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Abstract

In systems with multiple potentially deceptive
agents, any single agent may have to assess the
trustworthiness of other agents in order to decide
with which agents to interact. In this context, in-
direct trust refers to trust established through third-
party advice. Since the advisers themselves may
be deceptive or unreliable, agents need a mech-
anism to assess and properly incorporate advice.
We evaluate existing state-of-the-art methods for
computing indirect trust in numerous simulations,
demonstrating that the best ones tend to be of pro-
hibitively large complexity. We propose a new and
easy to implement method for computing indirect
trust, based on a simple prediction with expert ad-
vice strategy as is often used in online learning.
This method either competes with or outperforms
all tested systems in the vast majority of the set-
tings we simulated, while scaling substantially bet-
ter. Our results demonstrate that existing systems
for computing indirect trust are overly complex; the
problem can be solved much more efficiently than
the literature suggests.

1 Introduction

Effective collaboration among agents in multi-agent systems
(MAS) often requires the agents to assess one another’s trust-
worthiness. Typically, one represents an agent’s trustworthi-
ness as a numeric value, e.g., denoting the probability that an
interaction with the agent is successful. A truster is an agent
that tries to estimate the trustworthiness of another agent,
called the trustee, and typically derives its estimate partly
from the following types of information [Jgsang et al., 2007]:
direct trust information, which is based on the past experience
from the truster’s direct interactions with the trustee; indirect
trust information, which is based on recommendations on the
trustee, provided by other agents, called advisers.

Direct trust information may be unavailable or unreliable
in the following situations: (i) in MAS with a large number
of trustees, (ii) when a truster or a trustee joins the system as a
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new user, (iii) when the behavior of trustees changes dynam-
ically. In such cases, the trustworthiness of a trustee may be
estimated based on recommendations. This poses the prob-
lem of detecting and handling unreliable recommendations
made by advisers that are subjective, deceptive, or negligent,
as these can have an adverse effect when estimating the trust-
worthiness of trustees [Jgsang et al., 2007].

In this paper, we therefore focus exclusively on the prob-
lem of computing indirect trust, cast as follows. A truster tries
to estimate the trustworthiness of trustees based on indirect
trust when it has no history of interaction in the MAS and the
only information shared by advisers are trustworthiness esti-
mates of individual trustees. In each step, the truster receives
recommendations about trustees, picks one trustee to inter-
act with, observes the outcome, and updates its indirect trust
estimate for that trustee. The goal is (a) to estimate the trust-
worthiness of trustees, where individual advisers may vary in
terms of their reliability; and (b) to minimize the number of
negative outcomes from interactions with trustees.

To study the effectiveness of computing indirect trust, we
deliberately ignore additional information, such as stereo-
types [Burnett er al., 2010] or organizational information
[Kollingbaum and Norman, 2002].

Various indirect trust models were proposed to cope with
unreliable advisers [Teacy er al., 2006; Regan et al., 2006;
Teacy et al., 2012; Jiang et al., 2013; Yu et al., 2014;
Whitby et al., 2004]. We simulate one new and four existing
systems over a large variety of scenarios. Our results show
that on average most systems behave equally well. In partic-
ular, this raises doubts in published simulations. For example,
the system MET [Jiang et al., 2013] claims to beat TRAVOS
[Teacy er al., 2006], based on simulations with a fixed distri-
bution of trustee behavior, while our simulations, averaged
over 100 random trustee behavior distributions, show that
both methods fare equally well on average, for each of a large
variety of chosen attack scenarios. For each pair of systems,
one can find specific distributions in which one outperforms
the other and vice versa; our first contribution hence is to
show that the simulations presented in published studies are
not comprehensive enough to assess how well a system can
handle a specific kind of attack.

While, in our simulations, MET and TRAVOS on average
clearly outperform the other two existing methods we tested,
neither MET nor TRAVOS would be practical in large-scale
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MAS: MET’s runtime is prohibitively large, while TRAVOS’
need to store all past recommendations by all advisers makes
it infeasible. This raises the question whether indirect trust
can be computed effectively by a method that scales well both
in terms of runtime and in terms of memory.

The answer is yes. Our second contribution is to demon-
strate that existing systems solving the indirect trust prob-
lem are overly complex, by providing a very simple and ef-
ficient, yet highly effective indirect trust method. Our pro-
posed method ITEA (Indirect Trust with Expert Advice) es-
tablishes indirect trust through an online learning algorithm.
More specifically, ITEA is inspired by the predicting from ex-
pert advice (PEA) model [Littlestone and Warmuth, 1994], in
which the learner aggregates predictions made by a group of
experts (advisers) in a weighted average; the weights are up-
dated based on the most recent predictions. PEA is conceptu-
ally very simple, so that ITEA is much simpler than all exist-
ing methods for deriving indirect trust, easier to implement,
and more efficient in terms of both runtime and memory.

In our simulations, ITEA on average competes with MET
and TRAVOS, suggesting that, against the trend in the liter-
ature, it is possible to solve the indirect trust problem with a
method that is practical for large-scale MAS.

2 Related Work

Various indirect trust mechanisms have been proposed [Teacy
et al., 2006; Regan et al., 2006; Jiang et al., 2013; Yu et al.,
2014; Teacy et al., 2012; Yu and Singh, 2003; Irissappane and
Zhang, 2017; Liu et al., 2017; Liu et al., 2011; Cohen et al.,
2018; Weng et al., 2010; Jpsang and Ismail, 2002]. Some as-
sume that reliable advisers are in the majority, and thus con-
sider all advisers whose recommendations display different
statistical properties than the majority as unreliable [Josang
and Ismail, 2002]. Others identify unreliable recommenda-
tions by comparing them with a truster’s direct experience
[Teacy et al., 2006; Yu and Singh, 2003]. Unfair recommen-
dations are then filtered out [Jgsang and Ismail, 2002; Jiang
etal., 2013; Yu et al., 2014], discounted [Teacy et al., 2006],
or re-interpreted by learning correlations between a truster’s
direct experience and an adviser’s ratings [Regan et al., 2006;
Teacy et al., 2012]. In the following, we give a brief overview
of some of the state-of-the-art techniques.

TRAVOS [Teacy et al., 2006] models trustworthiness prob-
abilistically, through a Beta distribution computed from the
outcomes of all the interactions a truster has observed. It dis-
counts unfair recommendations by assigning weights accord-
ing to the probability of their accuracy, which is estimated
based on the similarity between current and past ratings.

The Bayesian method BLADE [Regan ef al., 2006] mod-
els correlations between the direct experience of a trustee
and recommendations of an adviser. HABIT [Teacy et al.,
2012] extends BLADE by analyzing correlations of the be-
havior within groups of trustees. It was claimed to outperform
BLADE, even without correlation between trustees’ behavior.

By contrast, MET [Jiang ef al., 2013] uses an evolutionary
model to assess advisers. In MET, every truster has a network
consisting of a set of advisers and their trustworthiness; an
evolutionary algorithm develops these networks over time.

Our newly designed system, ITEA, was most inspired by
ACT [Yu et al., 2014], which infers a trust model by rein-
forcement learning. We conjectured that the reinforcement
learning approach deployed by ACT is more complex than
needed and that similar tasks as ACT’s can be solved more
easily with a method that uses a very simple online learning
approach. Consequently, we chose ACT as one of the meth-
ods to which to compare ITEA.

Some of the principles behind reinforcement learning are
akin to those used in evolutionary algorithms, and hybrid
methods were proposed for various applications, cf. [Drugan,
2019]. Therefore, we selected MET’s evolutionary approach
as a competing model as well. MET was claimed to outper-
form iCLUB [Liu er al., 2011], ReferralChain [Yu and Singh,
2003], and Zhang’s Personalized model [Zhang, 2009].

The online learning paradigm on which ITEA is built
makes no assumptions about stochasticity of the informa-
tion sources, and thus stands in sharp contrast to proba-
bilistic modelling. We therefore decided to further compare
ITEA to a state-of-the-art probabilistic approach. To the
best of our knowledge, HABIT is the best-performing such
method to date. While TRAVOS was claimed to be inferior
to MET [Jiang er al., 2013], it is an influential and highly
cited system, so that we include it in our evaluation (it turns
out that on average, it actually is on par with MET). With
HABIT, MET, and ACT, our empirical tests include three sys-
tems that have, to the best of our knowledge, so far not been
defeated in an experimental study.

Some of the most highly cited trust models, such as Eigen-
Trust [Kamvar ef al., 2003], PeerTrust [Xiong and Liu, 2004],
and PowerTrust [Zhou and Hwang, 20071, cannot be included
in our study since they are too restrictive to handle the set-
tings in our simulations. For example, Eigentrust relies on a
set of so-called “pre-trusted peers”, i.e., trustees known to be
trustworthy. Moreover, it assumes that the probability with
which a specific adviser makes a reliable recommendation on
a trustee is independent of the trustee. Neither of these two
restrictive assumptions applies to our simulation testbed.

3 Indirect Trust With Expert Advice

We will compare existing indirect trust systems to a new and
very simple one proposed in this section. Our method is
called Indirect Trust with Expert Advice (ITEA), as it is based
on the following online learning paradigm, dubbed prediction
from expert advice (PEA) [Littlestone and Warmuth, 1994].
Suppose a learner aims to predict an unknown sequence
01, . .., or of outcomes from an outcome space O. At time ¢,
the learner has access to predictions f1 ¢, ..., fx,; made by a
set of K experts, where fj, ; refers to the prediction made by
the kth expert at time ¢. The learner then makes a prediction
pr. All predictions belong to the same decision space D. The
true outcome o, is revealed after the learner’s prediction.
The learner’s and the experts’ predictions are then evalu-
ated using a loss function £ : D x O — R, so that the total
loss accumulated over the first ¢ steps is calculated as follows:

t

t
Lt = Zr:l é(ﬁ’r'a 07')) Lk,t = ZT:l g(fkﬂ'? O”') )

where L, and Ly, ; are the cumulative loss of the learner and
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the kth expert, resp. The learner’s goal is to minimize the
regret R = Ly — mini<p<x Ly, over T time steps, i.e.,
the difference between its own cumulative loss and that of
the best expert in hindsight. Sub-linear regret, Ry = o(T),
would let R become insignificant relative to 7', for large 7.
Littlestone and Warmuth (1994) proposed a simple weight-
ed average method for solving this problem. We use a popular
special case of this method, namely the Exponential-Weighted
Average strategy, in which, at time ¢, the learner predicts

K
D ke W1kt
Dt = K

Zk:l W, t—1

where wy ; = wy 41 - exp” "UreV) p > 0, is the weight
assigned to the expert k at time ¢. Note that larger weights
are assigned to experts with lower regrets. When ¢ is con-
vex in its first argument and has values in [0, 1], by choos-

ing n = /8- In(K)/T, the sublinear regret bound Ry <

T In(K)/2 is achieved [Cesa-Bianchi and Lugosi, 2006].

In our MAS framework, we denote the set of trusters (e.g.,
service consumers) by C = {¢; | i = 1,..., N}, the set of
trustees (e.g., service providers) by S = {s; | j =1,..., M},
and the set of advisersby A = {ay |k =1,..., K}. Atruster
¢; in ITEA corresponds to a learner in the PEA model, while
an adviser ay is modeled as an expert in PEA. An adviser
ar € A, at time ¢, may provide a recommendation f, +(j)
which could be its own direct trust value for s; (in case of a
reliable adviser) or a distorted version thereof (in case of an
unreliable adviser). The outcome of an interaction between
c; and s; at time ¢, denoted as o0+(i,7), is either successful
(0¢(i,7) = 1) or unsuccessful (o4(z, j) = 0).

ITEA’s pseudo-code is given in Algorithm 1. In each of
T rounds, the following is executed. For each trustee s;, the
truster ¢; receives a recommendation about s; from each of
the K advisers (line 3) and computes an indirect trust value
of s; using a weighted average (line 4), where the initial
weights are all % It attempts to minimize its loss by picking
the trustee s;« with the highest indirect trust estimate (line
6). Note that the trust estimate p;(i,j*) is ¢;’s estimate of
the probability that an interaction with s;« will be successful,
based on indirect trust. The true outcome observed (success-
ful or unsuccessful interaction with s;-, cf. line 7) is either
1 or 0, and the loss ¢( fx 1 (5*), 0¢(i, 5*)) of adviser a’s pre-
diction is observed, for each k € {1,..., K} (line 8). The
weights of the advisers are then adjusted depending on their
losses (line 9). Note that truster c¢; simultaneously solves M
PEA problems, one for each trustee.

Interesting properties of this algorithm include:

7

e ITEA does not need to memorize individual losses in-
curred by advisers in previous rounds; the weights re-
flect the past performance of advisers in a cumulative
way. This makes ITEA very simple to implement, as
well as efficient in terms of memory and runtime.

e The weights assigned to advisers depend on the trustee,
so that the system can handle advisers that are more re-
liable for some trustees than for others. This is impor-
tant in scenarios where advisers want to, e.g., bad-mouth
some trustees while being truthful about some others.
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Algorithm 1 The ITEA Algorithm

1: Initialization: wy ¢ = %,1 <k<K

2: fort =1toT do

3: forj=1to M do

4: Ci receives advisers’ recommendations
fl,t(j)> f2,t(j)7 RN fK,t(]) € [07 1]

5: ¢; makes its own prediction p; (i, 7) € [0,1]:

K A :
Pii, ) = St U],
6: end for
7: ¢ picks s; with highest p; (7, j) denoted by s;- for in-
teraction.

8:  ¢; observes outcome o;(7,5*) € {0, 1} of interaction.
9: ¢ suffers loss £(p: (i, 5%), 0:(4, 5));
ko <

adviser ap, 1 < K, suffers loss

E(fkt(]*)a Ot(Zvj*))
10:  ¢; updates weights of advisers:

Wi (%) = wpp—1(5%) - exp™ M Fr(G7),0e(0:57))

where 17 > 0 is the learning rate, fixed in advance.
11: end for

e ITEA does not assume any stochasticity in the behavior
of the advisers; it is therefore very flexible in handling
even dynamically changing adviser behaviors.

4 Simulation Setup

We compared ITEA to the methods TRAVOS [Teacy et al.,
2006], MET [Jiang et al., 2013], HABIT [Teacy et al., 2012],
and ACT [Yu et al., 2014] in terms of two measures.

Mean Absolute Error. Typically, the trustworthiness of a
trustee is represented by a number in [0, 1], where the value
1 (0, resp.) indicates perfect honesty (complete dishonesty,
resp.) Trust systems compute estimates of trustworthiness
values, and MAE refers to the mean absolute difference be-
tween the actual and the estimated values, where the mean
is taken over all pairs of truster and trustee. We will report
MAE always after a fixed number of interactions.

Relative Frequency of Unsuccessful Interactions. MAE
ignores utility aspects such as cost. If a negative (unsuccess-
ful) interaction is more costly than a positive (successful) in-
teraction, MAE alone is not sufficient for assessing a system.
Hence, we will evaluate each system based on how many neg-
ative interactions it makes in order to complete a fixed target
number of positive interactions. Specifically, we report the
fraction of the number of negative interactions over the total
number of interactions, which we call Relative Frequency of
Unsuccessful Interactions (RFU). Yu et al. (2014) reported a
measure called NAUL that is in essence equivalent to RFU.

4.1 Trustees and Trustworthiness

In our simulations, interactions with a trustee are either pos-
itive or negative, i.e., the outcomes are binary. All interac-
tions are random events that are independent of one another.
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Each trustee has a constant trustworthiness value in [0, 1] cor-
responding to the probability of a positive outcome when in-
teracting with that trustee.

Our simulations use one truster, 10 trustees, and 100 ad-
visers. The trustworthiness value of each individual trustee
is sampled uniformly at random from the values 0.1, 0.2, ...,
0.9; each reported result is the average over 100 such sampled
trustee combinations. For preprocessing, we let all advisers
(but not the truster) interact with the trustees so that they can
establish direct trust information about the trustees. We want
that information to be near-accurate, to be able to simulate
reliable advisers alongside unreliable ones. Hence, in prepro-
cessing, we execute 300,000 interactions each of which in-
volves an adviser randomly chosen from the pool of 100 and
a trustee randomly chosen from the pool of 10. Each adviser
records, for each trustee s;, the number of positive and the
number of negative interactions it has had with s;.

Adpvisers then compute their (direct) trust in a trustee using
the Beta Reputation System (BRS) [Jgsang and Ismail, 2002],
which models the trust of an agent in the trustee s; as

Pitl e 01)),

brs(p;,n;) = ———
(pjsm;) pj+n; +2

where p; (n;, resp.) is the number of positive (negative, resp.)
interactions between the agent and s; from the preprocessing
phase. An honest adviser asked for a recommendation on
trustee s; will simply report the pair (p;,n;).!

4.2 Adyviser Settings

Our evaluation comprises various settings of how advisers
can distort the actual values of p and n.

Setting 1: Partly Random Advisers. A partly random ad-
viser first picks trustees for which it will provide randomly
distorted recommendations; each trustee has a 50% chance
of being picked. About all other trustees, that adviser will
always be honest. For each trustee s; that was picked, the
adviser randomly selects a number z € (0, 1), computes any
pair (p’;, n’;) of non-negative integers such that brs(p/;, n;) =
z, and will subsequently always report (pj,n’;) about s, ir-
respective of s;’s actual trustworthiness.

Setting 2: Badmouthing (BM)/Ballot-Stuffing (BS) Advis-
ers. A BM/BS adviser first picks trustees for which it will
always provide distorted recommendations; each trustee has
a 50% chance of being picked. About all other trustees, that
adviser will always be honest. The distorted recommendation
(p,n) is computed as follows: the adviser compares the pairs
(pj,n;) recorded in the preprocessing phase for each trustee
s; and returns the pair with the lowest (in case of BM) or the
highest (in case of BS) value of brs(p;,n;).

Setting 3: Additive BM/BS Advisers. This scenario is
adapted from [Yu et al., 2014]. An additive BM adviser does
the following independently for each trustee s;: it first sam-
ples a random number z € [0.8, 1] and subtracts z from its

'In Algorithm 1, an adviser reports a single number in the range
[0, 1], not a pair of integers. In this case, and whenever we talk about
indirect trust estimates as numbers in the range [0, 1], we implicitly
map the pair (p,n) € N x N to the number brs(p, n) € (0, 1).
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pi+1
pj+n;+2
If z* > 0, a pair (p,n) with brs(p,n) = z* is returned, else
(0,p; + m;) is returned, in which case the adviser says all
its interactions with s; were negative. An additive BS ad-

% + z. If 2* < 1, a pair (p,n) with
brs(p,n) = z* is returned, else (p; + n;,0) is returned, as if
all interactions of the adviser with s; had been positive.
Setting 4: All-Negative/All-Positive Advisers. An all-
negative (all-positive, resp.) adviser reports p = 0 and
n = 1,000,000 (p = 1,000,000 and n = 0, resp.) for
each trustee, irrespective of the adviser’s interaction history.

own direct trust in s, i.e., it computes z* = — Z.

viser uses z* =

Setting 5: Fully Random Advisers. These advisers act
like partly random advisers (see Setting 1), except that they
randomly distort the recommendations for all trustees.

Setting 6: Selective BM/BS Advisers. A selective BM
adviser is honest (i.e., reports (p;,n;)) for each trustee s;
with brs(pj,n;) < 0.5. For the remaining s;, it reports
(0,p; + m;), as if each interaction with s; had been nega-
tive. In the BS case, trustees s; with brs(p;,n;) > 0.5 are
reported honestly; all others are reviewed with (p; +n;,0) as
if each interaction with them had been positive.

Whitewashing and Camouflage Attacks. The above set-
tings were tested separately with the whitewashing and cam-
ouflage attacks as detailed in [Jiang er al., 2013]. Whitewash-
ing requires the system to handle new advisers at any point in
time; in ITEA, the weight assigned to a new adviser is set to
the mean of the weights of all advisers after the previous step,
weights are then normalized as usual.

4.3 Further Details

In our experiments, the truster computes direct trust (from
its actual interactions with trustees) using BRS. It starts off
with an empty history, i.e., its direct trust information for each
trustee s; is (pj = 0,1} = 0). The experiment then proceeds
in rounds, each round consisting of the following steps:

1. The truster simulates a system (e.g., MET) to interrogate
advisers and to compute indirect trust for each trustee.

2. The trustee s, for which the computed indirect trust is
largest is chosen for interaction (in the case of more than
one candidate, one will be chosen at random).

3. The outcome of the interaction with s, is used to update
the direct trust information (pj,n}); if the interaction

was positive, p;‘ is incremented, else n;‘ is incremented.

We force the truster to prioritize trustees for interaction
only by indirect trust. Direct trust is used only to initialize
advisers and to detect unreliable advisers. Our reason for ig-
noring direct trust at the selection step is that we want to eval-
uate the effect of indirect trust as computed by the systems.

We did not tune any parameters for any of the systems. For
the state-of-the-art approaches, we used the same parameter
settings as reported in the experiments in the respective pub-
lications, with one small exception: For MET [Jiang et al.,
20131, the authors report using n = 25 advisers for the size
of what they call a trust network. This was out of a total
of K = 40 advisers. Since our simulations used X = 100
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advisers, we set n = 55 for MET to make sure a trust net-
work always contains more than half of the available advis-
ers. HABIT can be set up in various ways; we chose the
DP-Dirichlet model [Teacy et al., 2012].

ITEA requires a loss function and a learning rate. As loss
function, we chose squared-error loss. As mentioned before,
the learning rate n = /8 In(K)/T yields good guarantees,
where K is the number of advisers and 7' the number of
rounds of interaction with the trustee whose trustworthiness
is being estimated. In our simulations, K = 100 and 7" is not
known in advance, so that we replaced 1" by the total number
of interactions (when measuring MAE) or the target number
of positive interactions (when measuring RFU).

5 Results

For each setting, we report simulations with three different
percentages of unreliable advisers (40%, 70%, 90%), which
were chosen at random from the set of all advisers.

5.1 RFU

To calculate RFU, we ran each system with a target number S
of successful interactions, i.e., after .S successful interactions,
the ratio of the number U of unsuccessful interactions over
U + S was recorded. The average such ratio over 100 runs
is reported in Table 1 for S = 50. We also tried S = 100
in most settings, but the results were almost identical. Every
table entry is a pair a/b, where a refers to the chosen setting
without whitewashing, and b with whitewashing.

Due to space constraints, results for HABIT are not listed;
it significantly lost to all other methods in all settings, except
Setting 6-BM, where it beat the four other methods by far. We
conjecture that HABIT’s strength lies mainly in its handling
of direct trust and less in its indirect trust calculation.

We ran paired t-tests for ITEA in comparison to each of
the other methods. If ITEA is never significantly beaten, its
entry is shown in bold. An entry for ACT, TRAVOS, or MET
is in bold if it is the single significant winner or, if no single
winner exists and it is not significantly worse than ITEA.

All methods handled the camouflage attack very well. In
all settings, the RFU values with and without camouflage at-
tack were almost identical, so that we do not list the camou-
flage results. The only exception was that in Settings 5 and 6,
TRAVOS behaved better with camouflage than without.

None of the methods showed strong negative reactions to
whitewashing attacks; sometimes RFU worsened slightly for
ACT, for MET in Setting 4, and for ITEA in Setting 6-BS.
Occasionally, whitewashing affects RFU positively, e.g., for
MET in Setting 6-BS. We did not study individual trustee
distributions in which the RFU for whitewashing was much
worse than that without. Given that on average whitewashing
did not cause any serious trouble for any of the tested meth-
ods, we leave a more detailed analysis for future work.

Settings 1 and 2 were easy to handle for all methods (ex-
cept HABIT), both with and without whitewashing attack;
only ACT had slight difficulties with Setting 2-BM. These
difficulties become more prominent in Setting 3. In Setting
4, MET significantly beats all other methods, while ACT is
the clear loser again; TRAVOS and ITEA are on par with
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each other. Setting 5 is won by ITEA and TRAVOS, which
substantially beat MET and ACT for large pools of deceptive
advisers. Finally, Setting 6 witnesses that all of the meth-
ods that we tried can be fooled greatly. ITEA and TRAVOS
though handle Setting 6-BS better than ACT and MET.

We do not report standard deviation in Table 1, as it is not
meaningful given the variety of trustworthiness distributions.
RFU Scatterplots for MET and ITEA (omitted due to space
constraints) show that, except for Setting 5, these methods
mostly agree on which trustee distributions are difficult to
handle, but typically with a few outliers in each direction.

We declare ITEA, TRAVOS, and MET the winners in
terms of RFU, among the methods tested here. We proceed
with a study of MAE only for these three methods.

5.2 MAE

Table 2 shows MAE results after a total of 50 interactions
(for 90% deceptive advisers only), which seem more erratic.
Without whitewashing, ITEA wins in Settings 1, 2-BM, and
5, while TRAVOS wins in Settings 3, 4, and 6; MET doesn’t
compete. With whitewashing, MET wins for smaller percent-
ages of deceptive advisers (not displayed), as well as in Set-
tings 1, 2-BS, and 5, whereas TRAVOS wins for 90% white-
washing advisers in Settings 3, 4, and 6. Whitewashing nega-
tively affects ITEA’s MAE. Overall, there is no single winner.
A comparison of Tables 1 and 2 shows that good MAE is
not necessary for good RFU. Intuitively, a system may per-
form many successful interactions if it can identify even a
single highly trustworthy trustee. To do so, it is not required
to estimate the trustworthiness of all trustees well. In many
applications (e.g., e-market places) it is of crucial importance
to perform mostly successful interactions. In such applica-
tions, one should put more emphasis on RFU than on MAE.

5.3 Scalability

Asymptotically, ITEA’s runtime scales optimally with the
number M of trustees and the number K of advisers, un-
der the intuitive assumption that a system should consider,
for each trustee, a number of recommendations that grows
linearly with the number of advisers. ITEA’s runtime is in
O(MK), as is easily verified from Algorithm 1. The same
appears to be true for TRAVOS and ACT. By comparison,
MET requires (M K?) runtime in order to compare and se-
lect advisers for a trust network, which requires evaluating a
fitness function. For HABIT, which takes the group behavior
of trustees into account, the runtime is in Q(M?K).

We measured CPU time on a MacBook Pro/2.3 GHz Intel
Core i7 for various settings. As the trends overall were iden-
tical, Table 3 reports the results averaged over 100 runs for
Setting 2. As expected, ITEA substantially beats our imple-
mentations of the other methods in terms of runtime. ACT is
also very fast, but could not compete with ITEA in terms of
RFU. The RFU competitors TRAVOS and MET are 50 times
and 238 times slower than ITEA, resp.

While TRAVOS is slower than ITEA, asymptotically both
systems scale well in terms of runtime. However, TRAVOS
stores all recommendations by all advisers over time, which
makes it infeasible in terms of memory consumption. ITEA’s
memory consumption, by comparison, is negligible.
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S1 90% 70% 40% S4-BM 90% 70% 40%
ITEA | 0.150/0.144 | 0.139/0.136 | 0.142/0.141 ITEA | 0.153/0.150 | 0.151/0.147 | 0.145/0.142
ACT 0.165/0.150 | 0.153/0.139 | 0.151/0.141 ACT 0.203/0.182 | 0.191/0.176 | 0.179/0.146
TRAV | 0.160/0.144 | 0.160/0.140 | 0.149/0.141 TRAV | 0.153/0.161 | 0.153/0.159 | 0.153/0.159
MET | 0.149/0.142 | 0.140/0.143 | 0.127/0.130 MET | 0.127/0.146 | 0.131/0.141 | 0.130/0.142
S2-BM 90% 70% 0% S4-BS 90% 70% 30%
ITEA | 0.138/0.133 | 0.151/0.147 | 0.135/0.133 ITEA | 0.159/0.142 | 0.149/0.140 | 0.142/0.140
ACT 0.179/0.152 | 0.171/0.145 | 0.166/0.140 ACT 0.433/0.520 | 0.267/0.331 | 0.159/0.169
TRAV | 0.144/0.133 | 0.168/0.157 | 0.146/0.143 TRAV | 0.145/0.145 | 0.144/0.144 | 0.143/0.143
MET | 0.155/0.149 | 0.140/0.137 | 0.136/0.136 MET | 0.130/0.143 | 0.131/0.142 | 0.131/0.141
S2-BS 90% 70% 40% S5 90% 70% 40%
ITEA | 0.129/0.129 | 0.145/0.145 | 0.133/0.133 || ITEA | 0.168/0.197 | 0.163/0.155 | 0.136/0.133
ACT 0.139/0.141 | 0.140/0.143 | 0.138/0.136 ACT 0.254/0.196 | 0.206/0.165 | 0.174/0.139
TRAV | 0.133/0.129 | 0.150/0.145 | 0.135/0.133 || TRAV | 0.169/0.192 | 0.172/0.171 | 0.142/0.141
MET | 0.136/0.138 | 0.131/0.133 | 0.134/0.135 MET | 0.294/0.213 | 0.169/0.140 | 0.138/0.135
S3-BM 90% 70% 40% S6-BM 90% 70% 40%
ITEA | 0.145/0.143 | 0.151/0.147 | 0.149/0.141 ITEA | 0.616/0.618 | 0.593/0.579 | 0.161/0.148
ACT 0.204/0.163 | 0.184/0.175 | 0.168/0.152 ACT 0.531/0.535 | 0.246/0.208 | 0.184/0.145
TRAV | 0.152/0.164 | 0.155/0.166 | 0.154/0.159 || TRAV | 0.589/0.585 | 0.522/0.551 | 0.159/0.163
MET | 0.139/0.145 | 0.136/0.132 | 0.138/0.140 MET | 0.602/0.593 | 0.561/0.183 | 0.146/0.141
S3-BS 90% 70% 40% S6-BS 90% 70% 40%
ITEA | 0.154/0.141 | 0.149/0.141 | 0.142/0.140 ITEA | 0.233/0.553 | 0.150/0.202 | 0.141/0.145
ACT 0.313/0.476 | 0.260/0.313 | 0.171/0.159 ACT 0.597/0.620 | 0.421/0.360 | 0.164/0.163
TRAV | 0.164/0.145 | 0.158/0.143 | 0.146/0.140 || TRAV | 0.208/0.275 | 0.152/0.152 | 0.143/0.141
MET | 0.141/0.142 | 0.136/0.132 | 0.137/0.140 MET | 0.594/0.350 | 0.201/0.152 | 0.138/0.142
Table 1: RFU without/with whitewashing; Sz refers to Setting x
l [ ITEA | TRAVOS [ MET | dicative of a system’s performance in general, and many pub-
S1 090/.101 | .148/.147 | .102/.093 lished claims are based on too narrow a set of simulations.
S2-BM || .137/.162 | .147/.150 | .165/.152 Second, we showed that the best-performing methods from
S2-BS 162/.162 | 157/.159 | .162/.148 the literature (MET and TRAVOS, based on our simulations)
S3-BM || .375/.430 | .218/.230 | .447/.406 are overly complex, as seen either in runtime or in memory
S3-BS 4347440 | .235/.249 | A438/.398 consumption. The very simple method ITEA that we pro-
S4-BM || .379/.433 | .219/.232 | 453/ .412 posed shows that such complexity is unnecessary for solving
S4-BS 439/ .445 | 113/.114 | 444/ .404 . . . .
the indirect trust problem. It is obvious from the design of
S5 178/7.199 | .188/.193 | .202/.185 ITEA that it scal 1L blv. it tofi )
S6-BM || 3297 330 | .266/.268 | .3297.300 > that 1t scales very wedl, arguably, 1S asymplolic com
S6.BS T 2677305 | .1807.238 | 3207 292 plexity is optimal for the task for which it is designed.

Table 2: MAE without/with whitewashing; ‘Sz’ refers to Setting

ITEA
0.228

ACT
0.795

TRAVOS
11.36

MET
54.27

HABIT
27.40

Table 3: CPU Time (sec.) for 50 interactions, S2-BM, 90% (values
for BS and other percentages were nearly identical)

6 Conclusions

We revealed two shortcomings in the indirect trust literature.

First, we showed that empirical studies employing fixed
distributions of trustee behavior (as, e.g., the study claiming
that MET beats TRAVOS [Jiang et al., 2013]) are misleading.
We found distributions of trustees’ trustworthiness values
(e.g., [.9,.6,.4,.4, .4, .4, .2, .2] for the ten trustees in our sim-
ulations) for which TRAVOS was substantially outperformed
by MET, ITEA, and HABIT, while on average, TRAVOS,
MET and ITEA are on par, and outperform HABIT. This sug-
gests that individual trustworthiness distributions are not in-

Our evaluation has some limitations: (i) We did not sim-
ulate dynamic changes in the trustworthiness of trustees or
in the reliability of advisers. However, since ITEA makes
no stochasticity assumptions, we expect it to handle such
cases well. (ii) We did not analyze individual distributions
of trustees’ trustworthiness values that are difficult to handle
for one method but easy for another; our tables above present
only averages. Examining such distributions will shed more
light on the strengths and weaknesses of individual methods.

Note that, for simplicity, we focused on binary interaction
outcomes. However, ITEA can be adapted in a straightfor-
ward way to non-binary (even continuous) outcomes. More
generally, with appropriate modifications, the approach be-
hind ITEA may be of value in various applications, includ-
ing e-marketplaces, P2P networks, and car-to-car networks,
where cars exchange information on, e.g., road trafficability.
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