
Label Distribution Learning with Label Correlations via Low-Rank
Approximation

Tingting Ren1 , Xiuyi Jia1,2,3∗ , Weiwei Li4 and Shu Zhao5

1School of Computer Science and Engineering, Nanjing University of Science and Technology, China
2Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, Nanjing University of Posts and

Telecommunications, China
3State Key Laboratory for Novel Software Technology, Nanjing University, China

4College of Astronautics, Nanjing University of Aeronautics and Astronautics, China
5School of Computer Science and Technology, Anhui University, China

Abstract
Label distribution learning (LDL) can be viewed
as the generalization of multi-label learning. This
novel paradigm focuses on the relative importance
of different labels to a particular instance. Most
previous LDL methods either ignore the correlation
among labels, or only exploit the label correlations
in a global way. In this paper, we utilize both the
global and local relevance among labels to provide
more information for training model and propose a
novel label distribution learning algorithm. In par-
ticular, a label correlation matrix based on low-rank
approximation is applied to capture the global la-
bel correlations. In addition, the label correlation
among local samples are adopted to modify the la-
bel correlation matrix. The experimental results on
real-world data sets show that the proposed algo-
rithm outperforms state-of-the-art LDL methods.

1 Introduction
Most machine learning algorithms can be viewed as building
a mapping from the sample space to the label space. There
are two main traditional integrated paradigms for establish-
ing a mapping: single-label learning (SLL) and multi-label
learning (MLL) [Tsoumakas et al., 2007]. The former as-
sumes that each instance is associated with a single label,
while the latter considers that each instance may have a va-
riety of semantic meanings and be related to a set of labels
simultaneously. However, both SLL and MLL can only solve
the issue of “what describes the instance”; and cannot de-
termine the relative importance of each label to a particular
instance. Sometimes, we are more concerned about the in-
tensity of each label, to determine “how to describe the in-
stance”. To solve this problem, a novel learning paradigm
named label distribution learning (LDL) was proposed [Geng
et al., 2010]. Different from MLL to output a set of labels,
LDL learns a label distribution. Each component in the dis-
tribution represents the relevance of the corresponding label
to the instance.
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Since the label distribution can be viewed as a type of la-
bel relations, the correlation among labels should not be ig-
nored in the learning process. For example, in image an-
notations, assuming that sky and cloud are strongly related,
an image is more likely to be correlated with cloud, when
it is strongly correlated with sky. In view of this, some re-
searchers have considered label correlations in LDL. Zhou et
al. [2015] captured the label correlation by using Pearson’s
correlation coefficient for facial emotion recognition. Based
on the Plutchik’s theory, Zhou et al. [2016] explored the label
correlation for text emotion distribution learning. Moreover,
the label correlation was encoded into a distance to measure
the similarity of any two labels [Jia et al., 2018]. For incom-
plete LDL problem, a low-rank structure was employed to
capture the label correlations [Xu and Zhou, 2017]. However,
all above works exploited the label correlations in a global
way. In reality, label correlations are usually appeared in a
local way. For example, in text annotations, the relevance be-
tween Puma and animal appears in journals of ecology and
environment with a high probability, while Puma is usually
related to brand in fashion magazines.

To solve above problems, we try to learn the global and
the local label correlations simultaneously. Furthermore, the
global correlation is captured through a low-rank approxima-
tion and the local correlation is concerned by clustering, in
which the samples with similar discrimination will be clus-
tered into one group. Then, we can predict the label distri-
butions for unknown instances based on the high-order label
correlations encoded in one correlation matrix.

Our work was inspired by ML-LRC [Xu et al., 2014].
There are two major differences between our method and
ML-LRC: (1) ML-LRC only considers the global label cor-
relation. However, as we mentioned, some correlations are
only shared by a part of instances. In view of this, in addition
to introducing a correlation matrix to utilize the global label
correlation, we also try to learn the local label correlations
simultaneously. (2) ML-LRC is mainly concerned about the
traditional multi-label learning to learn a set of related labels
for each instance. Our work tries to propose a novel algorithm
in label distribution learning, which places more emphasis on
how relevant each label is to a particular instance, rather than
focusing on what label is relevant to a specific instance only.
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The main contribution of this paper is three folds:

• We propose a novel method to deal with LDL problems
by considering global correlations and local correlations
simultaneously.

• One correlation matrix is introduced to encode the high-
order correlation, in which the global correlation is uti-
lized by low-rank approximation while the local label
correlation is exploited by clustering.

• We assume that if the distance between two label distri-
butions is small enough, they should be strongly related
to each other.

2 Related Works
The LDL framework can be viewed as the generalization
of MLL. It might provide more information than traditional
paradigms on model learning. In recent years, LDL has
been successfully applied in many applications. This novel
learning paradigm was usually exploited to estimate facial
age [Gao et al., 2018; Geng et al., 2010; He et al., 2017].
A multivariate label distribution algorithm was used to esti-
mate the head pose [Geng and Xia, 2014]. Considering that
crowd images with adjacent class labels contain similar fea-
tures, the crowd counting problem can be transformed into an
LDL problem [Zhang et al., 2015]. Furthermore, the LDL
paradigm was applied to identify multiple emotions and their
intensities from texts [Zhou et al., 2016]. A deep label dis-
tribution learning algorithm by combining LDL with deep
learning was proposed to handle the problem of apparent age
estimation [Gao et al., 2017].

Existing LDL algorithms can be divided into three cat-
egories: problem transformation, algorithm adaptation and
specialized algorithms. Problem transformation based al-
gorithms transform the LDL problem into traditional prob-
lems and then use existing learners to solve it, such as PT-
SVM and PT-Bayes [Geng, 2016]. The main idea of algo-
rithm adjustment is to adapt traditional algorithms to fit for
LDL paradigm, such as AA-BP [Geng, 2016] and logistic
boosting regression method [Xing et al., 2016]. In addi-
tion, there are some specialized algorithms designed for LDL
can directly model the relative importance of each label to
the particular instance [Geng et al., 2014; Geng et al., 2013;
Zhao and Zhou, 2018].

To construct a specialized LDL algorithm, we need to con-
sider three parts: the objective function, the output model and
the optimization method. Difference between the ground-
truth distribution and the predicted distribution can be mea-
sured by some distances which can be viewed as objective
functions, such as Kullback-Leibler Divergence [Geng et al.,
2014; Huo et al., 2016; Jia et al., 2018] and Jeffery divergence
[Zhou et al., 2015]. The LDL algorithms mainly use the
maximum entropy model as the output model [Geng, 2016;
Zheng et al., 2018]. To solve the optimization problem, many
methods have been applied to LDL. For example, the im-
proved iterative scaling method can be used as the optimiza-
tion method [Geng et al., 2010], so does the limited-memory
quasi-Newton method (L-BFGS) [Zhou et al., 2016].
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Figure 1: Illustration of global label correlations. D̂S is the recon-
structed label distribution.

3 The LDL-LCLR Algorithm
3.1 Framework
The main goal of LDL is to learn a mapping from the input
space X = [x1;x2; · · · ;xn] ∈ Rn×d to the label distribution
over a finite set of labels Y = {y1, y2, · · · , yl}, where n is
the number of instances and l is the number of labels. Given a
training set T = {(x1, D1), (x2, D2), · · · , (xn, Dn)}, where
Di = [dy1

xi
, dy2

xi
, · · · , dyl

xi
] is the label distribution associated

with xi, we use the description degrees dyx, which satisfies
dyx ∈ [0, 1] and

∑
y d

y
x = 1, to indicate the importance of

label y to instance x, where x ∈ X and y ∈ Y . It is noticed
that dyx is not the probability that y correctly labels x, but
the proportion that y accounts for in a full description of x.
The LDL approach can learn a conditional probability mass
function p(y|x) from T and use the learned model to predict
the label distributions for unseen instances.

Without loss of generality, we choose the maximum en-
tropy model as the output model. Then the component of the
predicted label distribution d̂yj

xi , which is the description de-
gree of the j-th label y to the i-th instance x, can be expressed
as follows:

d̂yj
xi

= p(yj |xi;w) =
1

Zi
exp(

∑
r

wjrxir), (1)

where w is the model parameter that needs to be learned and
Zi =

∑
j exp(

∑
r wjrxir) is a normalization term to satisfy

that the sum of all description degrees of an instance equals
1. The performance of Kullback-Leibler (KL) divergence is
the most stable in the field of LDL according to comparison
experiments [Zhao and Geng, 2017]. Therefore, we adopt the
KL divergence as the basic objective function:

min
W

∑
i

DKL(Di||D̂i) + λ1‖W‖2F , (2)

where DKL(Di||D̂i) = Di ln Di

D̂i
is the KL divergence to

measure the distance between the predicted label distribution
D̂i = {d̂y1

xi
, d̂y2

xi
, · · · , d̂yl

xi
} and the ground-truth label distri-

bution Di. The second term aims to prevent the model from
over-fitting. λ1 is the balance factor.

Inspired by the work in [Xu et al., 2014], we adopt a cor-
relation matrix S to model the dependencies among different
labels. A simple example is shown in Figure 1, we can ob-
tain that the relative importance of “cloud” is changed from
0.15 to 0.535 (It needs to be normalized) for the high corre-
lation between “cloud” and “sky” shown in matrix S, i.e., the
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reconstructed distribution matrix D̂S can provide more infor-
mation and assign a new relevance of a label to a particular
instance based on the global label correlations. To exploit the
dependence among labels, Eq. (2) can be rewritten as Eq. (3):

min
W,E,S

∑
i

DKL(Di||D̂i) + λ1‖W‖2F + λ2‖E‖2,1 + λ3‖S‖∗

s.t. D = D̂S + E,
(3)

where λ2 and λ3 are balance factors. The regularization term
on E controls the difference between the reconstructed distri-
bution D̂S and the ground-truth distribution D. Since labels
are related to each other globally, one can be represented by a
linear combination of other labels, which implies a low-rank
structure of S. Considering that the low-rank function is dif-
ficult to optimize, we use the nuclear norm ‖ · ‖∗ as a convex
approximation of the low-rank function.

Nevertheless, some label correlations are only shared by
partial samples. Thus, we try to consider the local relevance
among labels simultaneously. The k-means method is intro-
duced to cluster samples into different groups. In one group,
we assume that if the distance between two label distributions
is small enough, they should be strongly related to each other.
Then, the framework of LDL that exploits both the global and
local correlation among labels can be formulated as:

min
W,E,S

∑
i

DKL(Di||D̂i) + λ1‖W‖2F + λ2‖E‖2,1 + λ3‖S‖∗

− 1

2
λ4

k∑
v=1

l∑
m=1

l∑
n=1

Sm,n‖Dv
·m −Dv

·n‖22

s.t. D = D̂S + E,
(4)

where λ4 is the balance factor and k is the number of clusters.
Sm,n is the correlation between the m-th label D·m and the
n-th label D·n. It is worth mentioning that for Sm,n, we want
to find a larger correlation value for two correlated labels with
a smaller distance, thus the last term in the objective function
is a maximization problem.

3.2 Optimization
Since the optimization problem in Eq. (4) is convex, it can
be optimized globally. In this section, we exploit the ADMM
(Alternating Direction Method of Multipliers) [Boyd et al.,
2011], which can convert the multi-parameter problem into
multiple single-parameter problems, to obtain the model pa-
rameter W .

Here, we introduce an auxiliary variable Z to make the ob-
jective function separable for the two non-smooth regulariza-
tion terms in Eq. (4):

min
W,E,S,Z

∑
i

DKL(Di||D̂i) + λ1‖W‖2F + λ2‖E‖2,1

+ λ3‖Z‖∗ −
1

2
λ4

k∑
v=1

l∑
m=1

l∑
n=1

Sm,n‖Dv
·m −Dv

·n‖22

s.t. D = D̂S + E,S − Z = 0.
(5)

Then, the Lagrange multiplier method is used to transform
the constrained problem into an unconstrained problem:

min
W,E,S,Z

∑
i

DKL(Di||D̂i) + λ1‖W‖2F + λ2‖E‖2,1

+ λ3‖Z‖∗ −
1

2
λ4

k∑
v=1

l∑
m=1

l∑
n=1

Sm,n‖Dv
·m −Dv

·n‖22

+
ρ

2
‖D − D̂S − E‖2F +

ρ

2
‖S − Z‖2F

+ 〈Γ1, D − D̂S − E〉+ 〈Γ2, S − Z〉,
(6)

where Γ1 and Γ2 are the Lagrange multipliers, ρ is the penalty
parameter and 〈·, ·〉 is the Frobenius dot-product.

Eq. (6) can be solved by ADMM. Each iteration of ADMM
involves updating one variable, with the other variables fixed
to their most recent values. The following gives the updating
rules of each parameter during one round of iteration.

To solve for W , Eq. (6) can be reduced to the following
alternative methods,

W = arg min
W

∑
i

Di lnDi −
∑
i

Di ln
exp(

∑
r wjrxir)∑

j exp(
∑

r wjrxir)

+ 〈Γ1, D − D̂S − E〉+
ρ

2
‖D − D̂S − E‖2F + λ1‖W‖2F .

(7)
In the same way, S can be solved by optimizing the following
sub-problem,

S = arg min
S

< Γ1, D − D̂S − E > +〈Γ2, S − Z〉

+
ρ

2
‖D − D̂S − E‖2F +

ρ

2
‖S − Z‖2F

− 1

2
λ4

k∑
v=1

l∑
m=1

l∑
n=1

Sm,n‖Dv
·m −Dv

·n‖22.

(8)

Both Eq. (7) and Eq. (8) can be solved by the limited-memory
quasi-Newton method effectively [Yuan, 1991]. The basic
idea is to avoid explicit calculation of the inverse Hessian ma-
trix, which is required in the Newton method. For the opti-
mization of Eq. (7) and Eq. (8), the computation of L-BFGS
is mainly related to the first-order gradient, which can be ob-
tained by

∇W = XT (D̂ −D) + 2λ1W −XT < D̂ − D̂2,Γ1 > ST

− ρXT < D̂ − D̂2, D − D̂S − E > ST ,
(9)

∇S = −ΓT
1 D̂ + ΓT

2 + ρ(S − Z)− ρD̂T (D − D̂S − E)

− 1

2
λ4

k∑
v=1

l∑
m=1

l∑
n=1

‖Dv
·m −Dv

·n‖22.

(10)
Similarly, E and Z can be obtained by solving the prob-

lems as follows:

E = arg min
E

λ2‖E‖2,1+ < Γ1, D − D̂S − E >

+
ρ

2
‖D − D̂S − E‖2F

(11)
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Algorithm 1: The LDL-LCLR Framework
Initialization: W , S, E, Z, Γ1, Γ2, ρ, λ1, λ2, λ3, λ4
While stopping criterion is not satisfied Do

update W by solving (7) using L-BFGS
update S by solving (8) using L-BFGS
update E by solving (11)
update Z by solvign (12)
update Γ1, Γ2 by (13) and (14)

End While

Z = arg min
Z
λ3‖Z‖∗+ < Γ2, S − Z > +

ρ

2
‖S − Z‖2F .

(12)
Both Eq. (11) and Eq. (12) have a closed solution [Liu et
al., 2010; Cai et al., 2010]. The multipliers Γ1 and Γ2 can be
updated directly by

Γ1 = Γ1 + ρ(D − D̂S − E), (13)

Γ2 = Γ2 + ρ(S − Z). (14)

The overall procedure of Label Distribution Learning with
Label Correlations via Low-Rank approximation (LDL-
LCLR) is summarized in Algorithm 1.

4 Experiments
In this part, we will evaluate the proposed method on 15 real-
world data sets with seven state-of-the-art LDL approaches
over six different measurements. These 15 data sets [Geng,
2016] cover the fields of natural scene recognition, biologi-
cal information classification and emotional analysis, among
others. Six different measures [Geng, 2016] are used to eval-
uate the performances of the LDL algorithms, i.e., Sφrensen,
Squared-chord, Kullback-Leibler, Chebyshev, Intersection
and Cosine.

4.1 Experimental Setting
The proposed LDL-LCLR algorithm is compared with seven
LDL algorithms: PT-SVM, AA-kNN, BFGS-LLD [Geng,
2016], IIS-LLD [Geng et al., 2010], CPNN [Geng et al.,
2013], LDLLC [Jia et al., 2018] and LDL-SCL [Zheng et
al., 2018]. These seven algorithms can be divided into three
groups. The first group is the Problem Transformation (PT,
e.g., PT-SVM), methods in this group transform the LDL
problem into traditional problem and then use existing learn-
ers to solve it. The second group is the Algorithm Adjustment
(AA, e.g., AA-kNN), the main idea of AA is to adapt tradi-
tional algorithms to fit for LDL paradigm. The others are
specialized algorithms designed for LDL, which can directly
model the relative importance of each label to the particu-
lar instance. IIS-LLD aims to minimize the Kullback-Leibler
divergence between the ground truth and the predicting dis-
tribution by using improved iterative scaling method (IIS).
Since IIS often performs worse than several other optimiza-
tion algorithms [Malouf, 2002], an improved method BFGS-
LLD is proposed to optimize the target function through the

Evaluation metric FF critical value
Sφrensen 36.2341

2.1044

Squared-chord 35.8563
K-L 33.5090
Chebyshev 28.8609
Intersection 36.8712
Cosine 42.8402

Table 1: Friedman statistics FF in terms of each evaluation metric
and the critical value at 0.05 significance level (# comparing algo-
rithms k = 8, # data sets N = 15).

quasi-Newton method BFGS. The main assumption made in
both IIS-LLD and BFGS-LLD is that the relationship be-
tween the feature space and the label distribution space is
consistent with the maximum entropy model. CPNN re-
moves this assumption by using a three layer neural net-
work to approximate the relationship. LDLLC and LDL-
SCL are two LDL algorithms considering the label correla-
tion. LDLLC exploits the Pearson’s correlation to capture
global label relevance while LDL-SCL utilizes the local la-
bel correlation to obtain more potential supervised informa-
tion. All the codes are shared by original authors, and we
use the suggested parameters reported in corresponding liter-
ature, except that we tune the regularization parameters from
10{−4,−3,−2,−1,0,1,2,3} for LDLLC and LDL-SCL using ten-
fold cross-validation. The number of cluster is set to 6 in
LDL-SCL.

In LDL-LCLR, the parameters λ1, λ2, λ3, λ4 and k are set
to 0.0001, 0.001, 0.001, 0.001 and 4, respectively. Besides, ρ
is simply set as 1. We use k-means to cluster samples. The
details of parameter selections are shown in the parameter
analysis section. The maximum iteration is set to be 100.
Besides, S and Z are initialized by the identity matrix. The
initialization of other variables is all-zero.

4.2 Results and Discussion
Due to page limitation, we only provide detailed results of
two measures, which are shown in Table 2 and Table 3. The
best performance among the comparing algorithms on each
measure is marked in bold. On each data set, ten times ten-
fold cross-validation is conducted and the mean value and
standard deviation of each evaluation criterion is recorded.

To perform comparative analysis in more well-founded
ways, Friedman test is further examined which is a favorable
statistical test for comparisons of more than two algorithms
over multiple data sets [Demšar, 2006]. Table 1 summa-
rizes the Friedman statisticsFF and the corresponding critical
value on each measure. As shown in Table 1, for each eval-
uation criterion, the null hypothesis of indistinguishable per-
formance at 0.05 significance level among the comparing al-
gorithms is clearly rejected. Consequently, Bonferroni-Dunn
test [Demšar, 2006] at 0.05 significance level is employed
to test whether our proposed method LDL-LCLR achieves
competitive performance against the comparing algorithms,
where LDL-LCLR is considered as the control algorithm.
The performance between two algorithms is significantly dif-
ferent if their average ranks over all data sets differ by at least
one critical difference (CD). Figure 2 shows the CD diagrams
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Figure 2: CD diagrams of the comparing algorithms under each evaluation criterion (CD=2.406 at 0.05 significance level).

Data LDL-LCLR IIS-LDL BFGS-LDL AA-kNN LDLLC CPNN LDL-SCL PT-SVM
Yeast-alpha .0362±.0018(1) .0577±.0010(8) .0392±.0018(4) .0412±.0006(7) .0382±.0009(3) .0402±.0007(6) .0376±.0008(2) .0398±.0007(5)
Yeast-cdc .0420±.0021(1) .0602±.0006(8) .0459±.0019(5) .0473±.0007(7) .0427±.0010(3) .0465±.0012(6) .0422±.0010(2) .0445±.0011(4)
Yeast-cold .0560±.0029(1) .0708±.0012(8) .0596±.0014(4) .0643±.0023(6) .0585±.0016(2) .0603±.0023(5) .0591±.0012(3) .0662±.0030(7)
Yeast-diau .0563±.0044(1) .0759±.0014(8) .0599±.0011(4) .0632±.0013(5) .0594±.0018(2) .0634±.0014(6) .0596±.0014(3) .0758±.0034(7)
Yeast-dtt .0382±.0030(1) .0575±.0035(8) .0426±.0021(4.5) .0455±.0014(7) .0408±.0011(2) .0426±.0019(4.5) .0416±.0016(3) .0446±.0019(6)
Yeast-elu .0402±.0019(1) .0602±.0007(8) .0419±.0010(4) .0455±.0005(7) .0415±.0009(2) .0425±.0009(5) .0417±.0005(3) .0438±.0008(6)
Yeast-heat .0579±.0028(1) .0765±.0013(8) .0608±.0022(4) .0634±.0012(7) .0596±.0019(2) .0615±.0009(5.5) .0602±.0014(3) .0615±.0010(5.5)
Yeast-spo .0811±.0061(1) .0962±.0022(8) .0854±.0018(4) .0921±.0026(6) .0846±.0030(3) .0859±.0025(5) .0836±.0016(2) .0922±.0035(7)

Yeast-spo5 .0876±.0051(1) .0988±.0031(8) .0927±.0018(5) .0963±.0026(7) .0911±.0035(2) .0915±.0031(3) .0918±.0032(4) .0960±.0034(6)
Yeast-spoem .0745±.0092(1) .0925±.0048(7) .0880±.0033(3.5) .0902±.0026(6) .0854±.0026(2) .0880±.0028(3.5) .0882±.0038(5) .0942±.0075(8)

s-JAFFE .1186±.0159(2) .1535±.0086(7) .1305±.0048(4) .1291±.0056(3) .1501±.0099(5) .1556±.0082(8) .1148±.0086(1) .1532±.0070(6)
SBU 3DFE .1405±.0069(1) .1607±.0031(7) .1585±.0018(4) .1554±.0024(3) .1593±.0052(5) .1601±.0028(6) .1421±.0035(2) .1626±.0035(8)

Natural Scene .4434±.0312(1) .5397±.0039(7) .4757±.0056(3) .4706±.0008(2) .5354±.0076(6) .5174±.0097(5) .5000±.0064(4) .6496±.0175(8)
Movie .1578±.0077(1) .2014±.0035(7) .1639±.0033(2) .1773±.0048(4) .1849±.0058(5) .1877±.0067(6) .1740±.0033(3) .3054±.0178(8)

Human Gene .1935±.0115(1) .2176±.0039(4) .2160±.0017(3) .2557±.0037(7) .2726±.0038(8) .2178±.0025(5) .2089±.0027(2) .2179±.0065(6)

Table 2: Sφrensen (the lower the better) results on all the data. The value is measured by 10 times 10-fold cross validation shown in
mean±std(rank) form. The best results on each row are highlighted.

Data LDL-LCLR IIS-LDL BFGS-LDL AA-kNN LDLLC CPNN LDL-SCL PT-SVM
Yeast-alpha .9638±.0018(1) .9423±.0010(8) .9608±.0018(4) .9588±.0006(7) .9618±.0009(3) .9598±.0007(6) 9620±.0008(2) .9602±.0007(5)
Yeast-cdc .9580±.0021(1) .9398±.0006(8) .9541±.0019(5) .9527±.0007(7) .9573±.0010(3) .9535±.0012(6) .9578±.0010(2) .9555±.0011(4)
Yeast-cold .9440±.0029(1) .9292±.0012(8) .9404±.0014(4) .9357±.0023(6) .9415±.0016(2) .9397±.0023(5) .9409±.0012(3) .9338±.0030(7)
Yeast-diau .9437±.0044(1) .9241±.0014(8) .9401±.0011(4) .9368±.0013(5) .9406±.0018(2) .9366±.0014(6) .9404±.0014(3) .9242±.0034(7)
Yeast-dtt .9618±.0030(1) .9425±.0035(8) .9574±.0021(4.5) .9545±.0014(7) .9592±.0011(2) .9574±.0019(4.5) .9584±.0016(3) .9554±.0019(6)
Yeast-elu .9598±.0019(1) .9398±.0007(8) .9581±.0010(4) .9545±.0005(7) .9585±.0009(2) .9575±.0009(5) .9583±.0006(3) .9562±.0008(6)
Yeast-heat .9421±.0028(1) .9235±.0013(8) .9392±.0022(4) .9366±.0012(7) .9404±.0019(2) .9385±.0009(5.5) .9398±.0014(3) .9385±.0010(5.5)
Yeast-spo .9189±.0061(1) .9038±.0022(8) .9146±.0018(4) .9079±.0026(6) .9154±.0030(3) .9141±.0025(5) .9164±.0016(2) .9078±.0035(7)

Yeast-spo5 .9124±.0051(1) .9012±.0031(8) .9073±.0018(5) .9037±.0026(7) .9089±.0035(2) .9085±.0031(3) .9082±.0032(4) .9040±.0034(6)
Yeast-spoem .9255±.0092(1) .9075±.0048(7) .9120±.0033(3.5) .9098±.0026(6) .9146±.0026(2) .9120±.0028(3.5) .9118±.0038(5) .9058±.0075(8)

s-JAFFE .8814±.0159(2) .8465±.0086(7) .8695±.0048(4) .8709±.0056(3) .8499±.0099(5) .8444±.0082(8) .8851±.0086(1) .8468±.0070(6)
SBU 3DFE .8595±.0069(1) .8393±.0031(7) .8415±.0018(4) .8446±.0024(3) .8407±.0052(5) .8399±.0028(6) .8579±.0036(2) .8374±.0035(8)

Natural Scene .5566±.0312(1) .4603±.0039(7) .5243±.0056(3) .5294±.0008(2) .4646±.0076(6) .4826±.0097(5) .5004±.0064(4) .3504±.0175(8)
Movie .8422±.0077(1) .7986±.0035(7) .8361±.0033(2) .8227±.0048(4) .8151±.0058(5) .8123±.0067(6) .8260±.0033(3) .6946±.0178(8)

Human Gene .8065±.0115(1) .7824±.0039(4) .7840±.0017(3) .7443±.0037(7) .7274±.0038(8) .7822±.0025(5) .7911±.0023(2) .7810±.0100(6)

Table 3: Intersection (the higher the better) results on all the data. The value is measured by 10 times 10-fold cross validation shown in
mean±std(rank) form. The best results on each row are highlighted.
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Figure 3: Influence of λ1 and λ2 with 2 measures on Yeast-alpha.
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Figure 4: Influence of λ3 and λ4 with 2 measures on Yeast-alpha.

Figure 5: Influence of k with 4 measures on data set Yeast-alpha.

on each evaluation criterion. In each sub-figure, any compar-
ing algorithm whose average rank is within one CD to that of
LDL-LCLR is connected. Otherwise, any algorithm not con-
nected with LDL-LCLR is considered to have significantly
different performance between them.

Based on these experimental results, the following obser-
vations can be made: (1) As shown in Table 2 and Table
3, it can be observed that the proposed method LDL-LCLR
is superior to the baselines in general. (2) The correlation-
driven methods LDLLC, LDL-SCL and LDL-LCLR gener-
ally outperform other algorithms. And the performance of
LDL-LCLR is better than LDLLC and LDL-SCL on all data
sets except for s-JAFFE. The results are as expected since
the proposal simultaneously exploits the global and the local
label correlations. (3) The specialized LDL algorithms gener-
ally outperform the algorithms that are obtained by problem
transformation and algorithm adaptation.

In summary, the proposed LDL-LCLR algorithm achieves
a competitive performance against other well-established la-
bel distribution algorithms. The results demonstrate the ef-
fectiveness of LDL-LCLR.

4.3 Sensitivity Analysis of Parameters
Next, we investigate the sensitivity of the proposed LDL-
LCLR method to the parameter setting, including λ1, λ2, λ3,
λ4 in (6) and the number of clusters k. Figure 3 shows the in-
fluence of λ1 and λ2 with measures K-L and intersection on
data set Yeast-alpha. We can observe that the performance is
relatively stable if the parameters λ1 and λ2 respectively falls
in a certain range (i.e., λ1 ∈ [0.00001, 0.001], λ2 ∈ [0.00001,
0.001]) and the performance deteriorates when they fall out-
side of the range. Besides, we can see that the influence of λ2
is smaller than the influence of λ1.

Considering that parameters λ3 and λ4 determine the
global correlation and local correlation in (6), we design a
set of experiments to investigate how these two parameters
jointly affect the prediction performance of LDL-LCLR. As
shown in Figure 4, we can notice that the proposed method is
very sensitive to the variations of the parameters λ3 and λ4.
When λ3 ∈ [0.001, 0.1], in general, the performance rises
gradually with the increase of λ4, which demonstrates the im-
portance of local correlations among labels in LDL learning
process. Moreover, when λ3 is set to 10−5, the performance
of our method deteriorates firstly and then becomes better as
λ4 increases.

In addition, we run LDL-LCLR with k varying from 1 to
9 with step size of 1. We present the experimental results
on data set Yeast-alpha with 4 evaluation measures in Figure
5. Notice that, for criteria Sφrensen and K-L, the smaller the
value, the better the performance; but for criteria Intersection
and Cosine, the larger the value, the better the performance.
First, we can observe that the performance rises rapidly when
k is less than 4. After that, the performance of the algorithm
fluctuates in a certain range (i.e, Sφrensen∈ [0.0365, 0.0370],
Intersection ∈ [0.9630, 0.9635]). Therefore, we set k = 4 in
LDL-LCLR.

5 Conclusion
Label distribution learning is a generalized and effective
method to deal with label ambiguity problems. Many LDL
algorithms have concerned the label correlations to improve
the performances. However, most of them apply the label
correlations either in a global or a local way. In this paper,
different from previous works, we propose a novel LDL al-
gorithm that simultaneously exploits the global and the local
label correlations. In the proposed LDL-LCLR method, the
global correlations are captured through a low-rank approx-
imation and the local correlations are utilized by clustering
samples. The experimental results on several data sets show
that LDL-LCLR outperforms many state-of-the-art LDL al-
gorithms.
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