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Abstract

Classic multi-armed bandit algorithms are ineffi-
cient for a large number of arms. On the other
hand, contextual bandit algorithms are more effi-
cient, but they suffer from a large regret due to
the bias of reward estimation with finite dimen-
sional features. Although recent studies proposed
semi-parametric bandits to overcome these defects,
they assume arms’ features are constant over time.
However, this assumption rarely holds in practice,
since real-world problems often involve underly-
ing processes that are dynamically evolving over
time especially for the special promotions like Sin-
gles’ Day sales. In this paper, we formulate a novel
Semi-Parametric Contextual Bandit Problem to re-
lax this assumption. For this problem, a novel Two-
Steps Upper-Confidence Bound framework, called
Semi-Parametric UCB (SPUCB), is presented. It
can be flexibly applied to linear parametric func-
tion problem with a satisfied gap-free bound on the
n-step regret. Moreover, to make our method more
practical in online system, an optimization is pro-
posed for dealing with high dimensional features
of a linear function. Extensive experiments on syn-
thetic data as well as a real dataset from one of the
largest e-commercial platforms demonstrate the su-
perior performance of our algorithm.

1 Introduction
The multi-armed bandit problem (MAB) models an agent that
simultaneously attempts to acquire new knowledge (called
“exploration”) and optimizes their decisions based on exist-
ing knowledge (called “exploitation”). The agent attempts to
balance these competing tasks in order to maximize their to-
tal rewards over the period of time considered [Agrawal et al.,
1988]. Such problem is ubiquitous in many practical applica-
tions, including online advertisement [Schwartz et al., 2017],
personalized recommendation [Li et al., 2016], medical treat-
ment [Press, 2009] and financial portfolio design[Hoffman et
al., 2011]. There are often many newly emerging items with
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unknown rewards to be explored in these applications. Be-
sides, MAB algorithms are very usable in cases where con-
tinuous and permanent optimization is needed for discovering
the real “interests” of the customers.

MAB problem is first introduced as the sequential de-
sign of experiments, which is now formulated as a system
of several candidate arms whose rewards are independently
sampled from some fixed underlying distributions [Robbins,
1952]. Recently there are three typical groups of MABs: clas-
sic MABs, contextual bandits and semi-parametric bandits.
Classic MAB algorithms (also called non-parametric meth-
ods), such as Upper Confidence Bound (UCB) [Auer et al.,
2002] and Thompson sampling [Thompson, 1933], estimate
the expected reward of an arm by empirical mean of historical
data. The reward estimation can be unbiased with sufficient
online data leading to an inefficient convergence process for
a large number of candidate arms. So it can be effective only
where you can afford to wait for a long duration before know-
ing with certainty which decision is the best. As for contex-
tual bandit algorithms (called parametric methods) [Chu et
al., 2011; Agrawal and Goyal, 2013], the learner’s aim is to
collect enough information about how the contextual features
and rewards relate to each other modelled by a parametric
function. Although they are efficient for a large arm set be-
cause the parameters can be shared among all independent
candidate arms, it is generally difficult to specify a correct
model and to perfectly characterize the context with numeric
features, leading to large regrets in many applications [Ghosh
et al., 2017; Li et al., 2016]. To make up shortages of the
above two kinds of MABs, semi-parametric bandits, which
contain both parametric part and non-parametric part, have
been proposed [Ou et al., 2019]. Specifically, the parametric
part, which models expected reward as a parametric function
of arm features, can efficiently eliminate poor arms from the
candidate set whereas the non-parametric part, which adopts
non-parametric model and revises the parametric estimation
to avoid estimation bias. However, current semi-parametric
bandits assume arms’ features are constant over time. In fact,
the contextual features (especially for features of users’ be-
haviours) of candidate arms in real-world problems are usu-
ally evolved dramatically [Xie et al., 2015], especially in
some special promotions like Alibaba’s Singles’ Day sales.
In these kinds of scenarios, it is required that MAB algo-
rithms be able to adapt recommendation strategies according
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to the evolution of arms’ contextual features. So dynamic fea-
tures lead to a large regret and divergence of previous semi-
parametric bandits.

In this paper, we will relax the assumption of constant fea-
tures in semi-parametric bandits. It is the first time to pro-
pose a novel Semi-Parametric Contextual Bandits Problem,
as far as we known, for cases where contextual features are
evolved dramatically. To solve it, a novel Two-Steps Upper-
Confidence Bound framework, called Semi-Parametric UCB
(SPUCB), is presented. It can be flexibly applied to Top-
1 and Top-K selection problems. We give the implementa-
tion of utilizing a linear function as the parametric part and
prove satisfied gap-free bounds on the n-step regret. Ex-
tensive experiments show that SPUCB leads to significantly
higher qualified arms because it can take dynamic contextual
features in semi-parametric environment.

2 Related Work
Recently there are three typical groups of MABs: classic
MABs [Auer et al., 2002; Gopalan et al., 2014; Thomp-
son, 1933], contextual bandits [Agrawal and Goyal, 2013;
Chu et al., 2011; Qin et al., 2014; Li et al., 2016] and
semi-parametric bandits [Ou et al., 2019; Ghosh et al., 2017;
Krishnamurthy et al., 2018; Greenewald et al., 2017]. Classic
MAB algorithms can be called non-parametric methods and
contextual bandits are usually seen as parametric methods. In
addition, to solve top-k combinatorial optimization problem,
combinatorial variants [Gai et al., 2012; Chen et al., 2013;
Kveton et al., 2015a; Li et al., 2016] are proposed.

Firstly, classic MAB algorithms like UCB and Thomp-
son sampling are inefficient when the arm set is large be-
cause they have to explore each arm independently. Sec-
ondly, to leverage contexts, Li et al. [2010] formulated per-
sonalized news recommendation as a contextual bandit prob-
lem. They proposed LinUCB to maximize total clicks based
on contextual features about the users and articles. Qin et
al. [2014] proposed C2-UCB, a contextual combinatorial
bandit algorithm, which considers semi-bandit feedback and
non-linear reward. Li et al. [2016] combined contextual
cascading bandit with position discounts. Their C3-UCB
algorithm is bounded by O(d

√
KT log T ). Although they

are efficient for a large arm set because parameters can be
shared among all independent candidate arms, it is generally
difficult to specify a correct model and to perfectly charac-
terize the context with numeric features. It makes the as-
sumption impractical, leading to a large regret. Their meth-
ods divergent for Semi-Parametric Contextual Bandit Prob-
lem due to the latent arm bias. To make up the short-
ages of above two kinds of MABs, semi-parametric bandits,
which contain both parametric part and non-parametric part,
have been proposed [Ghosh et al., 2017; Ou et al., 2019;
Krishnamurthy et al., 2018]. Krishnamurthy et al. [2018]
assumed the reward is a summation of a linear function of
context features and an arm-independent bias. Ghosh et al.
[2017] assumed each arm has an arm-specific bias which
is more flexible in practice. Ou et al. [2019] proposed a
novel framework, called Semi-Parametric Sampling, which
can work in the semi-parametric environment. However,

these recent methods for semi-parametric bandit problems as-
sume arms’ features are constant over the time, so they will
suffer from a large regret in our defined problem. Thirdly,
combinatorial bandits are presented for top-k combinatorial
optimization problem. Generic stochastic combinatorial ban-
dits are pioneered by Gai et al. [2012], who proposed a
UCB-like algorithm, named LLR. Kveton et al. [2015a] in-
troduced the cascading model to combinatorial semi-bandits
and achieved an upper bound of O( L

∆min
log T ). Kveton et

al. [2015b] proposed a computationally efficient and sample
efficient framework, called COMBCASCADE, allowing each
feasible action to be a subset of ground items under combi-
natorial constraints. Its regret is bounded by O( KL

∆min
log T ).

Li et al. [2016] proposed contextual combinatorial cascading
with position discounts. However, none of them can be used
for our problem directly.

3 Semi-Parametric Contextual Bandit
Suppose there is a tuple B = (E ,K,S), where E = [L] is
a ground set of L items (also referred to as candidate arms),
integerK ≥ 1 and S is the set of allK-tuples of distinct items
coming from E . The contextual features of candidate arms
usually evolved dramatically which reflect the user’s dynamic
real interests, a novel Semi-Parametric Contextual Bandit
Problem should be defined as follows:

Let T be the length of time horizon. At time t, the learning
agent observes a feature vector xt,a ∈ Rd×1 with ‖xt,a‖2 ≤ 1
for every candidate arm a ∈ E , and recommends to the user
a list of K items At = (at1, · · · , atK) ∈ S . Users will give
feedback (reward) to the recommended list. Let Ht denotes
the history within T . It contains rewards and contextual in-
formation before the agent chooses an action at time t. We as-
sume that each base arm a has an independent weight wt(a),
representing the ”quality” of a at time t. Given history Ht,
expected reward can be formulated with a semi-parametric
form:

w∗t,a = E[wt(a)|Ht] = g(θ∗, xt,a) + b∗a, (1)

where g(θ∗, xt,a) is a parametric reward function of arm
features xt,a at time t, b∗a ∈ R is the bias of parametric func-
tion g and real expected reward w∗t,ain[0, 1], θ∗ is the optimal
function parameter defined as

θ∗ = argmin
θ

T∑
t=1

L∑
a=1

|(wt(a)− b∗a)− g(θ, xt,a)|2. (2)

For expected reward w∗t,a, we call b∗a the non-parametric
part and θ∗ the parametric part, because b∗a are indepen-
dent among arms with no parametric assumption. θ∗ is
an unknown d-dimensional vector with the assumption that
‖θ∗‖2 ≤ 1 for all t, a.

We assume that each weight wt(a) follows Rα-sub-
Gaussian tail ηt,a = wt(a)− w∗t,a, which means

∃Rα > 0 ∀µ ∈ R E[eµηt,a |Ht] ≤ eR
2
αµ

2/2.

The sub-Gaussian condition implies that ηt,a is a zero-mean
Gaussian noise with variance at most R2

α lying in an interval
of length at most 2Rα.
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The objective of Semi-Parametric Contextual Bandit Prob-
lem is to find a policy that can maximize the cumulative ex-
pected reward. Since direct analysis of cumulative reward is
not tractable, we analyze the cumulative regret.

In the case of K = 1, the user only chooses the best item,
the cumulative regret is defined as:

R(t) =
T∑
t=1

w∗t,a −
T∑
t=1

wt(a)

When K > 1, the problem will be a combinatorial opti-
mization problem which can be reduced to a set cover prob-
lem in each time slot, thus it is a NP-hard problem. To pro-
pose an approximate solution, we use the cascading model to
reduce it to a ranking problem with the following oracle.

In the cascading model, the user examines items in a pre-
sented order and stops at the Ot-th item when he finds the first
attractive one. Then the agent will give a positive reward for
Ot-th arm, while put a negative reward for the others inAt. It
is required that the decision strategy, denoted as f(A,w), for
recommended arms A based on the given weights w satisfy
monotonicity and B-Lipschitz continuity assumptions. We
only assume that the agent has access to an α-approximation
oracle OS(w) that outputs recommended action A, which
means given input w, for some α ≤ 1, the oracle returns
an action A = OS(w) ∈ S satisfying f(A,w) ≥ αf(A∗, w)
where A∗ = argmaxA∈Sf(A,w).

The α-regret of action A on time t is

Rα(t, A) = αf∗t − f(A,wt),

where f∗t = f(A∗t , wt) and wt = (g(θ∗, xt,a) + b∗)a∈E .
Thus the cumulative regret of an algorithm in the case of

K > 1 is to minimize the α-regret

Rα(T ) = E[
T∑
t=1

Rα(t, At)].

4 Two-Steps UCB Framework
We introduce a novel Two-Steps Upper-Confidence Bound
framework, called Semi-Parametric UCB (SPUCB) to solve
Semi-Parametric Contextual Bandit Problem, our method is
unbiased and efficient.

From Eq.(1), θ∗ and b∗a should be inferred according to the
rewards that the learning agent can only observe within T
steps. SPUCB framework owns the efficiency of parametric
bandit and the unbiased property of non-parametric bandit.
The parametric part helps to provide a prior of expected re-
ward with the latest contextual information to rapidly reduce
the candidate arm set. Thus the non-parametric part can work
in a relatively small candidate set to efficiently estimate the
expected reward and correctly discover the optimal arm.

SPUCB is a UCB-like algorithm, which operates in two
stages. Firstly, the learning agent computes the upper con-
fidence bounds (UCBs) Ut on the expected weights of all
base arms in E , and uses them to select an action At =
(at1, · · · , atK). Secondly, after the agent obtained the rewards
wt, it use the training samples to get a new estimate θ̂t of θ∗

with a new confidence radius, and estimate b∗a based on θ̂t.

For convenience, we define s(t, a) to be the number of times
that candidate arm a is observed in t− 1 steps.

Lemma 4.1. Let αt(a) = Rα
√
−2 log(δ/2)/s. With proba-

bility at least 1 − δ, for each arm a at time t > 0, we have:

|ŵs(a)− gs(θ∗, xa)− b∗a| ≤ αt(a), (3)

where ŵs(a) is the average of s observed weights of candi-
date arm a, gs(θ, xa) = 1

s

∑s
τ=1 g(θ, xτ,a) is the average of

g calculated from observed feature vectors of a and θ.

Proof. Let w∗s,a = 1
s

∑s
r=1 w

∗
r,a, we have b∗a =

1
s

∑s
r=1

(
w∗r,a − g(θ∗, xr,a)

)
= w∗s,a − gs(θ

∗, xa) by Eq.(1).
Because η is a zero-mean Gaussian noise lying in [−Rα, Rα], by
Hoeffding inequality, we have

P (|ŵs(a)− gs(θ∗, xa)− b∗a| ≤ αt−1(a))

=P

(∣∣∣∣∣1s
s∑
r=1

ηr,a

∣∣∣∣∣ ≤ αt−1(a)

)

≥1− 2 exp

(
− 2s2α2

t−1(a)∑s
r=1(R− (−R))2

)
= 1− δ.

(4)

Lemma 4.2. Given∣∣∣g(θ̂t, xt,a)− g(θ∗, xt,a)− gs(θ̂, xa) + gs(θ
∗, xa)

∣∣∣ ≤ γt(a).

Then, with probability at least 1− δ, we have:∣∣∣ŵs(a)− gs(θ̂, xa) + g(θ̂t, xt,a)− w∗t,a
∣∣∣ ≤ αt(a) + γt(a).

(5)

Proof. Based on Lemma 4.1 and Eq.(1), we have∣∣∣ŵs(a)− gs(θ̂, xa) + g(θ̂t, xt,a)− w∗t,a
∣∣∣

=
∣∣∣ŵs(a)− gs(θ̂, xa) + g(θ̂t, xt,a)− g(θ∗, xt,a)− b∗a

∣∣∣
=
∣∣∣ŵs(a)− gs(θ∗, xa)− b∗a + g(θ̂t, xt,a)

−g(θ∗, xt,a)− gs(θ̂, xa) + gs(θ
∗, xa)

∣∣∣ ≤ αt(a) + γt(a).

(6)

Based on Lemma 4.1 and Lemma 4.2, the upper confidence
bound of expected weight for each candidate arm a at time t
can be defined as

Ut(a) = ŵs(a)− gs(θ̂, xa) + g(θ̂t, xt,a) + αt(a) + γt(a).
(7)

Thus, according to Eq.(7), SPUCB can be presented in Al-
gorithm 1. As soon as we give the specific approach for in-
ferring and updating θ̂t and γt(a), SPUCB will be a feasible
solution for Semi-Parametric Contextual Bandit problem. In
Section 5, we will implement SPUCB with linear paramet-
ric function and give a satisfied gap-free bound on the T -step
regret.
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Algorithm 1 SPUCB

// Initialization
Observe x0,w0 ∼ P
s0 ← 1, θ̂0 ← 0, α0 ← Rα

√
−2 log(δ/2), γ0 ← α0

ŵ1 ← w0, x1 ← x0

for all t = 1, · · · , T do
// Compute UCB
for all a = 1, · · · , L do

Ut(a)← ŵst−1(a)−gst−1(a)(θ̂, xa)+g(θ̂t−1, xt,a)+
αt(a) + γt(a)

// Recommend and observe
At = (at1, · · · , atK)← OS(Ut)
Play At and observe Ot,wt(a)
// Update statistics
Compute θ̂t using x and w
for all a = 1, · · · , L do
st(a)← st−1(a)

for all k = 1, · · · ,Ot do
a← atk
st(a)← st(a) + 1

ŵst(a) ←
st−1(a)ŵst−1(a)+wst(a)(a)

st(a)

Compute gst(a) using θ̂ and xa
for all a = 1, · · · , L do
αt(a)← Rα

√
−2 log(δ/2)/st(a)

Compute γt(a)

5 Linear Parametric Implementation
We introduce SPUCB to solve Top-1 (K = 1) and Top-K
(K ≥ 2) semi-parametric contextual bandit problems with
linear parametric functions and achieved gap-free bounds
given on the T -step regret. When the parametric part of
Eq.(1) is a linear function, we have the following expected
reward at time t,

wt,atk = g(θ∗, xt,a) + b∗ = θT∗ xt,atk + b∗.

We estimate θ∗ using a ridge regression on samples ∆xt
and obtained rewards ∆w, then we can get a l2-regularized
least-squares estimate with a regularization parameter λ > 0:

θ̂t = (∆XT
t ∆Xt + λI)∆XT

t ∆Yt,

where ∆Xt ∈ R(
∑t
τ=1 Oτ )×d is the matrix whose rows

are ∆xTτ,a = xTτ,a − 1
s(τ,a)

∑s(τ,a)
r=1 xTr,a and ∆Yt is a

column vector whose elements are ∆wτ (a) = wτ (a) −
1

s(τ,a)

∑s(τ,a)
r=1 wr(a), a = ark, k ∈ [Oτ ], τ ∈ [t]. Let

∆Vt = λI +
t∑

τ=1

Oτ∑
k=1

∆xτ,aτk∆xTτ,aτk ,

which is a symmetric positive definite matrix.
To analyze γt(a), we construct an index set Ψt ⊆

{1, · · · , t− 1} so that for fixed ∆xτ,a with τ ∈ Ψt, ∆wτ (a)
are independent random variables [Auer, 2002]. Then we can
have Lemma 5.1.

Lemma 5.1. With probability at least 1− δ/T , we have∣∣∣g(θ̂t, xt,a)− g(θ∗, xt,a)− gs(θ̂, xa) + gs(θ
∗, xa)

∣∣∣ ≤ γt(a),

(8)

where γt(a) = (Rγ + 1) ‖∆xt,a‖∆V−1
t−1

and ‖x‖V =

(xTV x)
1
2 is the 2-norm of x based on V .

Proof. The proof is similar to the proof of [Lemma 1, Chu et al.].

Then we can define an upper confidence bound of expected
weight for each base arm a by

Ut(a) = min{ŵs(a) + θ̂Tt−1∆xt,a + αt(a) + γt(a), 1}.
(9)

5.1 Regret Analysis in Top-1 Scenario
We follow the same method as [Auer et al., 2002] for choos-
ing Ψt carefully to achieve the independence condition.

Lemma 5.2. Assuming |ΨT+1| ≥ 2, we have∑
t∈ΨT+1

‖∆xt,a‖∆V−1
t−1
≤ 5
√
d |ΨT+1| ln |ΨT+1|. (10)

Proof. The proof is similar to the proof of [Lemma 3, Chu et al.].

Theorem 5.1. If SPUCB runs with Rγ =
√

1
2 ln 2LT

δ , then
with probability at least 1− δ, the regret of the algorithm is

O
(√

dT ln3 (LT ln(T )/δ) +
√
LT ln (1/δ)

)
. (11)

Proof. Because∑
t∈ΨT+1

αt(a) ≤ O
(√

L |ΨT+1| ln(1/δ)
)
,

the proof is similar to the proof of [Theorem 1, Chu et al.].

5.2 Regret Analysis in Top-k Scenario
We use a cascading model to reduce the problem to a ranking
problem with an offline oracle [Li et al., 2016].

In the problem of cascading recommendation, when rec-
ommended with an ordered list of items At = (at1, · · · ,atK),
the user examines the items in that order. The examination
process will stop if the user clicks one item or has examined
all items without any click. The weight of each base arm a at
time t, wt(a) ∈ {0, 1}, indicates whether the user has clicked
an item or not. Then the random variable Ot satisfies

Ot =

{
k, if wt(a

t
j) = 0, ∀j < k and wt(a

t
k) = 1;

K, if wt(a
t
j) = 0, ∀j ≤ K.

If the user clicks the k-th item, the learning agent will receive
a reward 1; otherwise, there is no reward. At the end of step
t, the learning agent observes wt(a

t
k), k ∈ [Ot] and receives

a reward rt = max1≤k≤K wt(a
t
k). Notice that the order of

At affects both the feedback and the reward.
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Let us define a function f : S × [0, 1]|E| → [0, 1] on A =
(a1, · · · , aK) ∈ S, w = (w(1), · · · , w(L)) by

f(A,w) =
K∑
k=1

k−1∏
i=1

(1− w(ai))w(ak). (12)

It is easy to verify that let rt = f(A,w), we have E[rt] =
f(A,w), where f is the expected reward function and also
a function of expected weights. Moreover, f satisfies the
properties of monotonicity and B-Lipschitz continuity by
[Lemma B, Li et al.] with γk = 1, k ∈ [K]. Let
A∗ = argmaxA∈Sf(A,w) be the optimal solution, then
∆A = f(A∗, w) − f(A,w) is a suboptimality gap of solu-
tion A, and the probability that all items in A are observed
is pt,A =

∏K−1
k=1 (1 − w(ak)). For regret analysis, we define

shorthands p∗ = min1≤t≤T {minA∈S pt,A}.
Lemma 5.3. For any time t and At = (at1, · · · ,atk), if f sat-
isfies the assumptions of monotonicity and B-Lipschitz conti-
nuity, we have

Rα(t,At) ≤ 2B
K∑
k=1

(
αt(a

t
k) + γt(a

t
k)
)
.

Proof. Because
f(At,Ut) ≥ αf(A∗,Ut) ≥ αf(A∗t ,Ut) ≥ αf(A∗t , wt),

we have
Rα(t,At) = αf(A∗t , wt)− f(At, wt)

≤ f(At,Ut)− f(At, wt).

By Lipschitz continuity of f and Lemma 4.2,

Rα(t,At) ≤ B
K∑
k=1

∣∣∣Ut(a
t
k)− wt,at

k

∣∣∣
≤ 2B

K∑
k=1

(
αt(a

t
k) + γt(a

t
k)
)
.

Notice that the upper bound of Rα(t,At) is in terms of all
base arms of At. However, because ∆V−1

t−1 only contains
information of observed base arms, it is hard to estimate an
upper bound for

∑T
t=1 Rα(t,At).

Lemma 5.4. Suppose Ineq.(3) holds for time 1 ≤ t ≤ T .

E

[
T∑
t=1

Rα(t,At)

∣∣∣∣∣Ht
]
≤ 2B

p∗
E

[
T∑
t=1

Ot∑
k=1

(
αt(a

t
k) + γt(a

t
k)
)]
.

(13)

Proof.

E

[
T∑
t=1

Rα(t,At)

∣∣∣∣∣Ht
]

=E

[
T∑
t=1

Rα(t,At)E
[

1

pt,At
1{Ot = K}

∣∣∣∣At

]∣∣∣∣∣Ht
]

≤ 1

p∗
E

[
T∑
t=1

Rα(t,At)1{Ot = K}

∣∣∣∣∣Ht
]

≤2B

p∗
E

[
T∑
t=1

Ot∑
k=1

(
αt(a

t
k) + γt(a

t
k)
)]
.

Lemma 5.5. Assuming |ΨT+1| ≥ 2, we have∑
t∈ΨT+1

Ot∑
k=1

αt(a
t
k) ≤ O

(√
KL |ΨT+1| ln(1/δ)

)
.

Proof.

∑
t∈ΨT+1

Ot∑
k=1

αt−1(atk) ≤
√

2 log(2/δ)
∑

t∈ΨT+1

K∑
k=1

1√
s(t,atk)

≤
√

2 log(2/δ)
∑

t∈ΨT+1

K · 1√
tK/L

≤O
(√

KL |ΨT+1| ln(1/δ)
)
.

Theorem 5.2. If SPUCB runs with Rγ =
√

1
2 ln 2LT

δ , then
with probability at least 1− δ, the regret of the algorithm is

O
(√

dKT ln3 (LT ln(T )/δ) +
√
KLT ln (1/δ)

)
.

Proof. Based on Lemma 5.3 and Lemma 5.5, the proof is similar
to the proof of [Theorem 1, Chu et al.].

Although the upper bound Õ(
√
T ) of SPUCB for Top-K

problem is the same as C3-UCB, our method can accurately
find the optimal item set and outperform C3-UCB because
the non-parametric part of Semi-Parametric Contextual Ban-
dit Problem will cause a large regret for C3-UCB, which is
also shown in the experiments in Section 6.

5.3 Online Optimization
To make our method more practical in real production sys-
tem, an optimization technique on the linear parametric term
is proposed to deal with high dimensional features.

SPUCB needs to calculate ‖∆xt,a‖∆V−1
t−1

in each step for

all arms leading to an O(d3) time complexity, where d is the
dimension of feature vector. To overcome the bottleneck of
matrix inversion, we use a novel iterative formula to reduce
the complexity to O(d2) without any accuracy loss.

Because of ∆Vt+1 = ∆Vt + ∆xt,atk∆xTt,atk
, thus

∆V−1
t+1 ← ∆V−1

t −
∆V−1

t ∆xt,atk∆xTt,atk
∆V−1

t

∆xTt,aτk∆V−1
t ∆xt,atk + 1

(14)

6 Experiments
SPUCB’s performance and efficiency will be evaluated by
extensive experiments on both synthetic and real-world data
sets, compared with the following state-of-art algorithms:

• UCB [Auer et al., 2002]: a representative classic MAB,
which can be seen as a pure non-parametric model.

• LINUCB [Chu et al., 2011]: a representative contextual
bandit, which can be seen as a pure parametric model.

• C3-UCB [Li et al., 2016]: a representative contextual
bandit algorithm with a cascading model, which can be
seen as a pure parametric model used in Top-K problem.
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Figure 1: Cumulative regret comparison on synthetic dataset for
K = 1, L = 100, d = 10.
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Figure 2: Regret comparison for K = 5, a = 0.5 and efficiency
improvement on synthetic dataset.

• LSPS [Ou et al., 2019]: a representative semi-
parametric bandit algorithm using Thompson Sampling.

All super-parameters of the above algorithms are tuned by
a cross-validation experiment with the best performance.
(Specifically, UCB: c = 0.2, LINUCB: α = 3.5, LSPS: σ1 =
0.3, σ2 = 0.01, σ3 = 0.3, SPUCB: R = 0.2, δ = 0.9, λ =
1.0, Rr = 0.5)

6.1 Experiments on Synthetic Data
The synthetic dataset is randomly generated following our as-
sumptions. Firstly, we sample linear parameters from a stan-
dard Gaussian distribution and normalize them so that their
norms are equal to a predefined constant a ∈ [0, 1]. Secondly,
the bias of each arm is uniformly sampled from [0, 1− a]. So
a can be used to control the weight of non-parameter part.
Thirdly, in each time step, contextual features of each arm
are sampled from a standard Gaussian distribution and are
normalized to [0, 1]. The stochastic reward of an arm is sam-
pled from a Gaussian distribution whose expectation is the
expected reward of the arm calculated by Eq. 1 in the situ-
ation of Top-1 (K = 1). In Top-K (K ≥ 2) scenario, we
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Figure 3: Regret comparison on real-world dataset.

need to simulate the cascading model. The stochastic reward
of an arm is sampled from a binomial distribution whose pos-
itive probability is its expected reward (by Eq. 1). Specifi-
cally, We run algorithms for 10, 000 time steps at most and
set L = 100, d = 10, a = 0.4. All experiments are repeated
for 50 times and reported average results.

The performance comparison on average cumulative re-
grets is shown in Figure 1 when K = 1. Firstly, from the
curve, we can find that all algorithms except SPUCB failed
to converge within 10, 000 time steps. The performance of
SPUCB is significantly superior to other algorithms. Sec-
ondly, Although UCB’s coverage speed will be faster if we
enlarge the weight of non-parametric part, the cumulative
regrets are still worse than that of SPUCB, shown in Fig-
ure 1(b). On the contrary, LINUCB will be better if we set a
small weight for non-parametric part, shown in Figure 1(a).
Thirdly, even if LSPS is better than UCB and LINUCB, its
assumption that arms’ features are constant over time lead-
ing to an increasing gap in cumulative regrets compared with
SPUCB. Finally, SPUCB can also converge quickly and still
be superior to the others in the case ofK = 5, which is shown
in Figure 2(a). Although the regret upper bound of SPUCB is
the same with C3-UCB, SPUCB outperforms C3-UCB be-
cause of the non-parametric part of Semi-Parametric Contex-
tual Bandit Problem. Moreover, the achieved speed-up of the
proposed online optimization of Section 5.3 for SPUCB is
given in Figure 2(b). The optimization will significantly im-
prove its efficiency for nearly 34 times when the dimension
of feature vector, d, is 5000. The total running time for online
updating parameters is less than 20ms with a single machine
with 4-core CPUs. These results illustrate that the proposed
optimization technique makes our algorithm more practical.

6.2 Experiments on Real-World Data
The real-world dataset is collected from one of the largest e-
commercial platform in China for the problem of products
recommendation. It contains 100 items with 42-dimensional
features from a special holiday. The features of arms contain
several statistical features which evolve greatly over time. To
make the experiments reproducible, we train a DNN model
based on historical user behaviours on the items to simulate
the reward function, and use it as the environment to evalu-
ate online algorithms. In each time step, stochastic reward
of an arm is sampled from a binomial distribution whose ex-
pectation is the expected reward of the arm. Figure 3 shows
the comparison of cumulative regrets. As linear reward func-
tion is a mis-specified function, LINUCB suffers large re-
grets. Besides, LSPS is also worse than SPUCB because it
cannot deal with evolving features properly.

7 Conclusions
We study a novel Semi-Parametric Contextual Bandit Prob-
lem and propose a UCB-like framework SPUCB to deal with
incomplete and evolving features. It can be flexibly imple-
mented to solve various problems with parametric functions,
and has a gap-free bound. Moreover, an optimization tech-
nique is proposed to handle high dimensional features with
a linear parametric function. Our method has also been de-
ployed as a service to support online businesses in Alibaba.
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