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Abstract

Autoencoders enjoy a remarkable ability to learn
data representations. Research on autoencoders
shows that the effectiveness of data interpolation
can reflect the performance of representation learn-
ing. However, existing interpolation methods in
autoencoders do not have enough capability of
traversing a possible region between datapoints on
a data manifold, and the distribution of interpolated
latent representations is not considered. To address
these issues, we aim to fully exert the potential
of data interpolation and further improve represen-
tation learning in autoencoders. Specifically, we
propose a multidimensional interpolation approach
to increase the capability of data interpolation by
setting random interpolation coefficients for each
dimension of the latent representations. In addition,
we regularize autoencoders in both the latent and
data spaces, by imposing a prior on the latent
representations in the Maximum Mean Discrepan-
cy (MMD) framework and encouraging generated
datapoints to be realistic in the Generative Ad-
versarial Network (GAN) framework. Compared
to representative models, our proposed approach
has empirically shown that representation learning
exhibits better performance on downstream tasks
on multiple benchmarks.

1 Introduction

Among unsupervised learning frameworks of representation
learning, autoencoders (AEs) and variants [Vincent et al.,
2010; Kingma and Welling, 2014; Srivastava et al., 2014;
Makhzani et al., 2016] have shown a remarkable ability to
encode compressed latent representations by reconstructing
datapoints. In particular, by decoding the interpolated la-
tent representation of two datapoints, an autoencoder can
generate an interpolated datapoint which approximates these
two datapoints semantically. This indicates that autoencoders
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Figure 1: In ACAI (left), only one interpolation path (blue dashed
line) between two latent representations (red points) is considered.
However, our model (right) can traverse a possible region with many
more paths, thus the diversity of interpolated samples will increase.
In addition, the latent distribution is constrained to match with a
prior (illustrated by a sphere).

possess an effective capability of data interpolation. Recently,
several research works have paid attention to exploring data
interpolation methods in autoencoders [Larsen er al., 2016;
Berthelot et al., 2019] and generative models [Radford e al.,
2015; White, 2016]. The research has demonstrated that there
is a close relationship between representation learning and
data interpolation. In other words, the effectiveness of data
interpolation can reflect the performance of representation
learning to some extent.

Inspired by the relationship between data interpolation and
representation learning, there is a possibility to further im-
prove representation learning through explicitly considering
data interpolation in autoencoders. The recent work [Berth-
elot et al., 2019] proposes a generative adversarial regulariza-
tion strategy referred to as Adversarially Constrained Autoen-
coder Interpolation (ACAI). ACAI promotes high-quality
data interpolation by introducing regularization into the data
reconstruction process, and improves representation learning
for downstream tasks. However, as empirically shown
in [White, 2016], generative models will generate inferior
datapoints when performing linear interpolation, which may
cause the distribution of interpolated latent representations to
diverge from a prior. Besides, linear interpolation does not
have enough capability to traverse a possible region between
two datapoints on a data manifold, and the distribution of
the latent representations is not considered when performing
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interpolation.

To alleviate the above issues, we replace linear interpola-
tion with a more effective interpolation method, and explicitly
take the distribution of the latent representations into consid-
eration. Specifically, we propose a new interpolation method
referred to as multidimensional interpolation, and fuse dual
regularizations in both the latent and data spaces, so that both
data interpolation and representation learning in autoencoders
can be further improved. Briefly speaking, multidimensional
interpolation treats each dimension of the latent representa-
tion differently, and sets random interpolation coefficients
for each dimension. As a result, it will enhance the quality
and diversity of interpolation. Furthermore, we constrain the
distribution of the latent representations to match with a prior
using the MMD framework [Gretton et al., 2007], so that
interpolated representations can follow this prior. Then, data-
points generated by performing interpolation and sampling
from this prior are encouraged to be perceptually realistic
based on the GAN framework [Goodfellow et al., 2014]. In
other words, generated datapoints are expected to follow the
real data distribution. In Figure 1, we provide a comparison
of interpolations between ACAI and our proposed model.
Opverall, the main contributions of this work are as follows:

e We improve the ACAI model by extending linear inter-
polation to multidimensional interpolation, such that the
latent space can be better explored and thus the diversity
of interpolation can be significantly increased.

e On the other hand, we incorporate MMD-based regu-
larization in the latent space with adversarial regular-
ization in the data space to improve the realism of the
interpolated datapoints. Compared with ACAI, the main
advantage of this work lies in effective data generation
from a prior.

e Due to the aforementioned strategies, representation
learning in autoencoders can be enhanced significantly.
As a result, better performance can be achieved on
downstream tasks.

2 Related Work

In this section, we briefly introduce some related works on
autoencoder variants and data interpolation.

2.1 Autoencoders

Based on regularizations introduced into autoencoders, these
variants are generally divided into three categories: Normal-
based, VAE-based and GAN-based (VAE refers to as vari-
ational AE [Kingma and Welling, 2014]). Specifically, in
the Normal-based case, dropout AE (DoAE) [Srivastava et
al., 2014] regularizes the latent representation with dropout
which randomly drops units in hidden layers. Denoising AE
(DnAE) [Vincent et al., 2010] reconstructs clean datapoints
from their corrupted versions and can learn the data manifold
implicitly. Sparse AE (SAE) [Xu et al., 2016] adds a sparsity
term into the objective function to learn high-level features.
These three variants explicitly make data reconstruction more
difficult by introducing some perturbations and can learn
more robust representations.
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Different from the above approaches, AEs are regularized
to explicitly match the distribution of the latent represen-
tations with a predefined prior in the VAE-based and the
GAN-based cases. In the VAE-based case, VAE introduces
an additional loss into the reconstruction loss. This loss
measures the KL divergence between the distribution of
the latent representations and the prior. Besides the KL
divergence, MMD is also used to measure the distribution
divergence in [Tolstikhin et al., 2018]. Along with learning
continuous representations, vector-quantized VAE (VQVAE)
[van den Oord et al., 2017] applies the distributional regular-
ization framework into learning discrete representations using
a learned quantized codebook.

In the GAN-based case, adversarial AE (AAE) [Makhzani
et al., 2016] introduces an auxiliary subnetwork referred to as
a discriminator based on the GAN framework, and forces this
discriminator to determine whether latent representations are
inferred from the encoder or sampled from the prior. More-
over, VAE-GAN [Larsen et al., 2016] fuses both the VAE
and GAN frameworks in the autoencoder. In VAE-GAN,
the traditional pixel-wise reconstruction loss is replaced by
an adversarial feature-wise reconstruction loss obtained from
the GAN’s discriminator.

2.2 Interpolation

In the latent space there are two basic types of interpola-
tions: linear interpolation and spherical interpolation. Linear
interpolation combines latent representations linearly, which
is easily understood. Hence, it is frequently used to inspect
the performance of representation learning [Larsen er al.,
2016; Radford et al., 2015; Wu et al., 2016; Dumoulin
et al., 2017]. When the latent space is high dimensional,
interpolated representations on the linear interpolation path
always suffer from change of magnitude. To address this
issue, [White, 2016] introduces the spherical interpolation by
applying nonlinear interpolation based on a great circle path
on an n-dimensional hypersphere. Besides, [Laine, 2018]
proposes to perform interpolation along geodesics in the data
space rather than in the latent space. [Agustsson er al., 2019]
designs several interpolation operations to reduce mismatch
between the distribution of interpolated data and a prior.

3 Background of ACAI

ACAI model aims to improve data interpolation and repre-
sentation learning in autoencoders. Specifically, the network
architecture of ACAI consists of an autoencoder and a dis-
criminator. The former, in addition to serving as a basic
autoencoder, also forms a GAN with the discriminator to
propel the interpolated data to perceptually approximate real
data to as realistic an extent as possible.

Formally, the encoder and the decoder are denoted as
enc(-) and dec(-) in the autoencoder, respectively; the dis-
criminator is denoted as dis(-). For two datapoints x;
and X2, z; = enc(x;) and zo = enc(xy) are their
latent representations, respectively. Then, linear interpolation
synthesizes a mixture representation zy:

zZy=A-2z1+ (1 —A) - 2o, (D
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where )\, constrained to the range [0, 0.5], is an interpolation
coefficient of two latent representations. By decoding z), an
interpolated datapoint x5 = dec(z)) is generated. From
another perspective, the degree of realism of x, can be
controlled by adjusting A. The larger A is, the less realistic
X, becomes.

By explicitly regularizing the interpolation process, the
discriminator is trained to distinguish between real datapoints
and interpolated datapoints. It predicts the interpolation coef-
ficients for interpolated datapoints, and consistently outputs O
for real datapoints. Similar to GAN, the discriminator’s loss
function is given by

Lais = ||dis(xx) = Al + [l dis(x)||*. @)

Meanwhile, the autoencoder’s loss function is modified by
adding a regularization term as follows:

Lae = ||lx — dec(enc(x))||* + [ldis(x)[*. (3)

ACAI has verified that inferred latent representations show
more effectiveness on downstream tasks, which indicates that
there is a possible link between good data interpolation and
useful latent representation learning.

4 Proposed Model

By gradually changing the interpolation coefficient in ACAI,
an interpolation path consisting of a set of interpolated data-
points will be formed. This interpolation path can be viewed
as a direct line in a linear space. However, linear interpolation
is not suitable in a high-dimensional space, and cannot well
traverse a possible region between two datapoints. Besides,
no explicit constraints have been imposed on the distribution
of the latent representations. After interpolation, it leads
to a situation where some interpolated representations and
corresponding datapoints do not belong to the representation
domain and the data domain, respectively. Overall, the ca-
pability of interpolation in improving representation learning
has not been fully exploited.

To alleviate the above shortcomings, we propose multidi-
mensional interpolation to enhance the capability of inter-
polation. In addition, we fuse dual regularizations in both
the latent and data spaces to improve representation learning.
More details will be described in the following subsections.

4.1 Multidimensional Interpolation

Although linear interpolation is straightforward and effective
in ACAI, there exist three shortcomings: (1) only a single
interpolation path is considered; (2) the interpolation path
is confined to a direct line; (3) all dimensions of the latent
representation are equally treated.

Hence, to enhance the capability of interpolation, we
propose a new interpolation method called multidimensional
interpolation. Formally, assuming that latent representations
are d-dimension vectors, multidimensional interpolation aims
to synthesize a mixture representation as follows:

Z;A:H®Z1+(1_N)®Z27 “4)

where g = [p1, pi2, ..., f14] is an interpolation coefficient, and
® denotes the element-wise product between two vectors.

3270

What needs to be emphasized is that p is a vector with the
same number of dimensions as the latent representations, and
the value of each component of p is randomly sampled from
the uniform distribution on [0, 0.5].

Compared with the scalar coefficient A\ in linear inter-
polation, each component of g is randomly set, so that
each dimension of the latent representations will not be
equally treated when performing interpolation. As a result,
by varying the interpolation coefficient, an interpolation
region will be formed between two latent representations,
and the corresponding path can be any curve within this
region. From the perspective of manifold learning, the
interpolation possesses a capability of traversing a possible
region between two datapoints on a data manifold. Overal-
I, multidimensional interpolation can overcome the above-
mentioned shortcomings and enhance both the quality and
diversity of interpolation paths.

4.2 Dual Regularizations

Regularization in Latent Space

When performing data interpolation, the interpolated data-
points are expected to be perceptually realistic. Take natural
images as an example, although interpolated datapoints seem
realistic, they may not belong to the original image domain
in terms of structure and appearance. From the perspective
of distribution matching, the corresponding interpolated rep-
resentations may not well follow the real distribution of the
latent representations.

To alleviate the negative effect on representation learning
due to the above issue, we explicitly regularize the distribu-
tion of the latent representations to follow a prior Gaussian
distribution. Then, the corresponding interpolated represen-
tations can be expected to follow this prior. Specifically,
we propose to minimize the MMD distance between the
distribution of the latent representations and this prior.

Distributional Regularization. In practice, the MMD
distance can be estimated using a finite number of samples
based on the kernel trick, and the square of MMD distance
can be approximated by a two-sample test. Given X =
{x1,%X2, ..., Xpn} ~ px(x) and Z = {21, 22, ..., Zp} ~ pa(2),
where px(x) and p,(z) are the data distribution and the prior
of latent space respectively, a two-sample test is performed
to determine whether the latent representations are inferred
from the encoder or sampled from the prior, and the square of
MMD distance L,,,,,,q is defined as

Lyuma =E[k(enc(x;), enc(x;))] + Elk(z;, z;)]—

2E[k(enc(x:), z;)], )

where k(-,-) is a kernel. By minimizing this distance, the
distribution of interpolated latent representations can match
with the prior.

Regularization in Data Space

Data Generation. After performing interpolation and im-
posing regularization on the distribution of the latent repre-
sentations, three types of data can be generated. First, as
with ACAI, by performing interpolation and decoding the
mixture representation z, inferred from two datapoints, an
interpolated datapoint x,, is generated as follows:

x, = dec(zy,). (6)
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Figure 2: Examples from the synthetic dataset.

Second, an interpolated datapoint can be generated by decod-
ing a mixture representation between a latent representation
inferred from a datapoint and a stochastic latent representa-
tion sampled from the prior as follows:

Xy, = dec(p @ enc(x) + (1 — pn) © z). ™

Third, similar to VAE, when the distribution of the latent
representations is expected to match the prior, a datapoint
can be generated by directly decoding a stochastic latent
representation sampled from the prior as follows:

x, = dec(z). (8)

Besides the basic x,,, we expect that with the introduction
of two datapoints x,,, and x_, data interpolation and repre-
sentation learning can be further improved.

Adversarial Regularization. The above three types of data
are encouraged to be perceptually realistic and cannot be
distinguished from real data. Thus, we also adopt adversarial
regularization in ACAIL. Owing to the introduction of two
additional types of datapoints, the original loss functions in
ACALI need to be modified to generalize to this case.

Specifically, for the datapoints x,, and x,,,, the discrimina-
tor predicts the interpolation coefficients p for interpolated
datapoints. Since the datapoint x, is directly generated
based on the prior, it would be less realistic than x,, and
Xz, and does not effectively approximate real data. As
mentioned in Section 3, the interpolation coefficient can
reflect the realism of the interpolated datapoint. Therefore,
the discriminator predicts a predefined maximum of the
interpolation coefficient for x,. This predefined maximum
is set as 0.5 here.

From another perspective, we incorporate data generation
into the interpolation process, and formulate them in a unified
framework. To sum up, the overall losses of the discriminator
and the autoencoder are modified as follows:

Lais =||dis(x)|” + | dis(x,.) — p]|*+

9
dis(xus) — pll? + [dis(x)) — 0517 )

Lae =||x — dec(enc(x))||> + wi Lima + wa||dis(x,)||*+ (10)
ws|ldis(xpz) || + walldis (x2)|I,

where w;, wo, w3 and wy are hyper-parameters for adjusting
the weights of the above losses. We set w; and we as 1.0
and 0.5 for all experiments, respectively. The remaining
parameters w3 and wy are tuned to be the best by experience.

S Experiments

5.1 Experimental Setting

In our experiments, we evaluate our proposed models on the
following datasets: MNIST [LeCun et al., 1998], SVHN
[Netzer et al., 2011], CIFAR-10 [Krizhevsky and Hinton,
2009] and CelebA [Liu et al., 2015]. For a fair comparison,
we use the network architecture from ACALI for all discussed
models.

To study the effect of multidimensional interpolation, we
only replace the linear interpolation step of ACAI with
the proposed interpolation operation. In this case, this
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(a) ACAI (b) MI-AE
Figure 3: Distributions of the latent representations from ACAI

(left) and MI-AE (right). The principal components of the latent
representations are illustrated by black solid lines.

model is referred to as Autoencoder with Multidimensional
Interpolation (MI-AE). To study the effect of regularization
in the latent space, we only add distributional regularization
into ACAI. In this case, this model is referred to as Au-
toencoder with Latent Regularization (LR-AE). Furthermore,
we consider both multidimensional interpolation and dual
regularizations to verify their effectiveness. In this case, this
model is referred to as Autoencoder with Multidimensional
Interpolation and Dual Regularizations (MIDR-AE).

5.2 Interpolations on Synthetic Data

In this subsection, we investigate the difference between
linear and multidimensional interpolations on a synthetic
dataset. Specifically, this dataset consists of 10k gray images
with 32*32 resolution. An image is generated using a
sinusoidal function, which looks like parallel white stripes
with a black background. The value of the pixel (z, y) in an
image is calculated as follows:

g(x,y) = sin(a(Aycos 8 — Az sin 38)), (11)

where @ € [0.3,0.7] controls the number of stripes, and 3 €
[0, 2] determines the angle of stripes. Az = x — z. and
Ay = y — y. denote the relative positions between the pixel
(x,y) and the central pixel (z.,y.). We set Ao = 0.004 and
Ap = 0.027, and randomly choose « and /3 to generate the
whole dataset. Some samples are shown in Figure 2.

We use the synthesized data to train ACAI and MI-AE, and
compare the difference between the distributions of learned
latent representations. For better visualization, we set the
number of dimensions of the latent representations as d, = 2
in the experiments.

Model MNIST SVHN CIFAR-10 CelebA
d. 32/256 32/256 256/1024 32/256
ACAI 0.24/022 027/0.13 0.08/0.06 0.18/0.16
MI-AE 0.14/0.12 0.11/0.07 0.04/0.03 0.04/0.06

Table 1: The mean of the absolute off-diagonal values in the
normalized covariance matrix for different datasets.
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Figure 4: Interpolated samples on real datasets based on
linear interpolation in ACAI (the first row) and multidimensional
interpolation in MI-AE (the second row). The major difference
between them can be viewed from images encapsulated by red
rectangles (subfigures (b) and (d)) with zooming in for a better view.

In Figure 3, both ACAI and MI-AE gather most of the
latent representations close to the origin. We display two
principal components of the learned latent representations
for ACAI and MI-AE. From Figure 3, we can see that
the difference between two components from ACAI is larg-
er than that from MI-AE. We calculate the mean of the
absolute off-diagonal values in the normalized covariance
matrix [Lee Rodgers and Nicewander, 1988] to quantify the
correlation between dimensions. The correlation coefficient
values between dimensions are 0.523 and 0.159 for ACAI
and MI-AE, respectively, which indicates that the correlation
between dimensions of the latent representations from MI-
AE is much less than that from ACAI. This indicates that au-
toencoders with multidimensional interpolation learn latent
representations with lower correlation.

In addition, we perform experiments on real datasets and
measure the resulting correlation between dimensions of the
learned latent representations. As shown in Table 1, the
values for ACAI are much larger than those for MI-AE on
all datasets. Overall, using multidimensional interpolation
helps autoencoders to disentangle the correlation between
dimensions of the latent representations.

5.3 Interpolations on Real Data

For a fair comparison with ACAI, we adopt the proposed
MI-AE and set u = [A A, ..., A], and further compare
the performance of their interpolations on real data. The
interpolated samples are shown in Figure 4.

From Figure 4, on MNIST and CIFAR-10, there is no
obvious perceptual difference between interpolated samples.
However, by zooming on SVHN and CelebA, more details
can be observed. On SVHN, samples generated by ACAI
are easily dominated by one of the real datapoints (high-
lighted with a red rectangle at the middle part), while our
proposed MI-AE can generate more reasonable and balanced
interpolated samples. On CelebA, samples generated by
MI-AE at the right part are much clearer than those by
ACALI (highlighted with a red rectangle at the right part),
and the colors of lips generated by MI-AE can still be
easily recognized. This indicates that our proposed MI-
AE can learn latent representations while preserving more
detailed patterns. Overall, the proposed multidimensional
interpolation process shows a better performance than the
linear interpolation in ACAL
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5.4 Improved Representation Learning

In this subsection, we examine whether multidimensional
interpolation and dual regularizations are more beneficial to
representation learning. In particular, we perform experi-
ments on image classification and clustering based on in-
ferred latent representations. By evaluating the performance
of these downstream tasks and comparing our models with
other models, the advantage of our models can be verified.

Here, we consider several representative models in Sec-
tion 2 as follows: basic AE (BAE), DoAE, DnAE, VAE,
AAE, VQVAE and ACAL In addition, the optimal hyper-
parameters of our models are as follows: ws = 0.5 and
w4 = 0.1 for MNIST; w3 = 0.5 and wy = 0.05 for SVHN;
ws = 0.01 and wy = 0.01 for CIFAR-10, and w3 = 0.1 and
w4 = 0.05 for CelebA.

Image Classification

In order to measure the quality of representation learning in
autoencoders, a supervised classification task is also conduct-
ed based on the inferred latent representations. If the inferred
representations have distilled the important class information,
a classifier can achieve a reasonable performance regardless
of its simplicity. Therefore, as with ACAI, we train the
additional single-layer classifier [Coates et al., 2011] by
feeding inferred representations of the encoder along with
the whole model. We summarize the classification results in
Table 2.

From Table 2, MI-AE and LR-AE show a better per-
formance than other models on all datasets. Especially
on SVHN (d,=32) and CIFAR-10 (d,=256/1024), MI-AE
and LR-AE obviously outperform the second best ACAIL
Moreover, MIDR-AE further boosts the performance of
image classification compared to MI-AE, and achieves the
best performance. It is worth noting that ACAI only achieves
an average accuracy of 34.47%, while MIDR-AE achieves
92.28% on SVHN when the number of dimensions of the
latent representations is set as 32. These experimental results
show that our autoencoder variants can distill more class
information.

Viewed from the perspective of manifold learning, mul-
tidimensional interpolation is more beneficial to traversing
a data manifold. By regularizing the distribution of the
latent representations, the interpolated representations can
also follow a prior. Therefore, both of them will improve
representation learning.

Image Clustering

Since clustering groups datapoints with similar attributes
together and separates datapoints with different attributes
apart in an unsupervised way, it is another challenging task
for evaluating the performance of representation learning.
Therefore, if the autoencoder has uncovered the important
class characteristics of the data, then performing clustering
on the latent representations should yield reasonable results.
As with ACAI, we use PCA whitening on the latent rep-
resentations, and randomly perform K-Means [MacQueen,
1967] 1k times to choose the clustering solution with the best
objective value during training. For evaluation, we adopt the
methodology of [Xie et al., 2016; Hu et al., 2017] to evaluate
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Dataset d BAE DoAE DnAE VAE AAE VQVAE ACAI ‘ MI-AE LR-AE MIDR-AE
MNIST 32 94.9010.14 96.451-0.42 96.0010.27 96.5610.31 70.7413.27 97.5040.18 98.2540.11 98.3240.36 98.09+0.13 99.1710.03
256 93.9410.13 94.5040.29 98.5140.04 98.7440.14 90.0310.54 97.254+1.42 99.004-0.08 99.0740.10 99.1010.02 99.191-0.04

SVHN 32 26.211+0.42 26.0941.48 25.151+0.78 29.5843.22 23.431+0.79 24.53+1.33 34.47%1.14 46.42+1.61 43.81+1.10 92.281-0.62
256 22.7440.05 25.1241.05 77.894 0.35 66.3011.06 22.814+0.24 44.94420.42 85.1440.20 85.70£0.39 88.3840.14 94.301-0.18

CIFAR-10 256 47.9240.20 40.99+0.41 53.78+0.36 47.49+0.22 40.65+1.45 42.80+0.44 52.7740.45 55.931+0.04 58.461+0.40 63.2810.13
: 1024 51.624+0.25 49.38+0.77 60.65+ 0.14 51.394-0.46 42.861+0.88 16.22412.44 63.9940.47 67.5610.03 66.731+0.03 68.271+0.48

Table 2: Classification accuracy using single-layer classifiers. Except for our models, the results of other models are excerpted from ACAIL

Dataset  d. BAE DoAE DmAE  VAE  AAE  VQVAE ACAI | MLAE LRAE MIDRAE | KMeansDaa DEC  IMSAT
32 7756 8267 8259 7574 7919 8239 0438 | 9566 9437 9694

MNIST 556 5370 6135 7089 8344 8100 9680  96.17 ‘ 938 9670 97.05 ‘ 532 B3 984
32 1938 2042 1791 1683 1735 1519 2086 | 3691 2945 56.64

SVHN 556 1562 1509 3149 1136 1359 1884 2498 ‘ 3828 3488 s1.14 ‘ 17.9 1o 573

Table 3: Clustering accuracy for using K-Means. Except for our models, the results of other models are excerpted from ACAL

the “clustering accuracy” on the test dataset. We summarize
the clustering results in Table 3.

From Table 3, MI-AE and LR-AE can produce reason-
able performance gains than other models on both MNIST
and SVHN. In particular, on SVHN, MI-AE and LR-AE
significantly outperform ACAI Compared to MI-AE and
LR-AE, MIDR-AE further boosts the performance of image
clustering and achieves the best performance. MIDR-AE is
always superior to ACAI with a large performance gain on
both datasets. Especially on SVHN, MIDR-AE almost has a
clustering accuracy improvement of 20% above ACAI when
the number of dimensions of the latent representations is set
as 32 or 256. Similar to image classification, we can conclude
that multidimensional interpolation and dual regularizations
enhance representation learning.

Besides, we evaluate the clustering performance of three
other models: KMeansData, DEC [Xie et al., 2016] and
IMSAT [Hu et al., 2017]. These models are different from
the autoencoder variants. Specifically, KMeansData refers to
performing K-Means directly on the data; DEC simultane-
ously learns feature representations and cluster assignments
using deep neural networks; and IMSAT learns invariant
representations for clustering by adopting data augmentation
and mutual information maximization [Deng et al., 2009].
Compared to DEC, all our models are superior, while IMSAT
just slightly outperforms MIDR-AE on two datasets. This
demonstrates that our proposed models show a competitive
performance on representation learning.

5.5 Data Generation

Since the distribution of the latent representations is enforced
to match with a prior, one main advantage of our model is
its capability of generating data by sampling from this prior.
Here, we show some samples generated by our proposed
model in Figure 5. Compared to our model, ACAI does
not possess this capability since it does not consider the
distribution of the latent representations. This indicates
that our model can learn semantically meaningful latent
representations which well reveal the data distribution.
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Figure 5: Samples generated by MIDR-AE on multiple datasets.

6 Conclusion

In this work, we have comprehensively studied both data
interpolation and representation learning in autoencoders. We
observe that existing interpolation methods in autoencoders
do not have enough capability of traversing a data mani-
fold, and the distribution of the latent representations is not
considered when performing interpolation. To improve both
data interpolation and representation learning, we propose
a model referred to as MIDR-AE. In MIDR-AE, on one
hand, a multidimensional interpolation process is proposed
to enhance the capability of data interpolation. On the
other hand, autoencoders are further regularized in both
the latent and data spaces, which imposes a prior on the
latent representations and encourages datapoints generated
by performing interpolation and sampling from this prior
to be realistic. Through extensive experiments, we verify
that representation learning of our model exhibits better
performance on downstream tasks compared to competing
models. For the purpose of reproduction and extensions, our
code is publicly available. !
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