
An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep
Reinforcement Learning Agents

Felipe Petroski Such1 , Vashisht Madhavan1 , Rosanne Liu1 , Rui Wang1

Pablo Samuel Castro2 , Yulun Li1 , Jiale Zhi1 , Ludwig Schubert3
Marc G. Bellemare2 , Jeff Clune1 and Joel Lehman1∗

1Uber AI Labs
2Google Brain

3OpenAI

Abstract
Much human and computational effort has aimed to
improve how deep reinforcement learning (DRL)
algorithms perform on benchmarks such as the
Atari Learning Environment. Comparatively less
effort has focused on understanding what has been
learned by such methods, and investigating and
comparing the representations learned by different
families of DRL algorithms. Sources of friction in-
clude the onerous computational requirements, and
general logistical and architectural complications
for running DRL algorithms at scale. We lessen
this friction, by (1) training several algorithms at
scale and releasing trained models, (2) integrating
with a previous DRL model release, and (3) releas-
ing code that makes it easy for anyone to load, vi-
sualize, and analyze such models. This paper in-
troduces the Atari Zoo framework, which contains
models trained across benchmark Atari games, in
an easy-to-use format, as well as code that im-
plements common modes of analysis and connects
such models to a popular neural network visual-
ization library. Further, to demonstrate the poten-
tial of this dataset and software package, we show
initial quantitative and qualitative comparisons be-
tween the performance and representations of sev-
eral DRL algorithms, highlighting interesting and
previously unknown distinctions between them.

1 Introduction
Since its introduction the Atari Learning Environment (ALE;
[Bellemare et al., 2013]) has been an important reinforcement
learning (RL) testbed. It enables easily evaluating algorithms
on over 50 emulated Atari games spanning diverse game-
play styles, providing a window on such algorithms’ gener-
ality. Indeed, surprisingly strong results in ALE with deep
neural networks (DNNs), published in Nature [Mnih et al.,
2015], greatly contributed to the current popularity of deep
reinforcement learning (DRL).

Like other machine learning benchmarks, much effort aims
to quantitatively improve state-of-the-art (SOTA) scores. As

∗Corresponding author: joel.lehman@uber.com

the DRL community grows, a paper pushing SOTA is likely
to attract significant interest and accumulate citations. While
improving performance is important, it is equally important
to understand what DRL algorithms learn, how they pro-
cess and represent information, and what are their proper-
ties, strengths, and weaknesses. These questions cannot be
answered through simple quantitative measurements of per-
formance across the ALE suite of games.

Compared to pushing SOTA, much less work has fo-
cused on understanding, interpreting, and visualizing prod-
ucts of DRL; in particular, little research compares DRL al-
gorithms across dimensions other than performance. This
paper thus aims to alleviate the considerable friction for
those looking to rigorously understand the qualitative be-
havior of DRL agents. Three main sources of such friction
are: (1) the significant computational resources required to
run DRL at scale, (2) the logistical tedium of plumbing the
products of different DRL algorithms into a common inter-
face, and (3) the wasted effort in re-implementing standard
analysis pipelines (like t-SNE embeddings of the state space
[Mnih et al., 2015], or activation maximization for visual-
izing what neurons in a model represent [Erhan et al., 2009;
Olah et al., 2018; Nguyen et al., 2017; Simonyan et al., 2013;
Yosinski et al., 2015; Mahendran and Vedaldi, 2016]). To ad-
dress these frictions, this paper introduces the Atari Zoo, a re-
lease of trained models spanning major families of DRL algo-
rithms, and an accompanying open-source software package1

that enables their easy analysis, comparison, and visualiza-
tion (and similar analysis of future models). In particular, this
package enables easily downloading particular frozen models
of interest from the zoo on-demand, further evaluating them
in their training environment or modified environments, gen-
erating visualizations of their neural activity, exploring com-
pressed visual representations of their behavior, and creating
synthetic input patterns that reveal what particular neurons
most respond to.

To demonstrate the promise of this model zoo and soft-
ware, this paper presents an initial analysis of the products of
seven DRL algorithms spanning policy gradient, value-based,
and evolutionary methods2: A2C (policy-gradient; [Mnih

1https://github.com/uber-research/atari-model-zoo
2While evolutionary algorithms are excluded from some defini-

tions of RL, their inclusion in the zoo can help investigate what dis-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3260



et al., 2016]), IMPALA (policy-gradient; [Espeholt et al.,
2018]), DQN (value-based; [Mnih et al., 2015]), Rainbow
(value-based; [Hessel et al., 2017]), Ape-X (value-based;
[Horgan et al., 2018]), ES (evolutionary; [Salimans et al.,
2017]), and Deep GA (evolutionary; [Such et al., 2017]).
The analysis illuminates differences in learned policies across
methods that are independent of raw score performance, high-
lighting the benefit of going beyond simple quantitative mea-
sures and of having a unifying software framework that en-
ables analyses with multiple, different, complementary tech-
niques and applying them across many RL algorithms.

2 Background
2.1 Visualizing Deep Networks
One line of DNN research focuses on visualizing the inter-
nal dynamics of a DNN [Yosinski et al., 2015] or examines
what particular neurons detect or respond to [Erhan et al.,
2009; Zeiler and Fergus, 2014; Olah et al., 2018; Nguyen
et al., 2017; Simonyan et al., 2013; Yosinski et al., 2015;
Mahendran and Vedaldi, 2016]. The hope is to gain more
insight into how DNNs are representing information, moti-
vated both to enable more interpretable decisions from these
models [Olah et al., 2018] and to illuminate previously un-
known properties about DNNs [Yosinski et al., 2015]. For
example, through live visualization of all activations in a vi-
sion network responding to different images, [Yosinski et al.,
2015] highlighted that representations were often surprisingly
local (as opposed to distributed), e.g. one convolutional filter
proved to be a reliable face detector. One practical value of
such insights is that they can catalyze future research. The
Atari Zoo enables animations in the spirit of [Yosinski et al.,
2015] that show an agent’s activations as it interacts with a
game, and also enables creating synthetic inputs via activation
maximization [Erhan et al., 2009; Zeiler and Fergus, 2014;
Olah et al., 2018; Nguyen et al., 2017; Simonyan et al., 2013;
Yosinski et al., 2015; Mahendran and Vedaldi, 2016], specif-
ically by connecting DRL agents to the Lucid visualization
package3.

2.2 Understanding Deep RL
While much more visualization and understanding work has
been done for vision models than for DRL, a few papers
directly focus on understanding DRL agents [Greydanus et
al., 2017; Zahavy et al., 2016], and many others feature
some analysis of DRL agent behavior (often in the form of
t-SNE diagrams of the state space; see [Mnih et al., 2015]).
One approach to understanding DRL agents is to investi-
gate the learned features of models [Greydanus et al., 2017;
Zahavy et al., 2016]. For example, [Zahavy et al., 2016] visu-
alize what pixels are most important to an agent’s decision by
using gradients of decisions with respect to pixels. Another
approach is to modify the DNN architecture or training pro-
cedure such that a trained model will have more interpretable
features [Annasamy and Sycara, 2018]. For example, [An-
nasamy and Sycara, 2018] augment a model with an atten-

tinguishes such black-box optimization from more traditional RL.
3http://https://github.com/tensorflow/lucid

tion mechanism and a reconstruction loss, hoping to produce
interpretable explanations as a result.

The software package released here is in the spirit of the
first paradigm. It facilitates understanding the most com-
monly applied architectures instead of changing them, al-
though it is designed also to accommodate importing in new
vision-based DRL models, and could thus be also used to
analyze agents explicitly engineered to be interpretable. In
particular, the package enables re-exploring many past DRL
analysis techniques at scale, and across algorithms, which
were previously applied only for one algorithm and across
only a handful of hand-selected games.

2.3 Model Zoos
A useful mechanism for reducing friction for analyzing and
building upon models is the idea of a model zoo, i.e. a repos-
itory of pre-trained models that can easily be further investi-
gated, fine-tuned, and/or compared (e.g. by looking at how
their high-level representations differ). For example, the
Caffe website includes a model zoo with many popular vi-
sion models, as do Tensorflow, Keras, and PyTorch. The
idea is that training large-scale vision networks (e.g. on the
ImageNet dataset) can take weeks with powerful GPUs, and
that there is little reason to constantly reduplicate the effort
of training. Pre-trained word-embedding models are often re-
leased with similar motivation, e.g. for Word2Vec or GLoVE.
However, such a practice is much less common in the space
of DRL; one reason is that so far, unlike with vision mod-
els and word-embedding models, there are few other down-
stream tasks from which Atari DRL agents provide obvious
value. But, if the goal is to better understand these models
and algorithm, both to improve them and to use them safely,
then there is value in their release.

The recent Dopamine reproducible DRL package [Castro
et al., 2018] released trained ALE models; it includes fi-
nal checkpoints of models trained by several DQN variants.
However, in general it is non-trivial to extract TensorFlow
models from their original context for visualization purposes,
and to compare agent behavior across DRL algorithms in the
same software framework (e.g. due to slight differences in
image preprocessing), or to explore dynamics that take place
over learning, i.e. from intermediate checkpoints. To rem-
edy this, for this paper’s accompanying software release, the
Dopamine checkpoints were distilled into frozen models that
can be easily loaded into the Atari Zoo framework; and for
algorithms trained specifically for the Atari Zoo, we distill
intermediate checkpoints in addition to final ones.

3 Generating the Zoo
The approach is to run several validated implementations of
DRL algorithms and to collect and standardize the models
and results, such that they can then be easily used for down-
stream analysis and synthesis. There are many algorithms,
implementations of them, and different ways that they could
be run (e.g. different hyperparameters, architectures, input
representations, stopping criteria, etc.). These choices influ-
ence the kind of post-hoc analysis that is possible. For ex-
ample, Rainbow most often outperforms DQN, and if only

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3261



final models are released, it is impossible to explore scientific
questions where it is important to control for performance.

We thus adopted the high level principles that the Atari Zoo
should hold as many elements of architecture and experimen-
tal design constant across algorithms (e.g. DNN structure, in-
put representation), should enable as many types of down-
stream analysis as possible (e.g. by releasing checkpoints
across training time), and should make reasonable allowances
for the particularities of each algorithm (e.g. ensuring hyper-
parameters are well-fit to the algorithm, and allowing for dif-
ferences in how policies are encoded or sampled from). The
next paragraphs describe specific design choices.

3.1 Frozen Model Selection Criteria
To enable the platform to facilitate a variety of explorations,
we release multiple frozen models for each run, according to
different criteria that may be useful to control for when com-
paring learned policies. The idea is that depending on the
desired analysis, controlling for samples, or for wall-clock,
or for performance (i.e. comparing similarly-performing poli-
cies) will be more appropriate. In particular, in addition to
releasing the final model for each run, additional are mod-
els taken over training time (at one, two, four, six, and ten
hours); over game frame samples (400 million, and 1 billion
frames); over scores (if an algorithm reaches human level per-
formance); and also a model before any training, to enable
analysis of how weights change from their random initializa-
tion. The hope is that these frozen models will cover a wide
spectrum of possible use cases.

3.2 Algorithm Choice
One important choice for the Atari Zoo is which DRL algo-
rithms to run and include. The main families of DRL algo-
rithms that have been applied to the ALE are policy gradients
methods like A2C [Mnih et al., 2016], value-based meth-
ods like DQN [Mnih et al., 2015], and black-box optimiza-
tion methods like ES [Salimans et al., 2017] and Deep GA
[Such et al., 2017]. Based on representativeness and available
trusted implementations, the particular algorithms chosen to
train included two policy gradients algorithms (A2C [Mnih
et al., 2016] and IMPALA [Espeholt et al., 2018]), two evo-
lutionary algorithms (ES [Salimans et al., 2017] and Deep
GA [Such et al., 2017]), and one value-function based algo-
rithm (a high-performing DQN variant, Ape-X; [Horgan et
al., 2018]). Additionally, models are also imported from the
Dopamine release [Castro et al., 2018], which include DQN
[Mnih et al., 2015] and a sophisticated variant of it called
Rainbow [Hessel et al., 2017]. Note that from the Dopamine
models, only final models are currently available. Hyperpa-
rameters and training details for all algorithms are available
in supplemental material4 section S3. We hope to include
models from additional algorithms in future releases.

3.3 DNN Architecture and Input Representation
All algorithms are run with the DNN architecture from [Mnih
et al., 2015], which consists of three convolutional layers

4Supplemental material PDF: http://bit.ly/2GJJstT

(a) RGB frame (b) Observation (c) RAM state

Figure 1: Input and RAM Representation. (a) One RGB frame of
emulated Atari gameplay is shown, which is (b) preprocessed and
concatenated with previous frames before being fed as an observa-
tion into the DNN agent. A compressed representation of a 2000-
step ALE simulation is shown in (c), i.e. the 1024-bit RAM state
(horizontal axis) unfurled over frames (vertical axis).

(with filter size 8x8, 4x4, and 3x3, followed by a fully-
connected layer). For most of the explored algorithms, the
fully-connected layer connects to an output layer with one
neuron per valid action in the underlying Atari game. How-
ever, A2C and IMPALA have an additional output that ap-
proximates the state value function; Ape-X’s architecture fea-
tures dueling DQN [Wang et al., 2015], which has two sepa-
rate fully-connected streams; and Rainbow’s architecture in-
cludes C51 [Bellemare et al., 2017], which uses many outputs
to approximate the distribution of expected Q-values.

Atari frames are 210x160 color images (see figure 1a); the
canonical DRL representation is a a tensor consisting of the
four most recent observation frames, grayscaled and down-
sampled to 84x84 (figure 1b). By including some previous
frames, the aim is to make the game more fully-observable, to
boost performance of the feed-forward architectures that are
currently most common in Atari research (although recurrent
architectures offer possible improvements [Mnih et al., 2016;
Espeholt et al., 2018]). One useful Atari representation that
is applied in post-training analysis in this paper, is the Atari
RAM state, which is only 1024 bits long but encompasses the
true underlying state (figure 1c).

3.4 Data Collection
All algorithms are run across 55 Atari games, for at least three
independent random weight initializations. Regular check-
points were taken during training; after training, the check-
points that best fit each of the desired criteria (e.g. 400 mil-
lion frames or human-level performance) were frozen and in-
cluded in the zoo. The advantage of this post-hoc culling
is that additional criteria can be added in the future, e.g. if
Atari Zoo users introduce a new use case, because the original
checkpoints are archived. Log files were stored and converted
into a common format that are also released with the mod-
els, to aid future performance curve comparisons for other
researchers. Each frozen model was run post-hoc in ALE
for 2500 timesteps to generate cached behavior of policies
in their training environment, which includes the raw game
frames, the processed four-frame observations, RAM states,
and high-level representations (e.g. neural representations at
hidden layers). As a result, it is possible to do meaningful

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3262



analysis without ever running the models themselves.

4 Quantitative Analysis
The open-source software package released with the accep-
tance of this work provides an interface to the Atari Zoo
dataset, and implements several common modes of analysis.
Models can be downloaded with a single line of code; and
other single-line invocations interface directly with ALE and
return the behavioral outcome of executing a model’s policy,
or create movies of agents superimposed with neural activa-
tion, or access convolutional weight tensors. In this section,
we demonstrate analyses the Atari Zoo software can facili-
tate, and highlight some of its built-in features. For many
of the analyses below, for computational simplicity we study
results in a representative subset of 13 ALE games used by
prior research [Such et al., 2017], which we refer to here as
the analysis subset of games.

4.1 Convolutional Filter Analysis
While understanding a DNN only by examining its weights
is challenging, weights directly connected to the input can of-
ten be interpreted. For example, from visualizing the weights
of the first convolutional layer in a vision model, Gabor-like
edge detection filters are nearly always present. An interest-
ing question is if Gabor-like filters also arise when DRL al-
gorithms are trained from pixel input (as is done here). In
visualizing filters across games and DRL algorithms, edge-
detector-like features sometimes arise in the gradient-based
methods, but they are seemingly never as crisp as in vision
models; this may because ALE lacks the visual complexity
of natural images. In contrast, the filters in the evolution-
ary models are less regular. Representative examples across
games and algorithms are shown in supplemental figure S1.

Learned filters commonly are tiled similarly across time
(i.e. across the four DNN input frames), with past frames hav-
ing lower-intensity weights. One explanation is that reward
gradients are more strongly influenced by present observa-
tions. To explore this systematically, across games and algo-
rithms we examined the absolute magnitude of filter weights
connected to the present frame versus the past. In contrast to
the gradient-based methods the evolutionary methods show
no discernable preference across time (supplemental figure
S2), again suggesting that their learning differs qualitatively
from the gradient-based methods. Interestingly, a rigorous
information-theoretic approximation of memory usage is ex-
plored by [Dann et al., 2016] in the context of DQN; our mea-
sure well-correlates with theirs despite the relative simplicity
of exploring only filter weight strength (supplemental section
S1.1).

4.2 Robustness to Observation Noise
An important property is how agents perform in slightly
out-of-distribution (OOD) situations; ideally they would not
catastrophically fail in the face of nominal change. While it
is difficult to freely alter the ALE game dynamics (without
learning how to program in 6502 assembly code), it is pos-
sible to systematically distort observations. Here we explore
one simple OOD change to observations by adding increas-
ingly severe noise to the observations input to DNN-based

Figure 2: A sub-detecting neuron in Seaquest. Each image repre-
sents an observation from an Ape-X agent playing Seaquest. The
red square indicates which image patch highly-activated the sub-
detecting neuron on the third convolutional layer of the DNN. Hav-
ing multiple tools (such as this image patch finder, or the activation
movies which identified this neuron of interest) enables more easily
triangulating and verifying hypotheses about the internals of a DRL
agent’s neural network.

agents, and observe how their evaluated game score degrades.
The motivation is to discover whether some learning algo-
rithms are learning more robust policies than others. The re-
sults show that with some caveats, methods with a direct rep-
resentation of the policy appear more robust to observation
noise (supplemental figure S4). A similar study conducted
for robustness to parameter noise (supplemental section S1.2)
tentatively suggests that actor-critic methods are more robust
to such noise.

4.3 Distinctiveness of Learned Policies
To explore the distinctive signature of solutions discovered by
different DRL algorithms, we train image classifiers to iden-
tify the generating DRL algorithm given states sampled from
independent runs of each algorithm (details are in supplemen-
tal section S1.3). Supplemental figure S6 shows the confu-
sion matrix for Seaquest, wherein a cluster of policy search
methods (A2C, ES, and GA) have the most inter-class confu-
sion, reflecting (as confirmed in later sections) that these al-
gorithms tend to converge to the same sub-optimal behavior
in this game; results are qualitatively similar when tabulated
across the analysis subset of games (supplemental figure S7).

5 Visualization
We next highlight the Atari Zoo’s capabilities to quickly and
systematically visualize policies, which broadly can be di-
vided into three categories: Direct policy visualization, di-
mensionality reduction, and neuron activation maximization.

5.1 Animations to Inspect Policy and Activations
To quickly survey the solutions being learned, our software
generates grids of videos, where one grid axis spans different
DRL algorithms, and the other axis covers independent runs

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3263



Figure 3: Multiple runs of algorithms and sharing the same RAM-space embedding in Seaquest. This plot shows one ALE evaluation per
model for A2C, ES, and Ape-X, visualized in the same underlying RAM t-SNE embedding. Each dot represents a separate frame from each
agent, colored by score (darker color indicates higher score). The plot highlights that in this game, A2C and ES visit similar distributions
of states (corresponding to the same sub-optimal behavior), while Ape-X visits a distinct part of the state-space, i.e. matching what could
manually be distilled from watching the policy movies shown in supplemental figure S9. The interface allows clicking on points to observe
the corresponding RGB frame, and for toggling different runs of different algorithms for visualization.

of the algorithm. Such videos can highlight when different al-
gorithms are converging to the same local optimum (e.g. sup-
plemental figure S9 shows a situation where this is the case
for A2C, ES, and the GA; video: http://bit.ly/2XpD5kO).

To enable investigating the internal workings of the DNN,
our software generates movies that display activations of all
neurons alongside animated frames of the agent acting in
game. This approach is inspired by the deep visualization
toolbox [Yosinski et al., 2015], but put into a DRL con-
text. Supplemental figure S10 shows how this tool can lead
to recognizing the functionality of particular high-level fea-
tures (video: http://bit.ly/2tFHiCU); in particular, it helped to
identify a submarine detecting neuron on the third convolu-
tion layer of an Ape-X agent. Note that for ES and GA, no
such specialized neuron was found; activations seemed qual-
itatively more distributed for those methods.

5.2 Image Patches that Maximally Excite Filters
One automated technique for uncovering the functionality of
a particular convolutional filter is to find which image patches
evoke from it the highest magnitude activations. Given a

trained DRL agent and a target convolution filter to analyze,
observations from the agent interacting with its ALE training
environment are input to the agent’s DNN, and resulting maps
of activations from the filter of interest are stored. These maps
are sorted by the single maximum activation within them, and
the geometric location within the map of that maximum ac-
tivation is recorded. Then, for each of these top-most acti-
vations, the specific image patch from the observation that
generated it is identified and displayed, by taking the recep-
tive field of the filter into account (i.e. modulated by both the
stride and size of the convolutional layers). As a sanity check,
we validate that the neuron identified in the previous section
does indeed maximally fire for submarines (figure 2).

5.3 Dimensionality Reduction

Dimensionality reduction provides another view on agent be-
havior; often DRL research includes t-SNE plots of agent
DNN representations that summarize behavior in the domain
[Mnih et al., 2015]. Our software includes such an imple-
mentation (supplemental figure S12).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3264



Figure 4: Synthesized inputs for output layer neurons in Seaquest.
For a representative run of Rainbow and DQN, inputs are shown op-
timized to maximize the activation of the first neuron in the output
layer of a Seaquest network. Because Rainbow includes C51, its
image is in effect optimized to maximize the probability of a low-
reward scenario; this neuron appears to be learning interpretable fea-
tures such as submarine location and the seabed. When maximizing
(or minimizing) DQN Q-value outputs (one example shown on left),
this qualitative outcome of interpretability was not observed.

However, such an approach relies on embedding the high-
level representation of one agent; it is unclear how to apply
it to create an embedding appropriate for comparisons of dif-
ferent independent runs of the same algorithm, or runs from
different DRL algorithms. As an initial approach, we imple-
ment an embedding based on the Atari RAM representation
(which is the same across algorithms and runs, but distinct be-
tween games). Like the grid view of agent behaviors and the
state-distinguishing classifier, this t-SNE tool provides high-
level information from which to compare runs of or between
different algorithms (figure 3); details of this approach are
provided in supplemental section S2.1.

5.4 Synthesizing Inputs to Understand Neurons
While the previous sections explore DNN activations in
the context of an agent’s training environment, another ap-
proach is to optimize synthetic input images that stimulate
particular DNN neurons. Variations on this approach have
yielded striking results in vision models [Nguyen et al., 2017;
Olah et al., 2018; Simonyan et al., 2013]; the hope is that
these techniques could yield an additional view on DRL
agents’ neural representations. To enable this analysis, we
leverage the Lucid visualization library; in particular, we cre-
ate wrapper classes that enable easy integration of Atari Zoo
models into Lucid, and release Jupyter notebooks that gener-
ate synthetic inputs for different DRL models.

We now present a series of synthetic inputs generated by
the Lucid library across a handful of games that highlight
the potential of these kinds of visualizations for DRL under-
standing (further details of the technique used are described in
supplemental section S2.2. We first explore the kinds of fea-
tures learned across depth. Supplemental figure S13 supports
what was learned by visualizing the first-layer filter weights
for value-based networks (section 4.1; i.e. showing that first
convolution layers in the value-based networks appear to be

learning edge-detector features). The activation videos of
section 5.1 and the patch-based approach of section 5.2 help
to provide grounding, showing that in the context of the game,
some first-layer filters detect the edges of the screen, in effect
to serve as location anchors, while others encode concepts
like blinking objects (see figure S11). Supplemental figure
S14 explores visualizing later-layer convolution filters, and
figure 4 show inputs synthesized to maximize output neurons,
which sometimes yields interpretable features.

Such visualizations can also reveal that critical features
are being attended to (figure 5 and supplemental figure S15).
Overall, these visualizations demonstrate the potential of this
kind of technique, and we believe that many useful further
insights may result from a more systematic application and
investigation of this and many of the other interesting visu-
alization techniques implemented by Lucid, which can now
easily be applied to Atari Zoo models. Also promising would
be to further explore regularization to constrain the space of
synthetic inputs, e.g. a generative model of Atari frames in
the spirit of [Nguyen et al., 2017] or similar works.

6 Discussion and Conclusions

There are many follow-up extensions that the initial explo-
rations of the zoo raise. One natural extension is to include
more DRL algorithms (e.g. TRPO or PPO [Schulman et al.,
2017]). Beyond algorithms, there are many alternate archi-
tectures that might have interesting effects on representation
and decision-making, for example recurrent architectures, or
architectures that exploit attention. Also intriguing is exam-
ining the effect of the incentive driving search: Do auxiliary
or substitute objectives qualitatively change DRL representa-
tions, e.g. as in UNREAL [Jaderberg et al., 2016], curiosity-
driven exploration [Pathak et al., 2017], or novelty search
[Conti et al., 2017]? How do the representations and fea-
tures of meta-learning agents such as MAML [Finn et al.,
2017] change as they learn a new task? Finally, there are
other analysis tools that could be implemented, which might
illuminate other interesting properties of DRL algorithms and
learned representation, e.g. the image perturbation analysis of
[Greydanus et al., 2017] or a variety of sophisticated neuron
visualization techniques [Nguyen et al., 2017]. We welcome
community contributions for these algorithms, models, archi-
tectures, incentives, and tools.

While the main motivation for the zoo was to reduce fric-
tion for research into understanding and visualizing the be-
havior of DRL agents, it can also serve as a platform for
other research questions. For example, having a zoo of agents
trained on individual games, for different amounts of data,
also would reduce friction for exploring transfer learning
within Atari, i.e. whether experience learned on one game
can quickly benefit on another game. Also, by providing a
huge library of cached rollouts for agents across algorithms,
the zoo may be interesting in the context of learning from
demonstrations, or for creating generative models of games.
In conclusion, we look forward to seeing how this dataset will
be used by the community at large.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3265



Figure 5: Synthesized inputs for fully-connected layer neurons in Freeway. Inputs synthesized to maximize activations of the first three
neurons in the first fully connected layer are shown for a respresentative DQN and Rainbow DNN. One of the Rainbow neurons (in red
rectangle) appears to be capturing lane features.

Acknowledgements
We thank the members of Uber AI Labs, in particular, Ja-
son Yosinski for helpful discussions; additionally, Chris Olah
provided useful input during initial stages of the project.

References
[Annasamy and Sycara, 2018] Raghuram Mandyam An-

nasamy and Katia Sycara. Towards better interpretability
in deep q-networks. arXiv preprint arXiv:1809.05630,
2018.

[Bellemare et al., 2013] Marc G Bellemare, Yavar Naddaf,
Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents.
Journal of Artificial Intelligence Research, 47:253–279,
2013.

[Bellemare et al., 2017] Marc G Bellemare, Will Dabney,
and Rémi Munos. A distributional perspective on re-
inforcement learning. arXiv preprint arXiv:1707.06887,
2017.

[Castro et al., 2018] Pablo Samuel Castro, Subhodeep
Moitra, Carles Gelada, Saurabh Kumar, and Marc G
Bellemare. Dopamine: A research framework for deep
reinforcement learning. arXiv preprint arXiv:1812.06110,
2018.

[Conti et al., 2017] Edoardo Conti, Vashisht Madhavan, Fe-
lipe Petroski Such, Joel Lehman, Kenneth O Stanley, and
Jeff Clune. Improving exploration in evolution strate-
gies for deep reinforcement learning via a population of
novelty-seeking agents. arXiv preprint arXiv:1712.06560,
2017.

[Dann et al., 2016] Christoph Dann, Katja Hofmann, and Se-
bastian Nowozin. Memory lens: How much memory does
an agent use? arXiv preprint arXiv:1611.06928, 2016.

[Erhan et al., 2009] Dumitru Erhan, Yoshua Bengio, Aaron
Courville, and Pascal Vincent. Visualizing higher-layer

features of a deep network. University of Montreal,
1341(3):1, 2009.

[Espeholt et al., 2018] Lasse Espeholt, Hubert Soyer, Remi
Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning,
et al. Impala: Scalable distributed deep-rl with impor-
tance weighted actor-learner architectures. arXiv preprint
arXiv:1802.01561, 2018.

[Finn et al., 2017] Chelsea Finn, Pieter Abbeel, and Sergey
Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. arXiv preprint arXiv:1703.03400, 2017.

[Greydanus et al., 2017] Sam Greydanus, Anurag Koul,
Jonathan Dodge, and Alan Fern. Visualizing and under-
standing atari agents. arXiv preprint arXiv:1711.00138,
2017.

[Hessel et al., 2017] Matteo Hessel, Joseph Modayil, Hado
Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-
ney, Dan Horgan, Bilal Piot, Mohammad Azar, and David
Silver. Rainbow: Combining improvements in deep re-
inforcement learning. arXiv preprint arXiv:1710.02298,
2017.

[Horgan et al., 2018] Dan Horgan, John Quan, David Bud-
den, Gabriel Barth-Maron, Matteo Hessel, Hado Van Has-
selt, and David Silver. Distributed prioritized experience
replay. arXiv preprint arXiv:1803.00933, 2018.

[Jaderberg et al., 2016] Max Jaderberg, Volodymyr Mnih,
Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement
learning with unsupervised auxiliary tasks. arXiv preprint
arXiv:1611.05397, 2016.

[Mahendran and Vedaldi, 2016] Aravindh Mahendran and
Andrea Vedaldi. Visualizing deep convolutional neural
networks using natural pre-images. International Journal
of Computer Vision, 120(3):233–255, 2016.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3266



[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529,
2015.

[Mnih et al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, pages 1928–
1937, 2016.

[Nguyen et al., 2017] Anh Nguyen, Jeff Clune, Yoshua Ben-
gio, Alexey Dosovitskiy, and Jason Yosinski. Plug & play
generative networks: Conditional iterative generation of
images in latent space. In CVPR, volume 2, page 7, 2017.

[Olah et al., 2018] Chris Olah, Arvind Satyanarayan, Ian
Johnson, Shan Carter, Ludwig Schubert, Katherine Ye,
and Alexander Mordvintsev. The building blocks of in-
terpretability. Distill, 3(3):e10, 2018.

[Pathak et al., 2017] Deepak Pathak, Pulkit Agrawal,
Alexei A Efros, and Trevor Darrell. Curiosity-driven
exploration by self-supervised prediction. In International
Conference on Machine Learning (ICML), volume 2017,
2017.

[Salimans et al., 2017] Tim Salimans, Jonathan Ho,
Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution
strategies as a scalable alternative to reinforcement
learning. arXiv preprint arXiv:1703.03864, 2017.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[Simonyan et al., 2013] Karen Simonyan, Andrea Vedaldi,
and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and
saliency maps. arXiv preprint arXiv:1312.6034, 2013.

[Such et al., 2017] Felipe Petroski Such, Vashisht Madha-
van, Edoardo Conti, Joel Lehman, Kenneth O Stanley,
and Jeff Clune. Deep neuroevolution: genetic algo-
rithms are a competitive alternative for training deep neu-
ral networks for reinforcement learning. arXiv preprint
arXiv:1712.06567, 2017.

[Wang et al., 2015] Ziyu Wang, Tom Schaul, Matteo Hes-
sel, Hado Van Hasselt, Marc Lanctot, and Nando De Fre-
itas. Dueling network architectures for deep reinforcement
learning. arXiv preprint arXiv:1511.06581, 2015.

[Yosinski et al., 2015] Jason Yosinski, Jeff Clune, Anh
Nguyen, Thomas Fuchs, and Hod Lipson. Understanding
neural networks through deep visualization. arXiv preprint
arXiv:1506.06579, 2015.

[Zahavy et al., 2016] Tom Zahavy, Nir Ben-Zrihem, and
Shie Mannor. Graying the black box: Understanding dqns.
In International Conference on Machine Learning, pages
1899–1908, 2016.

[Zeiler and Fergus, 2014] Matthew D Zeiler and Rob Fergus.
Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833,
2014.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3267


