Ri||F R

i , if ||Ri||F > λ; 0, otherwise (Ri = R(:, i, :)).
The framework of OR-MSTC is summarized in Algorithm
1. The convergence condition is that the relative changing
of tensor X c in two consecutive iterations is smaller than the
tolerance.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3191



(a) CMRI-M10-E10 (b) CMRI-M10-E20 (c) CMRI-M20-E10

(d) CMRI-M20-E20 (e) Yelp-M10-E10 (f) Yelp-M10-E20

(g) Yelp-M20-E10 (h) Yelp-M20-E20

Figure 5: Performance of the methods, where MX denotes missing percentage = X% and EX indicates outlier percentage =X%.

3 Experimental Evaluation
To evaluate the performance of the proposed OR-MSTC
method, we conduct experiments on real-world datasets and
compare with the following seven baselines: (1) Static
NNCP is based on trace norm constrains and optimized by
ADMM [Liu et al., 2015]. (2) Static CP-ALS employs
CP factorization and optimized by Alternating Least Square
(ALS) [Bro, 1998]. (3) Static Tucker-ALS is based on tucker
factorization and optimized by ALS [Comon et al., 2009].
For all static baselines, the former-step factors is given as the
initialization for the current step to improve learning. (4) OL-
STEC is a single-aspect streaming tensor completion method
optimized by ALS [Kasai, 2016]. (5) TeCPSGD that is pi-
oneering CP factorization work for single-aspect streaming
tensor completion and optimized by stochastic gradient de-
scent [Mardani et al., 2015]. (6) MAST is a multi-aspect

streaming tensor completion approach that assumes no error
in the data [Song et al., 2017]. (7) BRST is a error-robust
single-aspect streaming tensor completion approach based on
bayesian inference [Zhang and Hawkins, 2018].

Similar to [Song et al., 2017], in order to apply single-
aspect streaming tensor methods on multi-aspect streaming
tensor, we divide the multi-aspect incremental parts into sev-
eral single-aspect streaming ones and update them in random
order in each iteration until convergence.

We apply grid search to identify optimal values for each
hyperparameter from {10−9, 10−8, ..., 108, 109}. The toler-
ance rate is set to 10−4, the maximum number of iterations
to 500 for all the methods. The rank is tuned using 10 ranks
varying from 5 to 40 based on relative error which we define
later. In OR-MSTC and MAST, αn = 1

10N , n = 1, ..., N ,
η = 10−4, ρ = 1.05 and ηmax = 106. We tuned forgetting
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CMRI Yelp Network Traffic
Modes pixel, pixel, time user, business, time node, node, time

Stream Type Single-Aspect Multi-Aspect Single-Aspect
Tensor Size 128× 128× 35 820× 820× 82 11× 11× 110

Starting Size 128× 128× 5 20× 20× 2 11× 11× 10
Inc. Step 0, 0, 1 20, 20, 2 0, 0, 1

Table 3: Summary of datasets used in the paper

factor µ in our method and MAST based on the missing per-
centage. Following [Song et al., 2017], the initial completion
and warm start matrices are calculated using NNCP method.
We use Relative Error (RE) as performance evaluation met-
ric, which is defined as follows:

RE =
‖reconstructed tensor − real tensor‖2

‖real tensor‖2
(14)

where reconstructed tensor denotes the output complete
tensor produced by the methods and real tensor indicates
the true data tensor (i.e., ground truth). RE measures the de-
viation from the ground truth. The efficiency is measured by
Average Running Time (ART) and defined as 1

T

∑T
t=1RTt,

where RTt is the running time at time step t. Each experi-
ment is repeated for 5 times, and mean of the metric in each
dataset is reported. The datasets used in the paper are Cardiac
MRI (CMRI) [Sharif and Bresler, 2007], downsampled Yelp
[Jeon et al., 2016] and Network Traffic (NT) [Lakhina et al.,
2004], and summarized in Table 3. Following [Song et al.,
2017], we randomly cover a percentage of data (missing per-
centage) ({10%, 20%}) and consider the remaining entries as
observed information. We generate outliers on 2nd mode with
mean of 1st slice of tensor data, magnitude of 5, variance of
0 and outlier percentage of {10%, 20%}.

Figure 4 and 5 show performance of the methods with var-
ious missing and outlier percentages. We don’t report results
for BRST on Yelp and NT as its RE is very large in com-
parison to the proposed OR-MSTC method and other base-
lines. On all datasets, OR-MSTC outperforms the dynamic
baselines, especially BRST, error-robust streaming scheme,
with varying percentages of missing entries and outliers. On
CMRI and Yelp, OR-MSTC is significantly better than dy-
namic baselines (in average at least 0.4 less). In Yelp, num-
ber of businesses consistently increases as time evolves. This
pattern reduces the quantity of substitution on corrupted and
missing entries and results in noticeable improvement in per-
formance of the proposed method. On NT, OR-MSTC al-
ways obtains nearly perfect result. The proposed OR-MSTC
method shows strong stability in performance on all datasets
as time goes. On Yelp, MAST, TeCPSGD and static methods
suffer from high instability in performance. This is because
incremental part at first 15 time steps contains high number
of outlier and missing entries, and they account for most of
relative errors in baselines. For various ratios of missing en-
tries and outliers, OR-MSTC outperforms static baselines. In
Table 2, OR-MSTC’s ART is far better than previous error
robust streaming scheme (BRST), but not necessarily better
than the other streaming baselines.

On CMRI, performance of all methods is unaffected by
varying ratio of missing data with the same outliers, while this
observation is not true on varying ratios of outliers with the

same missing data. Nevertheless, the proposed OR-MSTC
method is more effective and robust with different ratios of
missing data and outliers. Yelp is sparse in comparison to
CMRI, and adding outliers and missing data does not there-
fore affect the dataset a lot. As ratio of missing data in-
creases, performance of all methods decreases, but this drop
is not high. Compared to baselines, the proposed OR-MSTC
method shows stable performance. On NT, TeCPSGD and
OLSTEC have large variation and drop in performance with
increase in ratio of outliers and missing data compared to our
method. They thus don’t identify anomalies in network well.

4 Conclusion
We developed a method named OR-MSTC for multi-aspect
streaming tensor completion and factorization. OR-MSTC
has several advantages over existing streaming tensor com-
pletion and factorization methods. First, it effectively cap-
tures low-rank subspace of multi-aspect streaming tensor for
completion and factorization tasks. Second, it handles out-
liers well. Third, iterative scalable optimization framework
is proposed for OR-MSTC. Compared to existing stream-
ing tensor completion and factorization methods, OR-MSTC
showed better performance on three datasets.
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