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Abstract
Group LASSO is a widely used regularization that
imposes sparsity considering groups of covariates.
When used in Multi-Task Learning (MTL) formu-
lations, it makes an underlying assumption that if
one group of covariates is not relevant for one or a
few tasks, it is also not relevant for all tasks, thus
implicitly assuming that all tasks are related. This
implication can easily lead to negative transfer if
this assumption does not hold for all tasks. Since
for most practical applications we hardly know a
priori how the tasks are related, several approaches
have been conceived in the literature to (i) prop-
erly capture the transference structure, (ii) improve
interpretability of the tasks interplay, and (iii) pe-
nalize potential negative transfer. Recently, the
automatic estimation of asymmetric structures in-
side the learning process was capable of effectively
avoiding negative transfer. Our proposal is the
first attempt in the literature to conceive a Group
LASSO with asymmetric transference formulation,
looking for the best of both worlds in a framework
that admits the overlap of groups. The resulting op-
timization problem is solved by an alternating pro-
cedure with fast methods. We performed experi-
ments using synthetic and real datasets to compare
our proposal with state-of-the-art approaches, evi-
dencing the promising predictive performance and
distinguished interpretability of our proposal. The
real case study involves the prediction of cognitive
scores for Alzheimer’s disease progression assess-
ment. The source codes are available at GitHub.

1 Introduction
Multi-task learning (MTL) deals with the problem of learn-
ing multiple related tasks simultaneously in such a way that
similar tasks can share information with each other. By using
this interplay between tasks we can improve the overall per-
formance of learning models [Caruana, 1997; Baxter, 1997;
Thrun and O’Sullivan, 1996].

In real world scenarios where the tasks present groups of
coupled features, the Group LASSO regularization has been
widely used to encourage group sparsity across tasks [Liu et

al., 2009; Wang et al., 2012; Liu et al., 2018]. The drawback
so far is that these methods do not estimate a transference
structure among tasks, using regularization techniques to en-
force a priori knowledge into the transference scheme.

In the structure estimation literature, several proposals to
capture the tasks interplay have been presented: estimating a
transference structure imposing a shared prior over the pre-
cision matrix of tasks parameters [Zhang and Yeung, 2010;
Gonçalves et al., 2016]; clustering/grouping tasks in a space
[Kumar and Daumé, 2012]; using local learning methods in
a k-nearest-neighbor fashion [Zhang, 2013]; and sharing in-
formation regarding tasks losses [Lee et al., 2016]. These
structure estimation mechanisms in MTL have not only im-
proved the overall performance on individual tasks, but the
estimated task relationship has also proven to be helpful on
the comprehension of underlying processes expressed in the
data. Despite estimating a transference structure, these meth-
ods learn a symmetric task relationship structure, imposing
the amount of information transferred from task A to B to be
equal to that transferred from task B to A, which might not be
a valid assumption. It is also likely that two tasks might only
be related at a particular group of covariates and completely
unrelated at other groups.

In an attempt to acquire the best from those formulations,
more specifically: (i) properly capture the task transference
structure, (ii) account for different task relations for each
group of covariates, and (iii) promote asymmetric sharing be-
tween tasks; our proposal is the first initiative in the litera-
ture to conceive a Group LASSO formulation for MTL with
an asymmetric structure estimation. A relationship matrix is
learned for each group of covariates, allowing a more flexible
and possibly more realistic model.

2 Related Work
The Group LASSO regularization (standard and latent ver-
sions [Yuan and Lin, 2006; Jacob et al., 2009]) was proposed
to allow sparse solutions for applications where the feature
set is composed of grouped features. For instance, suppose
we want to map a brain imaging dataset to some condition, a
classification task indicating if the condition is present or not.
We also know that features representing nearby areas of the
brain are related and can be tagged into Regions of Interest
(ROI). Group LASSO allows us to embody this information
inside the model by treating each ROI as a group of features.
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In MTL literature, several approaches have employed
Group LASSO as a way to deal with grouped features. [Liu et
al., 2009] proposed a model that encourages group-structured
sparsity across all tasks, exploring potential parameter cou-
pling between tasks. Extending [Liu et al., 2009], [Wang et
al., 2012] also enforces sparsity within each group. MT-SGL
[Liu et al., 2018] uses a group-based approach as in [Wang et
al., 2012] but decoupling the tasks and encouraging sparsity
in a feature level across all tasks. In other words, each task is
free to find its own sparsity pattern at a group level, but each
feature is coupled among all tasks.

Other methods do not consider group information but es-
timate a structure that relates tasks to each other. MTRL
[Zhang and Yeung, 2010] propose a convex formulation in
which a matrix-variate prior distribution is placed on the task
coefficients to model task relationship. In [Gonçalves et al.,
2016] a sparse precision matrix is learned from the data to
capture tasks relationship and help to isolate unrelated tasks.
A LASSO penalty is also applied to task parameters for au-
tomatic feature selection. The model uses a semi-parametric
Copula distribution as prior for the tasks parameter matrix,
thus also capturing non-linear correlation among tasks.

Another direction is to model transference among tasks us-
ing a latent basis, where each task is represented by a lin-
ear combination of the basis vectors. In MTFL [Kang et al.,
2011], tasks are grouped into a pre-defined number of dis-
joint groups and each feature is coupled with all tasks of the
same group using an l(2,1)-norm [Argyriou et al., 2008]. Both
[Kumar and Daumé, 2012] and [Kang et al., 2011] recover
a latent basis with no direct interpretation. AMTL [Lee et
al., 2016] estimates an asymmetric transference matrix where
more confident tasks may transfer more information to less
confident ones than the converse.

We propose a Group LASSO formulation for MTL that es-
timates an asymmetric transference structure at a group level:
for each group of features, we learn an asymmetric task re-
lationship matrix. Considering that tasks may relate to each
other in different ways for different groups, our model brings
more flexibility than the presented methods that can estimate
a transference structure. Compared to other Group LASSO
models for MTL, we explicitly learn the relationship of the
tasks without any strong assumption.

Notation: Matrices are represented using uppercase letters,
while scalars are represented by lowercase letters. Vectors
are lowercase in bold. For any matrix A, aī is the i-th row
of A, and aj is the j-th column. Also, aij is the scalar at
row i and column j of A. The i-th element of any vector a is
represented by (a)i. In is the identity matrix of size n × n.
For any two vectors x,y the Hadamard product is denoted by
(x� y)i = (x)i(y)i.

3 The GAMTL Formulation
The Group Asymmetric Multi-Task Learning (GAMTL) for-
mulation is presented in what follows. Let T be the number
of tasks and T = {1, · · · , T} the set of task indices. For each
task t, the data consists of the design matrixXt ∈ Rmt×n and
the vector of labels yt ∈ Rmt . Let G = {1, · · · , G} be the
set of groups. A group g ∈ G defined as g ⊆ {1, · · · , n} is

a group of covariates of Xt, ∀t ∈ T , with cardinality |g| con-
taining related covariates that should be penalized together.
As an example, consider again the case where our dataset is
composed of brain images annotated with Regions Of Inter-
est. Each feature could be a pixel in the image, and a group
of covariates contains several pixels of the same ROI.

Let W ∈ Rn×T be the parameter matrix, where each col-
umn wt represents the parameters of task t. W g ∈ Rn×T
is the parameter matrix restricted to group g, where (wg)i =
(w)i when i ∈ g, and (wg)i = 0 otherwise. When the groups
overlap, we assume that the adequate columns of Xt are du-
plicated, and W is set accordingly [Jacob et al., 2009].

To model the relationship among tasks in an explainable
manner, we assume that the parameters of task t can be rep-
resented by a sparse linear combination of the parameters of
the other tasks, considering each group of attributes indepen-
dently, i. e., wg

t ≈ W gbgt , ∀g. Let Bg ∈ RT×T be the re-
lationship matrix of group g, where bgij represents how much
task i contributes to task j in group g. A column bgi indi-
cates how much all tasks contribute to task i, while a row bg

ī
indicates how much task i contributes to all other tasks. Let
L : Rn → R be a suitable task specific convex loss function,
e.g., squared loss for regression or logistic loss for classifi-
cation, the optimization problem associated with GAMTL is:

min
W,Bg

∑
t∈T

1

mt
(1 + λ1

∑
g∈G
‖bgt̄ ‖1)L(wt)+

λ2

2
‖wt −

∑
g∈G

W gbgt ‖22 + λ3

∑
g∈G

dg‖wg
t ‖2

subject to wt =
∑
g∈G

wg
t

bgt ≥ 0, ∀g ∈ G and t ∈ T

(1)

where λ1, λ2, and λ3 are regularization hyper-parameters.
The normalizing factor 1

mt
avoids that tasks with a large num-

ber of samples dominate the entire cost function. dg is usually
set to

√
|g| to account for group sizes in the overall function.

The first term of Eq. (1) considers the loss function and
uses it to weight all transferences from t to other tasks (row t
of Bg). It learns the task parameters while avoiding transfer-
ence from tasks with a higher cost to tasks with lower cost.
The l1 penalization in each row of Bg enforces a sparse sub-
set of tasks on the combination. The loss also strengthens
this penalization: the higher the loss of a task, the higher the
penalization. The second term enforces the transference be-
tween tasks at the group level. This is achieved by penalizing
the Euclidean distance between a task parameter vector and
its estimate given by the linear combination of the parameters
of the other tasks. The third term and the constraint on wt

account for the latent Group LASSO regularization [Jacob et
al., 2009]. The second restriction ensures that all values in
our transference structure are positive. Figure (1) shows the
structural configuration of the model parameters, which will
be estimated from data (X, y) from all T tasks.

Problem (1) integrates our goals into one formulation: es-
timating task parameters with a transference structure among

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3203



Figure 1: Tasks data input (covariates/labels for each task, and group
information), and GAMTL model parameters (W and Bg∀g ∈ G).

all tasks, at the group level. Considering the simultaneous ad-
justment of all parameters, the problem is not jointly convex.
However, when optimizing (1) in terms of wt, while holding
bgt fixed, and vice versa, the overall non-convex problem be-
comes two easier-to-handle convex problems. The resulting
problems are solved in an alternating optimization manner in
wt and bgt , ∀g ∈ G, t ∈ T . The complete process is pre-
sented in Algorithm (1).

When λ1 = 0, λ2 = 0, and λ3 = 0, independent Sin-
gle Task Learning (STL) linear models are recovered. If only
λ3 6= 0 we still have independent linear models per task but
with Group LASSO regularization active. When λ2 6= 0
transference between tasks will occur, with λ1 controlling the
sparsity of the transference. Eq. (1) allows two variants: with
and without the second constraint. Restricting or not the val-
ues of Bg will depend on the application and on the meaning
of a task being negatively related with other tasks. Compared
to other MTL algorithms such as MTFL, MTRL, and AMTL,
GAMTL has only one additional parameter while providing
an explainable transference structure for each group.

Algorithm 1 GAMTL

1: Initialize W ∼ N (0, I|T |) and set Bg = 0, ∀g ∈ G
2: while convergence not reached do
3: for t = 1, · · · , T do
4: wt ← argmin

wt

Eq. 2

5: end for
6: for t = 1, · · · , T do
7: for g ∈ G do
8: bgt ← argmin

bg
t

Eq. 4

9: end for
10: end for
11: end while

3.1 Solving for wt

Isolating Eq. (1) in terms of wt, t = 1, 2, · · · , T , we have:

min
wt

1

mt
(1+λ1

∑
g∈G
‖bgt̄ ‖1)L(wt)+

λ2

2
‖wt−

∑
g∈G

W gbgt ‖22

+
λ2

2

∑
s∈T \t

‖w̃s−
∑
g∈G

wg
t b
g
ts‖22+λ3

∑
g∈G

dg‖wg
t ‖2,

(2)

where

w̃s = ws −
∑

u∈T \{s,t}

∑
g∈G

wg
ub
g
us.

To solve Eq. (2) we use the accelerated proximal method
FISTA [Beck and Teboulle, 2009]. We decompose our objec-
tive function into f : Rn → R and h : Rn → R ∪ {∞}, both
closed proper convex functions, f being L-Lipschitz contin-
uous while h being non-differentiable:

f(wt) =
1

mt
(1 + λ1

∑
g∈G
‖bgt̄ ‖1)L(wt)

+
λ2

2
‖wt −

∑
g∈G

W gbgt ‖22 +
λ2

2

∑
s∈T \t

‖w̃s −
∑
g∈G

wg
t b
g
ts‖22.

(3)

Function h is the group LASSO regularization

h(wt) = λ3

∑
g∈G

dg‖wg
t ‖2.

The proximal operator for the group LASSO regularization is

proxλh(w
g) =

{∑
g∈G w

g (‖wg‖2−dg)
‖wg‖2 ‖wg‖2 ≥ λdg

0 otherwise.

We estimate the L constant with a backtracking procedure.

3.2 Solving for bg
t

Since a task cannot be represented by itself, bgtt = 0. Isolat-
ing Eq. (1) in terms of bgt , let w̃t = wt −

∑
g̃ ∈ G\g W

g̃ bg̃t ,

and letW
g
= [wg

1/L(w1), · · · ,wg
T /L(wT )]. The resulting

problem is:

min
bg

t

1

2
‖w̃t −W

g
bgt ‖22 +

λ1

λ2
‖bgt ‖1

subject to bgt ≥ 0, ∀g ∈ G and t ∈ T .
(4)

This problem is similar to the Adaptive LASSO [Zou,
2006]. Without the constraints in Eq. (4), it can be solved us-
ing any standard method for LASSO. Here we will derive the
case where the constraints are required, using the Alternat-
ing Direction Method of Multipliers (ADMM) [Boyd et al.,
2011]. In the ADMM framework, the inequality constraint
can be transformed by means of an indicator function:

min f(x) + h1(z1) + h2(z2)

subject to x = z1

x = z2

(5)
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where h1 = h, and h2(z2) is defined as

h2(z2) = 1R+
(z2) =

{
0 , z2 ≥ 0

+∞ , otherwise.

The augmented Lagrangian of Formulation (5) is then,
Lρ1,ρ2 = Lρ1,ρ2(x, z1, z2,u1,u2):

Lρ1,ρ2 =f(x) + h1(z1) + h2(z2)

+
ρ1

2

(
‖x− z1 + u1‖22 − ‖u1‖22

)
+
ρ2

2

(
‖x− z2 + u2‖22 − ‖u2‖22

)
The ADMM updating steps are:

zk+1
i := argmin

zi

(
hi(zi)+

ρi
2
‖xk−zi+uki ‖22

)
, i = {1, 2}

xk+1 := argmin
x

f(x)+ 2∑
j=1

ρj
2
‖x−zk+1

j +uki ‖22


uk+1
i := uki+xk+1−zk+1

i , i = {1, 2}

Notice that the two steps in zi-update are executed in par-
allel. The same occurs for ui. The zi-update steps are
solved by the proximal operators: soft-thresholding, Sκ(a) =
(1 − κ/|a|)+a; and projection onto the non-negative orthant
R+, S(a) = (a)+ = max(0,a). The x-update step is a con-
vex problem with a differentiable function f plus quadratic
terms, which can be solved in closed-form via Cholesky de-
composition or by any gradient-based method. The Python
code associated with GAMTL is available online 1.

3.3 Complexity Analysis
The complexity of an iteration of GAMTL is driven by the
steps 4 and 8 of the Algorithm (1), which involve a FISTA
and an ADMM execution, respectively.

For step 4, we compute ∇f and proxλg . The overall cost
of the proximal operator is G[gmax]2n, where gmax is the
size of the largest group; and to compute the derivative of
Eq. 3 we need T 2Ggmax flops. Bigger costs involved in
the gradient computation are in order of T 2Gn, with other
negligible costs. The overall cost of the full computation of
∇f is then O(T 2Gn). Therefore, a FISTA iteration has then
a total cost of O(T 2Gn).

In step 8, we prepare w̃t usingGTn+n flops. ForW
g
, we

compute the loss function of each task with cost of n2 +mn,
and it is reused for all iterations over the same g. ADMM
requires the computation of a soft-thresholding operator, the
projection of z, and the update of u. All with negligible costs.
Solving the x-update in closed-form via Cholesky decompo-
sition uses T 3 flops, with a back-solve cost of n2. This results
in a overall cost of Tn2 when considering n > T . The cost
of a complete ADMM iteration is on order of O(Tn2).

In summary, one iteration of GAMTL consists of T FISTA
and GT ADMM executions. Therefore, setting a fixed num-
ber of iterations, the overall GAMTL time complexity of
O(T 3Gn+ T 2Gn2).

1https://github.com/shgo/gamtl

4 Experiments and Discussion
For all experiments we denote GAMTLnr as GAMTL with-
out considering the constraints on Bg, ∀g ∈ G.

4.1 Artificial Dataset
To illustrate the components of our proposal and validate the
model, we designed an artificial dataset as follows. We gen-
erate 8 regression tasks with 50 attributes partitioned into
groups g1 = [1, . . . , 25] and g2 = [26, · · · , 50]. For tasks t =
[1, 2],w1

t ∼ N (0, I25) while w2
t = 0. The opposite holds

for tasks t = [3, 4], where w2 ∼ N (0, I25) while w1 = 0.
For the last four tasks t = [5, · · · , 8],w1

t = W 1
[1,2]b

1
t and

w2
t = W 2

[3,4]b
2
t , where each bgt is sampled from a truncated

Gaussian distribution, having positive values. The first col-
umn of Figure 3 depicts these vectors concatenated asBg ma-
trices. For each task t,Xt ∼ N (0, I50), and yt = Xtwt + σ,
where σ = 0.3 in the first four tasks, and σ = 0.9 in the
last four tasks. This difference in the amount of noise makes
the derived tasks more difficult to be solved. In this case, we
expect the transference to occur from tasks with low cost to
the tasks with a higher cost, thus recovering the transference
structure.

The number of samples varied from 30 to 100, by steps of
10 samples. We split the dataset so that 70% of the samples
are used for training and 30% for testing. For each amount of
samples, the parameters of all methods were chosen by cross-
validation using 30% of the training set. The best performing
parameters are selected, and we repeat the training process
30 times. As λ3 directly impacts the group sparsity, we can
use results from the parameter tuning of Group LASSO to
aid this selection: as λ1 and λ2 are related, it is possible to
express one as a function of the other, resulting in just one
parameter to choose in the end. However, in practice, setting
each parameter independently led to better performance. Our
recommendation is to choose initial values for λ1 and λ2 in a
similar range but independently from λ3.

The performance of all methods are compared by the nor-
malized mean squared error (NMSE) metric, defined as

NMSE(y, ŷ) =

∑T
t=1(‖yt − ŷt‖22)/σ(yt)∑T

t=1mt

.

where yt and ŷt are the true and predicted labels for task
t, respectively. We considered LASSO [Tibshirani, 1996]
and Group LASSO [Jacob et al., 2009] as STL contenders;
AMTL [Lee et al., 2016] as the MTL contender that can re-
cover a similar structure, and GAMTL with the squared loss.

Figure 2 shows the NMSE of all methods when vary-
ing the total number of samples. Mean and standard de-
viation from 30 independent runs are reported. Since we
start the experiment with an ill conditioned scenario due to
small training sample size, all methods perform poorly. But
even in this case, GAMTL achieves better performance when
30 ≤ m ≤ 60. As m increases, all methods start to perform
similarly.

The gains of GAMTL can be possibly explained by the
flexibility of its transference structures (bgt ) that reduces
negative transfer often introduced by symmetric information
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Figure 2: Mean of NMSE for all methods when varying the quan-
tity of training samples. The shaded area is the standard deviation.
When m ≤ 70 GAMTL has the best generalization performance.
With more samples all methods show similar performance.

sharing across tasks. In contrast to AMTL, that considers all
attributes to transfer, our model fits local relationships. Fig-
ure 3 shows the generated B matrices for the two groups, and
the estimated transferences of GAMTL with 30, 70, and 100
samples. A column bgt in Bg contains the coefficients of the
approximation of task t parameters, and thus its components
represent how other tasks affect wg

t . A row bgt̄ represents
how task t affects the parameters of other task on group g
only. Notice that the last four tasks are related with the first
four tasks in both groups, but not in the same way.

When the sample size is small (m = 30), we observe that
the last columns of the relationship matrices of both groups
have higher values than their transposed coordinates. This in-
dicates that all tasks are related but tasks with smaller costs
are influencing tasks with higher costs more than the oppo-
site. Since the Bg matrices regularize the task parameters
in the direction of tasks with smaller costs, even when the
sample size is small, GAMTL makes use of this structure to
improve performance on all tasks. When m = 70 the rela-
tionship matrices are sparser, with only the more meaningful
relations between tasks remaining; and when m = 100 the
structures are close to the true matrices.

The estimated transferences from tasks with lower cost are
close to the generated values, and some small transference
occurs back as tasks are linearly dependent, with results grad-
ually converge to the last column of Figure (3). With enough
samples, GAMTL does not transfer between unrelated tasks.
Nonetheless, only GAMTL is capable of providing the asym-
metric structural relationship required for this problem.

4.2 Real Dataset
The ADNI dataset was collected by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and pre-processed by a team
from University of California at San Francisco, as described
in [Liu et al., 2018], who performed cortical reconstruction
and volumetric segmentation with the FreeSurfer image anal-
ysis suite. It consists of information from 816 subjects. There
are 116 groups of features in this application corresponding to
ROI in the brain. From the total group set, 46 of these groups
have a single covariate and 70 groups have four covariates.

The tasks consist of the prediction of 5 cognitive scores

B of group 1 m: 30 m: 70 m: 100

12345678
to task

12345678fro
m

 ta
sk

B of group 2

Figure 3: Hinton Diagram of the task relationship recovered by
GAMTL in the first run. The size of the squares are proportional to
the values of the entry of the matrix. The first column shows the con-
ceived structures for both groups of attributes. The other columns
show the structure recovered by GAMTL when m = {30, 70, 100}
respectively.

based on physical characteristics of each individual’s brain
extracted from structural MRI images. Note that all tasks use
the same input matrix (X). The cognitive scores used in this
study are: Rey Auditory Verbal Learning Test (RAVLT) To-
tal score (TOTAL), RAVTL 30 minutes delay score (T30),
RAVLT recognition score (RECOG), Mini Mental State
Exam score (MMSE), and Alzheimer’s Disease Assessment
Scale cognitive total score (ADAS). Those are important
tasks in the domain of research related to AD, since the use of
these scores impacts on drug trials, assessments of the sever-
ity of symptoms of AD, the progressive deterioration of func-
tional ability, and deficiencies in memory, as highlighted in
[Liu et al., 2018]. Note that for this experiment, understand-
ing how certain areas of the brain impact the outcome of each
cognitive score and how they share this impact amongst each
other is of high relevance. Our model presents explainable
transference structures that can aid researchers to explore fur-
ther relationships.

GAMTL and GAMTLnl used the squared loss for regres-
sion tasks, and the contenders are LASSO, Group LASSO,
and AMTL. We add other related MTL formulations: MT-
SGL, that is also based on group sparsity; MTRL that in-
cludes transference structure; and MTFL that accounts for
task grouping but has no transference structure estimation.

Following [Liu et al., 2018], the dataset is partitioned into
training (95%) and test (5%) sets. All performance compar-
isons used NMSE as metric. Regularization parameters for
the methods are chosen by a 5-fold cross-validation proce-
dure using training data. Then we train each method us-
ing the training set and evaluate on the test set. To ac-
count for variability in the data, 30 independent executions
were performed. The limits of the search grid used to tune
parameters for MTRL were ρ1 ∈ [0.06, · · · , 5] and ρ2 ∈
[0.08, · · · , 5]. For MTFL we had 2, 3 as the number of
task groups, and ρ1, ρ2 ∈ [0.001, · · · , 10]. For AMTL we
used µ ∈ [0.001, · · · , 1], λ ∈ [0.01, · · · , 1]. All variants of
GAMTL used λ1 ∈ [10e−5, · · · , 0.03], λ2 ∈ [0.01, · · · , 0.5],
and λ3 ∈ [0.008, · · · , 0.15].

Table (1) summarizes the performance of all methods, pre-
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TOT. T30 REC. MMSEADAS

TOT.

T30

REC.

MMSE

ADAS

0.51 0.16 0.20

0.34 0.35 0.43

0.11 0.39 0.15

0.21 0.66 0.22

(a) Left Inferior Lateral
Ventricle

TOT. T30 REC. MMSEADAS

TOT.

T30

REC.

MMSE

ADAS

0.17 0.27 0.19

0.16 0.27 0.20

0.18 0.20 0.26

0.20 0.23 0.39

(b) Corpus Callosum Pos-
terior

TOT. T30 REC. MMSEADAS

TOT.

T30

REC.

MMSE

ADAS

0.24 0.02 0.19

0.23 0.01 0.17

0.21 0.21

(c) Left Choroid Plexus

TOT. T30 REC. MMSEADAS

TOT.

T30

REC.

MMSE

ADAS

0.09 0.07 0.12

0.09 0.02

0.04

0.14 0.04 0.03

(d) Right Inferior Parietal

TOT. T30 REC. MMSEADAS

TOT.

T30

REC.

MMSE

ADAS

0.06

0.04

(e) Right Ventral DC

Figure 4: Bg for the 5 ROIs with most transference activity in GAMTL, ordered by Frobenius norm from (a) to (e). Each row represents how
a task affects other tasks, and each column represents how a task is affected by other tasks.

Method NMSE
LASSO 0.787 (0.000)
Group LASSO 1.005 (0.262)
MT-SGL 0.809 (0.000)
MTFL 0.814 (0.000)
MTRL 0.798 (0.000)
AMTL 0.887 (0.057)
GAMTL 0.774 (0.001)
GAMTLnr 0.787 (0.002)

Table 1: NMSE of all methods in the ADNI dataset (mean and stan-
dard deviation over all 5 folds). GAMTL had the best result, high-
lighted in bold.

GAMTL LASSO
TOTAL 0.888 (0.001) 0.864 (0.000)
T30 0.620 (0.000) 0.604 (0.000)
RECOG 0.744 (0.001) 0.812 (0.000)
MMSE 0.576 (0.001) 0.580 (0.000)
ADAS 0.505 (0.000) 0.524 (0.000)

Table 2: MSE (mean and standard deviation over 30 runs) of meth-
ods with best performance per task in the ADNI dataset. Best results
are highlighted in bold.

senting mean and standard deviation of NMSE over all runs.
We can see that GAMTL obtained the best score. We used a
Mann-Whitney U test with p ≤ 0.05 to determine whether
there was a statistically significant difference between the
scores, and it resulted positive when comparing GAMTL
scores with the results of other methods.

Table 2 summarizes the MSE (mean and standard deviation
over all runs) of the methods with best performance on each
task. We highlighted the best MSE of each task. GAMTL
exceeded in all but RAVLT TOTAL and T30, where LASSO
outperformed all methods.

Note that GAMTL allows the relationship between tasks
to be independent for each group of active attributes. We al-
low the practitioner to understand how the groups of vari-
ables are relating to each other by choosing a group and look-
ing straight onto the specific relationship matrix. This turns
GAMTL into a more explainable model, as task parameters
can be interpreted with all procedures to understand linear
regression tasks, and transferences on each ROI are of di-
rect interpretation. In 25 of 30 run, only 5 of 116 ROIs had

‖Bg‖2 ≥ 0.01. Figure (4) shows the Bg recovered for the
5 ROIs with most transference activity. GAMTL was able to
estimate the transference on ROIs of interest on AD literature
research. For instance: rates of ventricular enlargement were
found to increase over time in both subjects with mild cogni-
tive impairment (MCI) and AD, representing a feasible short-
term marker of disease progression for multi-centre studies
[Leung et al., 2013]; measurement of corpus callosum size
allows in vivo mapping of neocortical neurodegeneration in
AD over a wide range of clinical dementia severities and may
be used as a surrogate marker for evaluation of drug efficacy
[Teipel et al., 2002].

5 Conclusion and Future Work
GAMTL is a flexible and explainable model for MTL, suit-
able for domains where features can be partitioned into a pre-
defined overlapping group structure. Without any strong as-
sumption, we can estimate an asymmetric transference struc-
ture involving all tasks in a way that each group of covari-
ates has its own relationship matrix and can properly isolate
unrelated tasks. This leads to an easy interpretation of the
underlying relationship supported by the tasks, which is de-
sired in several domains. We validated our model on an arti-
ficial dataset and also on the ADNI dataset, whose tasks are
the prediction of 5 cognitive scores related to the progress
and symptoms of Alzheimer’s disease. GAMTL not only ob-
tained competitive performance but also estimated a mean-
ingful relationship structure on results supported by the AD
research literature. The next research steps include the explo-
ration of new applications, the inspection of other restrictions
on the relationship matrices, and the investigation of other vi-
sual representations for the estimated structure.
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