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Abstract
Label distribution learning (LDL) is a novel ma-
chine learning paradigm to deal with label ambigu-
ity issues by placing more emphasis on how rele-
vant each label is to a particular instance. Many
LDL algorithms have been proposed and most of
them concentrate on the learning models, while few
of them focus on the feature selection problem. All
existing LDL models are built on a simple feature
space in which all features are shared by all the
class labels. However, this kind of traditional data
representation strategy tends to select features that
are distinguishable for all labels, but ignores label-
specific features that are pertinent and discrimina-
tive for each class label. In this paper, we propose
a novel LDL algorithm by leveraging label-specific
features. The common features for all labels and
specific features for each label are simultaneously
learned to enhance the LDL model. Moreover, we
also exploit the label correlations in the proposed
LDL model. The experimental results on several
real-world data sets validate the effectiveness of our
method.

1 Introduction
Label distribution learning (LDL) is one of the frameworks to
deal with label ambiguity. Different from single-label learn-
ing (SLL) and multi-label learning (MLL), which only care
about what labels are related to the instances, LDL is more
concerned with the relevance degree of each label to unknown
instances.

In recent years, in view of LDL’s strong representation
ability in label ambiguity, many scholars have studied LDL
and proposed related LDL algorithms. For example, Chen et
al. [2018] tried to combine random forest and structured pre-
diction for LDL. Huo et al. [2016] proposed a method called
Deep Age Distribution Learning (DADL) to estimate appar-
ent age. Xing et al. [2016] designed a novel LDL algorithm
by combining the boosting method and the logistic regres-
sion. Most of existing LDL algorithms focus on the design
of learning models, and these models are built on a simple
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feature space in which all features are shared by all the class
labels. However, this kind of traditional data representation
strategy tends to select features that are distinguishable for
all labels, but ignores label-specific features that are pertinent
and discriminative for each class label. In real-world applica-
tions, an instance is often characterized by all labels, but some
labels may only be determined by some specific features of
their own. For example, in text categorization, features re-
lated to terms such as computer, robot and future might be
important in discriminating technology and non-technology
documents, while features related to terms such as doctor,
vaccine and medicine would be preferred in discriminating
health and non-health documents.

Although label-specific feature selection has been exten-
sively studied in MLL, to the best of our knowledge, there
are no studies that concerning label-specific feature selection
reported in LDL. In addition, many existing related works in
MLL lose some common features that have common discrim-
ination for all labels in the process of selecting label-specific
features [Huang et al., 2015]. In view of this, we propose a
novel LDL method based on label-specific feature selection
and common feature selection, named LDLSF. We also intro-
duce the label correlation to enhance the proposed model.

Our method was inspired by LLSF (Learning Label Spe-
cific Features for multi-label classification) [Huang et al.,
2015]. There are two major differences between the LLSF
and LDLSF: (1) LLSF only considers l1-regularization to se-
lect label-specific features. However, as we mentioned, the
sparsity provided by l1-regularization may lose some com-
mon features that have common discrimination for all la-
bels. To solve this problem, in addition to utilizing the l1-
regularization to select label-specific features, LDLSF also
introduces the l2,1-regularization to seek common features.
(2) LLSF assumes that if two labels are strongly correlated,
the similarity between their coefficient vectors will be large.
Constraining on the coefficient matrix will make the corre-
sponding specific features tend to be the same when the two
labels are correlated. Obviously, this is not sufficient to char-
acterize all possible relationships between features and labels.
Even two labels are correlated, their specific features may
also totally be different. In contrast, LDLSF constrains la-
bel correlations directly on the output of labels, which can
implicitly explore the complex relationship between features
and labels.
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The main contribution of this paper is in three aspects:
• We propose a novel method LDLSF to deal with LDL

problems by jointly selecting label-specific features, se-
lecting common features and exploiting label correla-
tions.
• l1-regularization is applied to sparse the weight parame-

ter vector in which non-zero items represent the selected
label-specific features, and l2,1-regularization is applied
to row-sparse the weight matrix to seek common fea-
tures.
• We put forward a theory that if two labels are strongly

correlated, they should have similar outputs on the labels
rather than on their weight parameter vectors.

The rest of the paper is organized as follows: Section 2
briefly reviews some related works. Section 3 introduces the
proposed algorithm. Section 4 reports the experiments on
real-world data sets. Finally, Section 5 concludes this paper.

2 Related Works
2.1 Label Distribution Learning
LDL is first proposed to solve the age estimation prob-
lem [Geng et al., 2010] by noticing the fact that the faces at
close ages look quite similar. Later on, Geng [2016] formally
gave the definition of LDL and summarized its advantages in
dealing with the problem of label ambiguity. Compared with
SLL and MLL, LDL places more emphasis on how relevant
each label is to a particular instance, rather than focusing on
what label is relevant to a specific instance only.

Since then, LDL has attracted the attention of more and
more researchers. For example, Yang et al. [2017a] developed
a multi-task deep framework by jointly optimizing classifica-
tion and distribution prediction. Zhao and Zhou [2018] pro-
posed an approach to learn the label distribution and exploit
label correlations simultaneously based on the optimal trans-
port theory. Xing et al. [2016] designed two LDL algorithms
to learn a general model family by combining the boosting
method and the logistic regression. Zheng et al. [2018] con-
sidered the local sample correlation in their LDL model.

In summary, existing LDL algorithms can be divided into
three categories: problem transformation (PT), algorithm
adaptation (AA) and specialized algorithms (SA). Problem
transformation algorithms transform the LDL problem into
the traditional problem and then use existing learners to solve
it, such as PT-SVM and PT-Bayes [Geng, 2016]. The main
idea of algorithm adaptation is to adapt traditional algorithms
to fit for LDL paradigm, such as AA-kNN [Geng, 2016] and
LogitBoost [Xing et al., 2016]. In addition, there are some
specialized algorithms designed for LDL can directly model
the relative importance of each label to the particular instance
[Zheng et al., 2018; Zhao and Zhou, 2018].

2.2 Label-Specific Feature Learning in MLL
In MLL, the commonly-used strategy to learn a subset of fea-
tures shared by all the labels might be suboptimal as different
class labels usually carry specific characteristics of their own.

To solve this problem, Zhang [2011] first proposed the
label-specific feature learning algorithm for MLL, namely

LIFT. This algorithm constructs specific features to each la-
bel by conducting clustering analysis on its positive and neg-
ative instances, and then performs training and testing by
querying the clustering results. LLSF [Huang et al., 2015]
learns label-specific features for multi-label classification by
exploiting the second-order label correlation. In addition to
LLSF, MLFC [Zhang et al., 2018] and LF-LPLC [Weng et
al., 2018] also consider label-specific features and label cor-
relation in their works. MLFC designs an optimization frame-
work to model the label-specific feature learning problem,
and utilizes the label correlations by constructing additional
features at the same time. LF-LPLC uses a similar way in
LIFT to learn the label-specific features and exploits the lo-
cal pairwise label correlation by means of nearest neighbor
techniques.

3 The Proposed Algorithm
3.1 Framework
The main purpose of our work is to train a suitable model
to predict relevance degree of each label for unseen in-
stances. Let X = [x1;x2; · · · ;xn] ∈ Rn×d denotes the
input space, where xi is the i-th instance, n is the number
of instances and d is the dimension of features. Let D =
[D1;D2; · · · ;Dn] ∈ Rn×l denotes the output space, where
Di = [dy1

xi
, dy2

xi
, · · · , dyl

xi
] is the label distribution associated

with xi, d
yj
xi is used to indicate the importance of label yj to

instance xi, which satisfies dyj
xi ∈ [0, 1] and

∑l
j=1 d

yj
xi = 1,

and l is the number of labels.
In LDL, an instance is often characterized by all labels, but

some labels may only be determined by some specific fea-
tures of their own. Most of existing methods are just con-
cerned about the learning model and built on a simple feature
space in which features are shared by all labels. To solve this
problem, we try to extract the specific features for each la-
bel. Assuming that the feature space and the label space are
linearly related, the output model can be represented by the
following equation.

D̂ = XW, (1)

where D̂ is the predicted label distribution, and W is the
weight matrix. Considering that each label is determined by
several specific features of its own, the weight matrix W is
enforced to be sparse. As discussed in Introduction, we uti-
lize l1-regularization to learn label-specific features, which
can be formulated as follows:

min
W

1

2
‖XW −D‖2F + λ1‖W‖1

s.t.XW × 1l×1 = 1n×1
XW ≥ 0n×l,

(2)

where 1l×1 and 1n×1 are all-one matrices with l× 1 and n×
1 values, 0n×1 is a zero matrix, respectively, and λ1 is the
balance factor.

It should be noticed that the sparsity provided by l1-
regularization may lose some common features that have
common discrimination for all labels. For this consideration,
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Figure 1: Illustration of the fact that even two labels are correlated,
their specific features may also be different.

in addition to utilizing the l1-regularization to select label-
specific features, we also introduce a row-sparse weight ma-
trix to learn the common features.

min
W,M

1

2
‖X(W +M)−D‖2F + λ1‖W‖1 + λ2‖M‖2,1

s.t.X(W +M)× 1l×1 = 1n×1

X(W +M) ≥ 0n×l,

(3)

where M is a d× l row-sparse weight matrix constrained by
l2,1-regularization to select common features and λ2 is the
balance factor.

Furthermore, considering that the label correlation has
shown its strong power in improving LDL algorithms, such
as [Zheng et al., 2018; Jia et al., 2018], we prefer to exploit
the label correlation at the same time. In LLSF [Huang et
al., 2015], it assumes that if two labels are strongly corre-
lated, the similarity between their coefficient vectors will be
large. However, this assumption will make the correspond-
ing specific features tend to be the same when the two labels
are correlated, which is not sufficient to characterize all pos-
sible relationships between features and labels. As shown in
Fig. 1, y1 is determined by the specific features {f1, f3} and
y2 is determined by {f2, f3, f6}. Even if y1 and y2 are equal,
their corresponding coefficient vectors w1 = [1 0 1 0 0 0]T

and w2 = [0 1 1 0 0 1]T are different. Thus, we try to con-
strain label correlations directly on the output of labels, which
can implicitly explore the complex relationship between fea-
tures and labels.

min
W,M

1

2
‖X(W +M)−D‖2F + λ1‖W‖1 + λ2‖M‖2,1

+ λ3

n∑
i=1

{
1

2

l∑
p,q

Rpq(Xi·(W·p +M·p)−Xi·(W·q +M·q))2

}
s.t. X(W +M)× 1l×1 = 1n×1

X(W +M) ≥ 0n×l,
(4)

where Rpq denotes the correlation between the p-th and the
q-th labels, which is obtained by Pearson’s correlation the-
ory, and λ3 is the balance factor. Eq. 4 can be derived in the

following form,

min
W,M

1

2
‖X(W +M)−D‖2F + λ1‖W‖1 + λ2‖M‖2,1

+ λ3tr(X(W +M)(P −R)(X(W +M))T )

s.t. X(W +M)× 1l×1 = 1n×1
X(W +M) ≥ 0n×l,

(5)

where P is the diagonal matrix with diagonal R × 1l. The
first term is the loss function to measure the distance between
the predicting label distribution and the ground truth. The
specific features are extracted to each label according to the
second term. The third term is used to capture common fea-
tures that have common discrimination for all labels. And the
label correlation is utilized by the last term.

3.2 Optimization
ADMM (Alternating Direction Method of Multipliers) [Boyd
et al., 2011] which is suitable for addressing those objective
functions with linear constraints, is proper for solving Eq. 5.
To use ADMM, we first rewrite our objective into the follow-
ing equivalent form,

min
W,M,Q

1

2
‖XQ−D‖2F + λ1‖W‖1 + λ2‖M‖2,1

+ λ3tr(XQ(P −R)(XQ)T )

s.t. Q = W +M

XQ× 1l×1 = 1n×1
XQ ≥ 0n×l.

(6)

Eq. 6 can be solved by the following alternative methods
in iteration t:

Qt+1 = arg min
Qt

1

2
‖XQt −D‖2F +

ρ

2
‖Qt −W t −M t‖2F

+
ρ

2
‖XQt × 1l×1 − 1n×1‖22 + 〈Γt

1, Q
t −W t −M t〉

+ λ3tr(XQ
t(P −R)(XQt)T )

+ 〈Γt
2, XQ

t × 1l×1 − 1n×1〉
(7)

W t+1 = arg min
W t

λ1‖W t‖1 +
ρ

2
‖Qt+1 −W t −M t‖2F

+ 〈Γt
1, Q

t+1 −W t −M t〉
(8)

M t+1 = arg min
Mt

λ2‖M t‖2,1 +
ρ

2
‖Qt+1 −W t+1 −M t‖2F

+ 〈Γt
1, Q

t+1 −W t+1 −M t〉
(9)

Γt+1
1 = Γt

1 + ρ(Qt+1 −W t+1 −M t+1)
(10)

Γt+1
2 = Γt

2 + ρ(XQt+1 × 1l×1 − 1n×1),
(11)
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Algorithm 1: The LDLSF Framework
Initialization: Q0, W 0, M0, Γ0

1, Γ0
2, λ01, λ02, λ03, ρ,

t = 1;
Compute the label correlation matrix R;
while stopping criterion is not satisfied do

update Qt+1 by solving Eq. 7 using L-BFGS;
solve W t+1 by Eq. 12;
solve M t+1 by Eq. 13;
update Γt+1

1 by Eq. 10;
update Γt+1

2 by Eq. 11;
t = t+ 1;

end

where Γ1 ∈ Rd×l and Γ2 ∈ Rn×1 are the Lagrange multi-
pliers, ρ is the penalty factor and 〈·,·〉 is the Frobenius dot-
product. For the non-negative constraint, we simply use the
projection operator to set the element of XQ that does not
satisfy the condition to 0.

Eq. 8 and Eq. 9 can be rewritten as follows:

W t+1 = arg min
W t

λ1
ρ
‖W t‖1

+
1

2
‖W t − (Qt+1 −M t +

Γt
1

ρ
)‖2F

(12)

M t+1 = arg min
Mt

λ2
ρ
‖M t‖2,1

+
1

2
‖M t − (Qt+1 −W t+1 +

Γt
2

ρ
)‖2F .

(13)

Both Eq. 12 and Eq. 13 have closed form solution [Wright
et al., 2009; Liu et al., 2010]. Thus, the problem remained
is how to solve Eq. 7. Here, we intend to use the limited-
memory quasi-Newton method (L-BFGS) to solve it. For the
optimization, the computation of L-BFGS is mainly related
to the first-order gradient, which can be obtained by:

∇Qt+1 = XT (XQt −D) + Γt
1 + ρ(Qt −W t −M t)

+XT Γt
21Tl×1 +XT ρ(XQt × 1l×1 − 1n×1)1Tl×1

+ λ3X
TXQt[(P −R) + (P −R)T ].

(14)
The overall procedure of the proposed LDLSF algorithm is

shown in Algorithm 1.

4 Experiments
In this part, we will evaluate the proposed method on five real-
world data sets with seven state-of-the-art LDL approaches
over five different measures.

4.1 Data Sets
We execute our experiments on five label distribution data
sets, including two facial expression data sets s-JAFFE and
SBU 3DFE [Geng, 2016], and three image sentiment data
sets, i.e., Emotion6 [Peng et al., 2015], Flickr LDL and Twit-
ter LDL [Yang et al., 2017b].

Index Data sets #examples #features #labels

1 s-JAFFE 213 243 6
2 SBU 3DFE 2500 243 6
3 Emotion6 1980 168 7
4 Flickr LDL 11150 168 8
5 Twitter LDL 10045 168 8

Table 1: Statistics of five real-world data sets.

s-JAFFE and SBU 3DFE are extensions of two widely
used facial expression image databases, i.e., JAFFE [Lyons
et al., 1998] and BU 3DFE [Yin et al., 2006]. s-JAFFE con-
tains 213 grayscale expression images with 243-dimensional
features. Each image is scored by 60 persons on the six basic
emotion labels (i.e., happiness, sadness, surprise, fear, anger,
and disgust) with a 5-level scale. The average score of each
emotion is used to represent the emotion intensity. Similarly,
SBU 3DFE contains 2500 facial expression images and each
image is scored by 23 persons in the same way.

Emotion6 is assembled from Flickr for a sentiment pre-
diction benchmark, which is annotated with the votes for
seven emotional categories (i.e., anger, disgust, joy, fear,
sadness, surprise and neutral), containing a total of 1980
images. Flickr LDL and Twitter LDL contain 11,150 and
10,045 images respectively, whose labels fall in the typical
eight-emotional space (i.e., anger, amusement, awe, content-
ment, disgust, excitement, fear and sadness). The features of
the images in above three data sets are extracted by three pop-
ular descriptors, i.e., LBP [Ojala et al., 2002], HOG [Dalal
and Triggs, 2005] and Color Moment. Since the features we
extracted are high-dimensional, we use PCA to reduce the
dimensionality to 168. The details of the five data sets are
summarized in Table 1.

4.2 Evaluation Measures
Five different measures [Geng, 2016] are used to evaluate the
performances of the LDL algorithms. These measures can
be divided into two groups: Sφrensen, Kullback-Leibler and
Chebyshev are in one group to measure the distance between
two vectors; the lower the values of these measures, the bet-
ter the performance. Intersection and Cosine are in the other
group to measure similarity, for which higher values indicate
better performance.

4.3 Experimental Setting
The proposed LDLSF algorithm is compared with seven
state-of-the-art algorithms: PT-Bayes, AA-kNN, SA-
BFGS [Geng, 2016], SA-IIS [Geng et al., 2010],
CPNN [Geng et al., 2013], LDL-SCL [Zheng et al., 2018]
and LLSF [Huang et al., 2015]. The last five algorithms
are specially designed for LDL, which can directly model
the relative importance of each label to the particular in-
stance. SA-IIS aims to minimize the Kullback-Leibler di-
vergence between the ground truth and the predicting dis-
tribution by using improved iterative scaling method (IIS).
Since IIS often performs worse than several other optimiza-
tion algorithms [Malouf, 2002], an improved method SA-
BFGS is proposed to optimize the target function through
the quasi-Newton method BFGS. CPNN tries to use a three
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Figure 2: CD diagrams of the comparing algorithms under each evaluation criterion (CD=4.167 at 0.05 significance level).

Measure Algorithm s-JAFFE SBU 3DFE Emotion6 Flickr LDL Twitter LDL

Sφrensen ↓

SA-IIS 0.1535±0.0086 0.1607±0.0031 0.4359±0.0001 0.4503±0.0000 0.5057±0.0000
SA-BFGS 0.1305±0.0048 0.1585±0.0018 0.4709±0.0010 0.3782±0.0007 0.3777±0.0006
AA-kNN 0.1291±0.0056 0.1554±0.0024 0.4513±0.0013 0.3958±0.0005 0.4017±0.0007
PT-Bayes 0.1534±0.0001 0.1613±0.0000 0.6000±0.0018 0.5710±0.0010 0.5700±0.0017

CPNN 0.1556±0.0082 0.1601±0.0028 0.5534±0.0052 0.4284±0.0009 0.4248±0.0021
LLSF-LDL 0.1450±0.0037 0.1573±0.0014 0.4203±0.0030 0.3834±0.0021 0.3744±0.0006
LDL-SCL 0.1148±0.0086 0.1421±0.0035 0.4197±0.0040 0.3820±0.0022 0.3963±0.0032

LDLSF 0.1126±0.0009 0.1353±0.0002 0.4237±0.0006 0.3753±0.0004 0.3680±0.0002

K-L ↓

SA-IIS 0.0744±0.0110 0.0821±0.0027 0.6095±0.0004 0.6734±0.0001 0.8127±0.0001
SA-BFGS 0.0559±0.0092 0.0798±0.0022 1.1920±0.0034 0.7203±0.0037 0.6759±0.0031
AA-kNN 0.0579±0.0080 0.0870±0.0045 0.8776±0.0134 10.2733±0.0073 1.6758±0.0072
PT-Bayes 0.0738±0.0000 0.0851±0.0000 3.9536±0.0475 2.0693±0.0130 2.4935±0.0128

CPNN 0.0760±0.0092 0.0812±0.0031 1.4461±0.0445 0.8705±0.0081 0.8920±0.0156
LLSF-LDL 0.0641±0.0026 0.0725±0.0010 2.9096±0.0370 2.3642±0.0275 3.0087±0.0098
LDL-SCL 0.0443±0.0058 0.0627±0.0028 0.6084±0.0122 0.6230±0.0073 0.6600±0.0074

LDLSF 0.0418±0.0006 0.0614±0.0003 0.6013±0.0025 0.6182±0.0020 0.6081±0.0022

Chebyshev ↓

SA-IIS 0.1221±0.0103 0.1337±0.0029 0.3246±0.0001 0.3804±0.0000 0.4049±0.0000
SA-BFGS 0.1040±0.0055 0.1325±0.0022 0.3721±0.0009 0.3133±0.0005 0.3006±0.0006
AA-kNN 0.1034±0.0063 0.1305±0.0025 0.3340±0.0009 0.3322±0.0003 0.3217±0.0006
PT-Bayes 0.1204±0.0001 0.1389±0.0000 0.5240±0.0028 0.5045±0.0010 0.4970±0.0016

CPNN 0.1231±0.0098 0.1364±0.0029 0.4178±0.0057 0.3608±0.0011 0.3356±0.0015
LLSF-LDL 0.1149±0.0051 0.1312±0.0014 0.3100±0.0037 0.3332±0.0027 0.2959±0.0009
LDL-SCL 0.0890±0.0069 0.1193±0.0036 0.3122±0.0048 0.3147±0.0022 0.3102±0.0031

LDLSF 0.0871±0.0007 0.1075±0.0002 0.3070±0.0005 0.3112±0.0004 0.3050±0.0001

Intersection ↑

SA-IIS 0.8465±0.0086 0.8393±0.0031 0.5641±0.0001 0.5497±0.0000 0.4943±0.0000
SA-BFGS 0.8695±0.0048 0.8415±0.0018 0.5122±0.0010 0.6035±0.0007 0.6229±0.0006
AA-kNN 0.8709±0.0056 0.8446±0.0024 0.5487±0.0013 0.6041±0.0005 0.5983±0.0007
PT-Bayes 0.8466±0.0001 0.8387±0.0000 0.4000±0.0018 0.4316±0.0009 0.4337±0.0016

CPNN 0.8444±0.0082 0.8399±0.0028 0.4466±0.0052 0.5716±0.0009 0.5752±0.0021
LLSF-LDL 0.8550±0.0037 0.8427±0.0014 0.5791±0.0030 0.6441±0.0019 0.6289±0.0007
LDL-SCL 0.8851±0.0086 0.8579±0.0036 0.5803±0.0040 0.6208±0.0023 0.6077±0.0032

LDLSF 0.8873±0.0009 0.8640±0.0002 0.5763±0.0006 0.6247±0.0004 0.6320±0.0002

Cosine ↑

SA-IIS 0.9299±0.0095 0.9201±0.0024 0.7060±0.0002 0.7799±0.0001 0.7664±0.0001
SA-BFGS 0.9470±0.0082 0.9221±0.0019 0.6158±0.0019 0.7547±0.0004 0.8140±0.0008
AA-kNN 0.9444±0.0062 0.9152±0.0035 0.6505±0.0020 0.7722±0.0005 0.7848±0.0005
PT-Bayes 0.9304±0.0000 0.9177±0.0000 0.5350±0.0019 0.5854±0.0012 0.5797±0.0017

CPNN 0.9282±0.0083 0.9207±0.0026 0.5254±0.0069 0.7378±0.0017 0.7689±0.0025
LLSF-LDL 0.9374±0.0034 0.9233±0.0010 0.7152±0.0037 0.7883±0.0023 0.8201±0.0012
LDL-SCL 0.9583±0.0056 0.9381±0.0027 0.7079±0.0050 0.8090±0.0032 0.8174±0.0041

LDLSF 0.9615±0.0006 0.9442±0.0001 0.7162±0.0010 0.8142±0.0002 0.8237±0.0001

Table 2: Comparison results on all data sets are shown as “mean±std”. ↑ (↓) indicates the higher (lower), the better. The best results on each
row are highlighted.
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Measure FF critical value
Sφrensen 15.0909

2.3593
K-L 11.3285
Chebyshev 13.2131
Intersection 16.0000
Cosine 15.8113

Table 3: Friedman statistics FF in terms of each measure and the
critical value at 0.05 significance level (# comparing algorithms k =
8, # data sets N = 5).

layer neural network to learn the label distribution and LDL-
SCL is designed based on the label correlations. LLSF is a
method which learns specific features to each label for multi-
label classification. This algorithm can directly deal with
LDL problems by adding two LDL constraints on the model,
namely LLSF-LDL. All the codes are shared by original au-
thors, and we use the suggested parameters reported in corre-
sponding literature, except that we tune the trade-off param-
eters from 10{−4,−3,··· ,2,3} for LDL-SCL and tune the pa-
rameters from 2{10,−9,··· ,9,10} for LLSF-LDL using ten-fold
cross-validation. The number of cluster is set to 6 in LDL-
SCL.

In LDLSF, the parameters λ1, λ2 and λ3 are selected from
10{−6,−5,··· ,−2,−1}, respectively, and ρ is simply set as 10−3.
Besides, Q is initialized by the identity matrix. Both W and
M are diagonal matrices in which all diagonal elements are
0.5. The initialization of other variables is all-zero.

4.4 Results and Discussion
Table 2 reports the detailed experimental results of eight com-
paring algorithms on all data sets, where the best performance
among the comparing algorithms on each measure is marked
in bold. On each data set, ten times ten-folds cross-validation
is conducted and the mean value and standard deviation of
each evaluation criterion is recorded.

To perform comparative analysis in more well-founded
ways, Friedman test is further examined which is a favor-
able statistical test for comparisons of more than two algo-
rithms over multiple data sets [Demšar, 2006]. Table 3 sum-
marizes the Friedman statistics FF and the corresponding
critical value on each measure. As shown in Table 3, for
each measure, the null hypothesis of indistinguishable per-
formance at 0.05 significance level among the comparing al-
gorithms is clearly rejected. Consequently, Bonferroni-Dunn
test [Demšar, 2006] at 0.05 significance level is employed to
test whether our proposed method LDLSF achieves compet-
itive performance against the comparing algorithms, where
LDLSF is considered as the control algorithm. The perfor-
mance between two algorithms is significantly different if
their average ranks over all data sets differ by at least one
critical difference (CD). Figure 2 shows the CD diagrams on
each measure. In each sub-figure, any comparing algorithm
whose average rank is within one CD to that of LDLSF is con-
nected. Otherwise, any algorithm not connected with LDLSF
is considered to have significant different performance be-
tween them.

Based on these experimental results, the following obser-
vations can be made: (1) As shown in Table 2, it can be ob-
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Figure 3: Convergence of LDLSF on s-JAFFE and SBU 3DFE.

served that the performance of proposal is better than other al-
gorithms in general. (2) As shown in Fig. 2, LDLSF achieves
optimal average rank in terms of all evaluation metrics. In de-
tail, LDLSF significantly outperforms PT-Bayes and CPNN
on all the measures. Moreover, the proposal significantly
outperforms SA-IIS on all metrics except for K-L and out-
performs AA-kNN in terms of K-L and Cosine. Besides,
LDLSF is comparable to LDL-SCL and SA-BFGS based on
all evaluation metrics, comparable to LLSF-LDL in terms of
Sφrensen, Chebyshev, Intersection and Cosine.

In summary, the proposed LDLSF algorithm achieves a
competitive performance against other well-established label
distribution algorithms. The results demonstrate the effec-
tiveness of LDLSF.

4.5 Convergence
To investigate the convergence of the ADMM algorithm in
solving LDLSF model, we plot the values of the objective
function on two data sets (s-JAFFE and SBU 3DFE) in Figure
3. As can be observed, the value decreases as the number of
iterations increases. In detail, the objective function on s-
JAFFE approaches a fixed value at about 32 iterations, while
it reaches a fixed value on SBU 3DFE after approximately
150 iterations.

5 Conclusions
In this paper, we proposed a novel LDL algorithm by jointing
label-specific feature learning, common feature learning and
label correlations simultaneously. The label-specific features
are extracted by exploiting the l1-regularization and the com-
mon features which may be ignored by l1-regularization are
learned by utilizing the l2,1-regularization. Then, the label
correlations are concerned by directly modeling the output of
labels. The experimental results on several real-world data
sets demonstrate the effectiveness of LDLSF.
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