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Abstract
This work investigates the adversarial Bandits with
Knapsack (BwK) learning problem, where a player
repeatedly chooses to perform an action, pays the
corresponding cost of the action, and receives a re-
ward associated with the action. The player is con-
strained by the maximum budget that can be spent
to perform the actions, and the rewards and the
costs of these actions are assigned by an adversary.
This setting is studied in terms of expected regret,
defined as the difference between the total expected
rewards per unit cost corresponding the best fixed
action and the total expected rewards per unit cost
of the learning algorithm. We propose a novel al-
gorithm EXP3.BwK and show that the expected re-
gret of the algorithm is order optimal in the budget.
We then propose another algorithm EXP3++.BwK,
which is order optimal in the adversarial BwK set-
ting, and incurs an almost optimal expected regret
in the stochastic BwK setting where the rewards
and the costs are drawn from unknown underlying
distributions. These results are then extended to a
more general online learning setting, by designing
another algorithm EXP3++.LwK and providing its
performance guarantees. Finally, we investigate the
scenario where the costs of the actions are large
and comparable to the budget. We show that for
the adversarial setting, the achievable regret bounds
scale at least linearly with the maximum cost for
any learning algorithm, and are significantly worse
in comparison to the case of having costs bounded
by a constant, which is a common assumption in
the BwK literature.

1 Introduction
Sequential decision making is a fundamental task faced by
any agent interacting with the environment, and the opti-
mal (or near optimal) behavior has been studied in in a
number of settings [Auer et al., 2002; Puterman, 2014;
Rangi et al., 2018c; 2018b; 2018a]. Multi-Armed Bandit
(MAB) is a sequential decision making problem under un-
certainty that is based on balancing the trade-off between ex-
ploration and exploitation, i.e. “the conflict between taking

actions whose benefits will be seen later and taking actions
which yield immediate rewards.” A common feature in vari-
ous applications of MAB is that the resources consumed dur-
ing the decision making process are limited. For instance,
scientists experimenting with alternative medical treatments
may be limited by the number of patients participating in the
study as well as by the cost of the material used in the treat-
ments. Similarly, in web advertisements, a website experi-
menting with displaying advertisements is constrained by the
number of users who visit the site as well as by the adver-
tisers’ budgets. A retailer engaging in price experimentation
faces inventory limits along with a limited number of con-
sumers. A model which incorporates a budget constraint on
these supply limits is Bandits with Knapsack (BwK). This
can be seen as a game between a player and an adversary (or
environment) that evolves for T rounds, and the player is con-
strained by a budget B on the resources consumed during the
decision making process. At each round t ≤ T , the player
performs an action i from a set of K actions, pays a cost for
this action i from the budget B and receives a reward in [0, 1]
for this action. The game terminates when the player runs out
of the budget, therefore T is dependent on B and the player’s
strategy. The reward and the cost can vary from application to
application. For example, in web advertisement, the reward is
the click through rate and the cost is the space occupied by the
advertisement on the web page. In medical trials, the reward
is the success rate of the medicine and the cost corresponds
to the cost of the material used.

The BwK problem can be classified into two categories:
stochastic BwK and adversarial BwK. In stochastic BwK,
the reward and the cost of the actions are independent and
identically distributed (i.i.d) sequences over T rounds drawn
from fixed unknown distributions. In adversarial BwK, the
sequence of the rewards and the costs associated with each
action over T rounds is assigned by an oblivious adversary
before the game starts. The objective of the player is to mini-
mize the expected regret in these settings.

The stochastic BwK setting has been extensively studied
in the literature [Tran-Thanh et al., 2010; 2012a; Ding et al.,
2013; Badanidiyuru et al., 2013; Agrawal and Devanur, 2014;
Tran-Thanh et al., 2012b; Agrawal and Devanur, 2016;
Xia et al., 2016; Sankararaman and Slivkins, 2018; Rangi
and Franceschetti, 2018a]. However, limited attention has
been received by the adversarial BwK setting [Immorlica et

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3311



al., 2018; Zhou and Tomlin, 2018]. It has been shown that
the competitive ratio, defined as the ratio of the expected re-
wards corresponding to best fixed distribution over actions
and the expected rewards of any learning algorithm, is at least
Ω(log(B)) [Immorlica et al., 2018]. Thus, the difference be-
tween the expected rewards corresponding to the best fixed
distribution over the actions and the expected rewards of the
learning algorithm, is at least Ω(B). The work in [Zhou and
Tomlin, 2018], assumes that the rewards are greater than the
costs at each round t for every action i, and reduces the prob-
lem to an adversarial MAB setting [Auer et al., 2002]. This
assumption is somewhat uncommon in the literature and does
not have physical meaning in many applications. For exam-
ple, in a medical trial, the success rate (i.e., the reward) and
the cost of the material (i.e., the cost) cannot be compared
with each other. Likewise, in web advertisement, the com-
parison of the click through rate (i.e., the reward) and the
space occupied by the advertisement on the web page (i.e.,
the cost) has no meaning. Thus, determining the feasibility of
sub-linear regret bounds in the adversarial BwK setting, and
the designing an algorithm without constraints on the rewards
and the costs remain important open problems.

An additional open problem is to provide an algorithm that
is satisfactory for both stochastic and adversarial BwK set-
tings simultaneously. In many real-world situations, there is
no information about the stochastic or the adversarial nature
of the problem. Thus, the deployed algorithm has to be able
to perform well in both the cases. Finally, the literature of the
BwK problem typically assumes that the costs are bounded
by a constant independent of the budget B, and it is unknown
whether the state-of-the-art regret bounds hold for the case of
large costs (i.e., when costs are comparable to the budget B).

In this framework, the contribution of our work is three
fold. First, we study the adversarial BwK setting in terms
of a new definition of expected regret defined as the differ-
ence between the total expected rewards per unit cost corre-
sponding the best fixed action (instead of best fixed distribu-
tion over actions) and the total expected rewards per unit cost
of the learning algorithm. We establish that, unlike in [Im-
morlica et al., 2018], sub-linear regret bounds of O(

√
B) are

feasible for this new notion of regret in BwK setting. We pro-
pose a new algorithm EXP3.BwK and show that its expected
regret is O(

√
BK logK). We also prove that the expected

regret for any learning algorithm is at least Ω(
√
KB) in the

adversarial BwK setting, and establish that EXP3.BwK is or-
der optimal. Additionally, this analysis is carried out without
the assumption on the rewards and the costs previously used
in [Zhou and Tomlin, 2018]. Second, we unify the stochas-
tic and the adversarial settings by proposing EXP3++.BwK.
This algorithm incurs an expected regret of O(

√
BK logK)

and O(log2(B)) in the adversarial and the stochastic BwK
settings respectively. In the stochastic BwK setting, the regret
bound has an additional factor of log(B) in comparison to the
optimal expected regret i.e. O(log(B)). Thus, EXP3++.BwK
exhibits an almost optimal behavior in both the stochastic
and the adversarial settings simultaneously. We also study
the performance of another algorithm EXP3++.LwK for a
generic online learning setting where the player’s feedback

can be viewed as a time-varying graph Gt at round t and a
directed edge k → j in Gt indicates that choosing action
k at round t also reveals the reward and the cost of action
j at round t. Finally, we show that if the maximum cost is
bounded above byBα, where α ∈ [0, 1], then the expected re-
gret in the adversarial BwK setup scales at least linearly with
the maximum cost, namely it is Ω(Bα). Thus, for α > 1/2,
it is impossible to achieve a regret bound of O(

√
B), which

is feasible for small costs. The proofs of all the results are
available online [Rangi et al., 2018d].

1.1 Related Work
In the MAB literature, the problem of finding one algorithm
for both the stochastic and the adversarial setting has been re-
ferred as “Best of Both Worlds” [Bubeck and Slivkins, 2012;
Auer and Chiang, 2016; Seldin and Slivkins, 2014; Seldin
and Lugosi, 2017; Lykouris et al., 2018]. Initial works on
this problem reduced it to a detection problem, where the al-
gorithms initially assume the rewards are stochastic, and per-
form an irreversible switch to EXP3.P if the beginning of the
game is estimated to exhibit an adversarial or non-stochastic
behavior [Bubeck and Slivkins, 2012; Auer and Chiang,
2016]. Unlike the algorithms in [Bubeck and Slivkins, 2012;
Auer and Chiang, 2016], EXP3++ starts by assuming that
the rewards exhibit a non-stochastic behavior and adapts it-
self as it encounters stochastic behavior on rewards [Seldin
and Slivkins, 2014; Seldin and Lugosi, 2017]. The algorithm
guarantees an expected regret of O(log2(T )) and O(

√
T ) in

the stochastic and the adversarial MAB settings respectively.
The problem of stochastic bandits corrupted with adversarial
samples has also been studied in the regime of small corrup-
tions [Lykouris et al., 2018]. The work provides the regret
analysis of the algorithm in terms of the corruption in the
rewards, and shows that the decay in performance is order
optimal in this corruption.

The “Best of Both Worlds” problem has not been studied in
the BwK setting. This setting is more complex in comparison
to the MAB setting as the adversary can choose both the re-
wards and the costs associated with the actions. Additionally,
the adversary can dynamically choose to corrupt the rewards
or the costs at each step which can lead to stochastic environ-
ment based on the cumulative effects of the corruptions.

2 Problem Formulation
A player has a total budget B to perform actions. At each
round t, the player performs an action it ∈ [K], pays the
cost ct(it) and receives the reward rt(it), where ct(i) ∈
[cmin, cmax] is the cost of action i and rt(i) ∈ [0, 1] is the
reward of action i. Note that cmax = 1 which is also a com-
mon assumption in the literature, and we will investigate the
case with larger costs in Section 5. The objective of a player
is to design a learning algorithm A such that

max
{i1,i2,...,iτ(A)}

E
[ τ(A)∑
t=1

rt(it)
]

s.t. P
( τ(A)∑
t=1

ct(it) ≤ B
)
= 1,

(1)
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where τ(A) is the number of rounds feasible in the budget
B using algorithm A. The optimization problem in (1) is a
knapsack problem, and is known to be NP-hard [Kellerer et
al., 2004]. Given that at each round t, the reward and the cost
of all the actions are known and fixed i.e. rt(i) = r(i) and
ct(i) = c(i), the best fixed action i∗ is the action with the
highest efficiency, namely

i∗ = argmaxi∈[K]e(i), (2)

where efficiency e(i) = r(i)/c(i) for an action i ∈ [K]. This
choice of best fixed action is referred as a greedy algorithm
AG and satisfies the following [Kellerer et al., 2004]

G(AG) ≤ G(A∗) ≤ G(AG) + max
i∈[K]

e(i), (3)

where G(A) = E
[∑τ(A)

t=1 rt(it)
]

is the expected reward of
A, and A∗ is the optimal solution of (1). Intuitively, the best
fixed action i∗ returns the maximum rewards per unit cost.
Since the total cost spent is at most B, G(AG) is at most
e(i∗) ·B.

We define the expected regret in both stochastic and ad-
versarial settings with respect to the best fixed optimal action
based on the efficiency according to AG. In the stochastic
setting, for all t and i ∈ [K], the sequence of rewards rt(i) is
i.i.d with mean µ(i) and the sequence of cost ct(i) is i.i.d with
mean ρ(i). However, the expected reward µ(i) and expected
cost ρ(i) can be correlated. Thus, the efficiency of an action i
is e(i) = µ(i)/ρ(i) in stochastic setting, and the expected re-
gret of an algorithmA with respect to best fixed action, given
by AG, is defined as

R(A) = T (i∗)µ(i∗)−E
[ τ(A)∑
t=1

rt(it)
]
, (4)

where i∗ = argmaxi∈[K]e(i), and T (i) is the number of
rounds of action i feasible in the budget B. Thus, the best
fixed action i∗ returns maximum expected rewards per unit
expected cost. The regret, defined in (4), is previously stud-
ied in the literature of stochastic BwK setting as well, and
the performance guarantees are presented in terms of ∆(i) =
e(i∗) − e(i) [Ding et al., 2013; Tran-Thanh et al., 2012b;
Rangi and Franceschetti, 2018a].

In the adversarial setting, rt(i) and ct(i) are chosen by an
adversary. Unlike the efficiency in the stochastic setting, the
efficiency of an action i is time varying, and is denoted by
et(i) = rt(i)/ct(i) at round t. Since the reward per unit cost
varies across t, the best fixed action in the hindsight is defined
as

i∗ = argmaxi∈[K]

T (i)∑
t=1

et(i). (5)

The action i∗ maximizes the total rewards per unit cost across
T (i∗) rounds, and T (i∗) takes into account the total budget
utilized while performing i∗ repeatedly. Since cmax = 1, the
maximum rewards achievable in adversarial setting is at most∑T (i∗)
t=1 et(i

∗). Therefore, the expected regret in this setting
is defined as

R(A) = E
[ T (i∗)∑
t=1

et(i
∗)−

τ(A)∑
t=1

et(it)
]
. (6)

For ct(i) = 1, action i∗ reduces to the best fixed action over
B rounds in MAB setup, and the regret in (6) reduces to the
regret in adversarial MAB setting [Auer et al., 2002].

3 Adversarial Bandits with Knapsack
In this section, we propose an order optimal algorithm
EXP3.BwK for the adversarial BwK setting, and show that
sub-linear regret guarantees are feasible in this setting.

EXP3.BwK is presented in Algorithm 1. At each round t,
EXP3.BwK selects an action it = i with probability pt(i),
pays the cost ct(it) from the remaining budget Br, and re-
ceives the reward rt(it). If the budget Br is insufficient, i.e.
ct(it) > Br, then the algorithm terminates without attempt-
ing to find other feasible actions which can be performed us-
ing the remaining budget Br. Since cmax = 1, Br at the
termination round is at most unity, and the number of rounds
feasible with this remaining budget is at most 1/cmin, which
is independent of B.

In EXP3.BwK, the empirical estimate êt(i) of efficiency
(defined in Algorithm 1) of action i is the observed effi-
ciency et(i) = rt(i)/ct(i) scaled with the probability pt(i).
This empirical estimate is used to maintain the set of time-
varying weights {wt(i)}Ki=1 for all actions. The difference
in wt(i) and wt−1(i) is controlled by exp (γcminêt(i)/K) as
γcminêt(i)/K less than unity. Thus, wt(i) is proportional to
the cumulative estimated efficiency of action i observed until
round t i.e wt(i) ∝ exp (

∑t−1
n=1 ên(i)).

The sampling probability pt(i) is dependent on the time-
varying weight wt(i) and the exploration constant γ/K. The
weight wt(i) favors the selection of an action with higher
cumulative estimated efficiencies until round t. In other
words, it favors the action which may yield immediate re-
wards, and is responsible for the exploitation in the algorithm.
On the other hand, the exploration constant γ/K ensures that
the player is always exploring with a positive probability in
search of the optimal action i∗. This balances the trade-off
between exploration and exploitation.

In EXP3.BwK, we exploit the idea of efficiency measure
et(i) for tracking the contributions of each action i ∈ [K].
The use of this measure is motivated from the greedy algo-
rithm AG, and its performance guarantees with respect to the
optimal solution (see (3)). The advantages of using this mea-
sure are two folds. First, it eliminates the need of the assump-
tion that at each round, the reward is greater than the cost for
each action [Zhou and Tomlin, 2018]. Second, it can track re-
wards of the algorithm A irrespective of the measure or scale
of the rewards and the costs of the actions. For example, in a
recommendation system, the space (i.e. the cost) of the item
and the click rate (i.e. the reward) of the item are not com-
parable on same scale. However, the returns can be tracked
using the efficiency measure et(i). An alternate choice of
efficiency measure can be rt(i) − ct(i) for tracking the con-
tributions of different actions. However, this can only be used
if both the rewards and the costs can be compared on a linear
scale, which is not true in many practical applications.

The following theorem shows that the expected regret of
EXP3.BwK is sub-linear in the budget B.
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Algorithm 1 EXP3.BwK
Initialization: γ ; For all i ∈ [K], w1(i) = 1, and ê1(i) =
0; t = 1; Br = B
while Br > 0 do

Wt =
∑
i∈[K] wt(i)

Update pt(i) = (1− γ)wt(i)/Wt + γ/K
Choose it = i with probability pt(i).
Observe (rt(it), ct(it)
if ct(it) > Br then

Break;
end if
Br = Br − ct(it)
For all i ∈ [K], êt(i) = rt(i)1(i = it)/ct(it)pt(i), and
wt+1(i) = wt(i) · exp(γ · cmin · êt(i)/K)
t = t+ 1

end while

Theorem 1. For γ =
√
cminK log(K)/B(e− 1), the ex-

pected regret, as defined in (6), of EXP3.BwK is at most

R(E) ≤ 2

cmin

√
(e− 1)BK log(K)

cmin
, (7)

where E denotes EXP3.BwK.

The following theorem provides the lower bound on the
expected regret of any learning algorithm in the adversarial
BwK setting.

Theorem 2. There exists an adversary such that for any
player’s learning algorithm A, the expected regret of the al-
gorithm A is at least Ω(

√
KB/cmin).

Combining Theorem 1 and Theorem 2, it follows that the
expected regret of EXP3.BwK is order optimal in the bud-
get B and has an additional factor of 1/cmin. Additionally,
unlike [Immorlica et al., 2018], Theorem 1 and Theorem 2
establish that it is feasible to attain sub-linear regret bounds
with respect to the best fixed action based on the efficiency
for BwK with single constraint (1). The order optimality of
EXP3.BwK also highlights an important feature of an alter-
nate class of algorithms in the adversarial BwK setup. Con-
sider a new class of algorithms G which looks for an alterna-
tive action to perform after the algorithm is unable to pay the
cost, i.e. ct(it) > Br, in order to utilize the remaining bud-
get efficiently. Since EXP3.BwK terminates if it is unable to
pay ct(it), EXP3.BwK does not belong to G, and is still order
optimal in the budget B. Therefore, the expected regret of
the algorithms in this new class G will have same dependency
on B as that of EXP3.BwK. Additionally, the difference be-
tween the expected regret of EXP3.BwK and the algorithms
in G will be at most 1/cmin, a constant independent ofB. The
algorithms in G faces an additional challenge of designing an
appropriate criterion for the termination of the algorithm be-
cause the costs are assigned by the adversary.

The ideas developed in EXP3.BwK form the basis for de-
signing an algorithm that achieves almost optimal perfor-
mance guarantees in both the stochastic and the adversarial
BwK settings simultaneously.

4 One Practical Algorithm for Both
Stochastic and Adversarial BwK

In this section, we propose EXP3++.BwK, and show that it
achieves almost optimal performance guarantees in both the
stochastic and the adversarial BwK settings simultaneously.

Before discussing EXP3++.BwK, let us briefly focus on
the fundamental difference between the optimal algorithms
in the stochastic and the adversarial settings. In the stochas-
tic setting, the algorithms focus on exploration in the initial
stage until reliable estimates of the expected rewards µ(i)
and expected costs ρ(i) are achieved. Then, the algorithms
shift their focus on exploitation by choosing actions which
yield immediate rewards, and perform exploration only with
a small probability. For instance, in UCB type of algorithms,
the probability of exploration or choosing sub-optimal actions
decays as O(1/t2) with round t [Tran-Thanh et al., 2012a;
Ding et al., 2013; Rangi and Franceschetti, 2018a]. In
greedy algorithms, the probability of exploration is exactly
zero after a fixed round (or time instance), and the algorithm
chooses the best action based on its knowledge at this time
instance [Tran-Thanh et al., 2010; 2012b]. On the contrary,
in the adversarial setting, the algorithms are always explor-
ing, and looking for the actions with high returns [Auer et
al., 2002; Rangi and Franceschetti, 2018b]. For instance, in
EXP3.BwK, the exploration constant γ/K does not change
with round t, and is dependent only on the total number of
rounds i.e. Θ(B) in the BwK setup. Intuitively, an algorithm
that is optimal in both these settings needs to efficiently adapt
its exploration phase based on the nature of the observations
while balancing the exploration and exploitation trade-off.

EXP3++.BwK is presented in Algorithm 2. It is built upon
the ideas of the efficiencies in the stochastic and the ad-
versarial BwK settings. Like EXP3.BwK, at each round t,
EXP3++.BwK selects an action it = i with sampling proba-
bility p̃t(i), pays the cost ct(it) from the remaining budget
Br, and receives reward rt(it). The algorithm terminates
if it is unable to pay the cost ct(it) at any round t, namely
ct(it) > Br.

The sampling probability p̃t(i) is dependent on two time
varying parameters: the exploration parameter εt(i) and the
exploitation parameter pt(i). Unlike EXP3.BwK, exploration
parameter εt(i) is time-varying, and helps to efficiently adapt
the exploration phase of the algorithm based on the stochastic
or non-stochastic nature of the past observations. It is a func-
tion of UCBt(i), LCBt(i) and ∆̂t(i) (see Algorithm 2). At
each round t, EXP3++.BwK maintains an Upper Confidence
Bound UCBt(i) and a Lower Confidence Bound LCBt(i) on
the stochastic efficiency e(i) = µ(i)/ρ(i) of action i, where

UCBt(i) = min

{
1

cmin
, ēt(i) +

(1 + 1/λ)ηt(i)

λ− ηt(i)

}
, (8)

LCBt(i) = max

{
0, ēt(i)−

(1 + 1/λ)ηt(i)

λ− ηt(i)

}
, (9)

ηt(i) =

√
α log(K1/αt)

2Nt(i)
, (10)
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Algorithm 2 EXP3++.BwK
Initialization: For all i ∈ [K], w1(i) = 1, ê1(i) = 0,
ē1(i) = 0, N1(i) = 1 δ1(i) > 0; t = 1, γt =

0.5cmin
√

log(K)/tK; Br = B;
Perform each action once and update for all i ∈ [K],
ē1(i) = r1(i)/c1(i), Br = Br −

∑
i∈[K] c1(i) and t =

K + 1.
while Br > 0 do

For all i ∈ [K], update:
UCBt(i) (see (8))
LCBt(i) (see (9))
∆̂t(i) (see (11))
δt(i) = β log(t)/(t∆̂t(i)

2)

εt(i) = min{1/2K, 0.5
√

log(K)/t, δt(i)}
pt(i) = exp(−γtL̂t−1(i))∑

j∈[K] exp(−γtL̂t−1(j))

p̃t(i) = (1−
∑
j 6=i εt(j))pt(i) + εt(i)

Choose it = i with probability p̃t(i).
Observe (rt(it), ct(it))
if ct(it) > Br then

exit;
end if
Br = Br − ct(it)
For all i ∈ [K], update:

êt(i) = rt(i)1(i = it)/p̃t(i)ct(i).
ˆ̀
t(i) = 1(i = it)/cminp̃t(i)− êt(i).
L̂t(i) =

∑t
n=1

ˆ̀
n(i)

Nt(i) = Nt−1(i) + 1(i = it).
r̄t(i) =

∑t
n=1 rn(i)1(i = in)/Nt(i)

c̄t(i) =
∑t
n=1 cn(i)1(i = in)/Nt(i)

ēt(i) = r̄t(i)/c̄t(i)
t=t+1

end while

λ ≤ cmin and Nt(i) is the number of times action i has been
selected until round t. These UCB and LCB on the stochastic
efficiency are used to estimate the gap ∆(i). At round t, the
estimate ∆̂t(i) of ∆(i) is defined as

∆̂t(i) = max{0,max
j 6=i

LCBt(j)− UCBt(i)}. (11)

It can been shown that for all i ∈ [K], we have

∆(i)

2
≤ ∆̂t(i) ≤ ∆(i), (12)

with high probability as t → ∞ in the stochastic BwK set-
ting [Rangi et al., 2018d]. Thus, ∆̂t(i) is a reliable estimate
of ∆(i), and helps to adapt the exploration of the algorithm
via εt(i). In the stochastic BwK setup, combining the fact
that ∆(i∗) = 0 and (12) holds, the exploration parameter
εt(i
∗) of the optimal action i∗ tends to zero, and favors its

selection. On the other hand, the exploitation parameter pt(i)
is computed based on the empirical estimate êt(i) of effi-
ciency until round t. Similar to EXP3.BwK, this favors the
selection of an action with higher cumulative estimated ef-
ficiency

∑t−1
n=1 êt−1(i) or lower cumulative estimated inef-

ficiency
∑t−1
n=1

ˆ̀
t−1(i). In conclusion, the sampling prob-

ability p̃t(i) is dependent on both the estimates of the effi-
ciencies ēt(i) and êt(i) where ēt(i) and êt(i) are crucial in
the stochastic BwK and the adversarial BwK settings respec-
tively. ēt(i) controls the exploration through εt(i), and êt(i)
controls the exploitation through pt(i).

The following theorem provides the performance guaran-
tees of EXP3++.BwK in the stochastic BwK setting.
Theorem 3. In the stochastic BwK setting, for α = 3 and
β = 256/c2min, the expected regret of EXP3++.BwK is at
most

R(F ) ≤M

( ∑
i:∆(i)>0

log2(B/cmin)

c2min∆(i)

)
, (13)

where F denotes the algorithm EXP3++.BwK, and M is a
constant.

The optimal regret guarantees in the stochastic BwK set-
ting are O(log(B/cmin))[Tran-Thanh et al., 2012a; Ding et
al., 2013; Rangi and Franceschetti, 2018a]. Using Theorem
3, EXP3++.BwK has an additional factor of log(B/cmin)
in comparison to the optimal regret bounds in the literature.
This additional factor is also common in the literature of the
“Best of Both Worlds” problem in MAB setting [Seldin and
Slivkins, 2014; Lykouris et al., 2018].

The following theorem provides the performance guaran-
tees of EXP3++.BwK in the adversarial BwK setting.
Theorem 4. In the adversarial BwK setting, the expected re-
gret of EXP3++.BwK is at most

R(F ) ≤ 2

cmin

√
6BK log(K)

cmin
. (14)

Thus, like EXP3.BwK, EXP3++.BwK is order optimal in
the adversarial BwK setting. In conclusion, using Theorem 3
and Theorem 4, EXP3++.BwK is order optimal in the adver-
sarial BwK setting, and is almost optimal with an additional
factor of log(B/cmin) in the stochastic BwK setting.

Now, we extend these ideas beyond the MAB setting to
a general online learning setting, where the player’s feed-
back can be viewed as a time-varying graph Gt at round
t [Alon et al., 2015; Rangi and Franceschetti, 2018b]. At
round t, a directed edge k → j in Gt indicates that choos-
ing action k also reveals the reward and the cost of action j.
Thus, St(i) = {j : i → j is a directed edge in Gt} is the
set of observable actions if i is performed. In MAB setting,
St(i) = {i}. EXP3++.BwK can be modified to design a new
algorithm EXP3++.LwK for this general online learning with
Knapsack setting, which has not been addressed previously in
the literature. The key difference is the estimation of the two
efficiencies êt(i) and ēt(i), and is presented in the following
equations:

êt(i) = rt(i)1(i ∈ St(it))/(ct(i)
∑
j:j→i

p̃j,t), (15)

ēt(i) = r̄t(i)/c̄t(i),

=

t∑
n=1

rn(i)1(i ∈ Sn(in))/

t∑
n=1

cn(i)1(i ∈ Sn(in)).

(16)
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Likewise, Nt(i) =
∑t
n=1 1(i ∈ Sn(in)) and ˆ̀

t(i) = 1(i ∈
St(it))/cmin

∑
j:j→i p̃j,t − êt(i). The following theorem

provides the performance guarantees of EXP3++.LwK in the
adversarial online learning Knapsack setting.
Theorem 5. In the adversarial online learning Knapsack set-
ting, the expected regret of EXP3++.LwK is at most

R(L) ≤ b

√√√√ T∑
n=1

mas(Gt), (17)

where L denotes EXP3++.LwK, T = B/cmin, mas(Gt) is
the size of the maximal acyclic graph in Gt, and b > 0 is a
constant dependent on K and cmin.

In the stochastic online learning Knapsack setting, the
expected regret of EXP3++.LwK is O(log2(B/cmin)), and
these guarantees are similar to the ones presented in Theorem
3. Now, the following theorem provides a lower bound on the
expected regret in the online learning Knapsack setting.
Theorem 6. For a sequence of feedback graphs G1, . . . , GT
with independence sequence number β(G1:T ) > 1, there
exists an adversary such that for any learning algorithm
A, the expected regret of the algorithm A is at least
Ω(
√
β(G1:T )B/cmin).

Using Theorem 5 and 6, EXP3++.LwK is order optimal in
two special cases of adversarial online learning: MAB and
symmetric PI setting, i.e. the feedback graph Gt = G is fixed
and un-directed. In MAB setting β(G1:T ) = mas(Gt) = K,
Theorem 6 recovers the lower bound in Theorem 2, and es-
tablishes that the algorithm is order optimal. Likewise, in
symmetric PI setting β(G1:T ) = mas(Gt) which implies the
algorithm is order optimal. Note that any state-of-art algo-
rithms in adversarial online learning setting are order op-
timal for these two special cases only [Alon et al., 2015;
Rangi and Franceschetti, 2018a], and the key challenges for
closing this gap are highlighted in [Alon et al., 2015].

5 BwK with Unbounded Cost
In the previous sections, we have shown that the sub-linear
regret is achievable in the BwK and the online learning
Knapsack settings for cmax = 1. We now explore the
regime of varying cmax, and develop important insights about
the achievable regret in this scenario. Following theorem
presents the scaling of the lower bound on the expected re-
gret with respect to cmax in the adversarial BwK setup.
Theorem 7. Suppose that cmax = Bα. For any learning
algorithmA, there exists an adversary such that the expected
regret of the algorithm is at least Ω(Bα).

In the literature of BwK, the cost is always considered to
be bounded above by a constant independent of B. Theorem
7 instead considers that the cost is bounded by a function of
the budget B. It shows that the lower bound on the expected
regret scales at least linearly with the maximum cost cmax in
the adversarial BwK setup, and similar results hold for online
learning Knapsack setting as well. If α > 1/2, then it is
impossible to achieve a regret bound of O(

√
B), which is

order optimal in cases with small cmax.

In the adversarial BwK setup, the adversary can penalize
the player in two ways. First, the adversary can control the
reward of an action at any round. Second, the adversary can
control the cost of an action, which is analogous to penalizing
the player on the number of rounds T . For α > 1/2, the
penalty on the number of rounds T becomes significant, and
the minimum achievable regret is no longer Ω(

√
B). In this

setting with α > 1/2, the design of algorithms which achieve
regret of O(Bα) is left as a future work.

6 Conclusion
The study of BwK has been mostly focused on the stochastic
regime. In this work, we considered the adversarial regime
and proposed the order optimal algorithm EXP3.BwK for
this setting. We also proposed the algorithm EXP3++.BwK,
which achieves an expected regret of O(

√
KB log(K)) and

O(log2(B)) in the adversarial and stochastic settings respec-
tively. Thus, the algorithm is order optimal in the adver-
sarial regime, and has an additional factor of log(B) in the
stochastic regime. It is the first algorithm that provides al-
most optimal performance guarantees in both stochastic and
adversary BwK settings simultaneously. Using the ideas from
EXP3++.BwK, a new algorithm EXP3++.LwK was designed
for a general online learning setting, and its performance
guarantees were provided.

All the results in the literature of BwK assume that the
maximum cost is bounded by a constant independent of B.
We have shown that if the cost is O(Bα), then the expected
regret is at least Ω(Bα). This setting is of particular inter-
est when α > 1/2 because the expected regret of O(

√
B),

which is achievable in the setting where cost is bounded by
a constant, becomes unachievable. Hence, there is a need to
study this BwK setting, and design optimal algorithms whose
expected regret is O(Bα), which is left as a future work.
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