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Abstract

In this paper, we present a general framework to
scale graph autoencoders (AE) and graph varia-
tional autoencoders (VAE). This framework lever-
ages graph degeneracy concepts to train models
only from a dense subset of nodes instead of us-
ing the entire graph. Together with a simple yet ef-
fective propagation mechanism, our approach sig-
nificantly improves scalability and training speed
while preserving performance. We evaluate and
discuss our method on several variants of existing
graph AE and VAE, providing the first application
of these models to large graphs with up to millions
of nodes and edges. We achieve empirically com-
petitive results w.r.t. several popular scalable node
embedding methods, which emphasizes the rele-
vance of pursuing further research towards more
scalable graph AE and VAE.

1 Introduction

Graphs have become ubiquitous in the Machine Learning
community, thanks to their ability to efficiently represent the
relationships among items in various disciplines. Social net-
works, biological molecules and communication networks
are some of the most famous real-world examples of data
usually represented as graphs. Extracting meaningful infor-
mation from such structure is a challenging task, which has
initiated considerable research efforts, aiming at tackling sev-
eral learning problems such as link prediction, influence max-
imization and node clustering.

In particular, over the last decade there has been an increas-
ing interest in extending and applying Deep Learning meth-
ods to graph structures. [Gori et al., 2005; Scarselli et al.,
2009] firstly introduced graph neural network architectures,
and were later joined by numerous contributions to general-
ize CNNs and the convolution operation to graphs, leverag-
ing spectral graph theory [Bruna ef al., 2014], its approxi-
mations [Defferrard er al., 2016; Kipf and Welling, 2016a] or
spatial-based approaches [Hamilton er al., 2017]. Attempts at
extending RNNs, GANS, attention mechanisms or word2vec-
like methods for node embeddings also recently emerged in
the literature ; for complete references, we refer to [Wu et al.,
2019]’s survey on Deep Learning for graphs.
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In this paper, we focus on the graph extensions of autoen-
coders and variational autoencoders. Introduced in the 1980’s
[Rumelhart er al., 1986], autoencoders (AE) regained a sig-
nificant popularity in the last decade through neural network
frameworks [Baldi, 2012] as efficient tools to learn reduced
encoding representations of input data in an unsupervised
way. Furthermore, variational autoencoders (VAE) [Kingma
and Welling, 2013], described as extensions of AE but actu-
ally based on quite different mathematical foundations, also
recently emerged as a successful approach for unsupervised
learning from complex distributions, assuming the input data
is the observed part of a larger joint model involving low-
dimensional latent variables, optimized via variational infer-
ence approximations. [Tschannen et al., 2018] review the
wide recent advances in VAE-based representation learning.
In this paper we show that, during the last three years, many
efforts have been devoted to the generalization of such mod-
els to graphs. Graph AE and VAE appear as elegant node
embedding tools i.e. ways to learn a low dimensional vector
space representation of nodes, with promising applications to
link prediction, node clustering, matrix completion and graph
generation. However, most existing models suffer from scala-
bility issues and all existing experiments are limited to graphs
with at most a few thousand nodes. The question of how
to scale graph AE and VAE to larger graphs remains widely
open, and we propose to address it in this paper. More pre-
cisely, our contribution is threefold:

e We introduce a general framework to scale graph AE
and VAE models, by optimizing the reconstruction loss
(for AE) or variational lower bound (for VAE) only from
a dense subset of nodes, and then propagate representa-
tions in the entire graph. These nodes are selected using
graph degeneracy concepts. Such approach considerably
improves scalability while preserving performance.

e We apply this framework to large real-world data and
discuss empirical results on ten variants of graph AE or
VAE models for two learning tasks. To the best of our
knowledge, this is the first application of these models
to graphs with up to millions of nodes and edges.

e We show that these scaled models have competitive per-
formances w.r.t. several popular scalable node embed-
ding methods. It emphasizes the relevance of pursuing
further research towards scalable graph autoencoders.



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

This paper is organized as follows. In Section 2, we provide
an overview of graph AE/VAE and of their extensions, appli-
cations and limits. In Section 3, we present our degeneracy
framework and how we reconstruct the latent space from an
autoencoder only trained on a subset of nodes. We interpret
our experimental analysis and discuss possible extensions of
our approach in Section 4, and we conclude in Section 5.

2 Preliminaries

In this section, we recall some key concepts related to graph
AE and VAE. Throughout this paper, we consider an undi-
rected graph G = (V,€) with |V| = n nodes and |€| = m
edges, without self-loops. We denote by A the adjacency ma-
trix of G, weighted or not. Nodes can possibly have features
vectors of size d, stacked up in an n x d matrix X. Otherwise,
X is the identity matrix [.

2.1 Graph Autoencoders (GAE)

In the last three years, several attempts at transposing autoen-
coders to graph structures with [Kipf and Welling, 2016b]
or without [Wang er al., 2016] node features have been pre-
sented. Their goal is to learn, in an unsupervised way, a low
dimensional node embedding/latent vector space (encoding),
from which reconstructing the graph topology (decoding) is
possible. In its most general form, the n x f matrix Z of all
latent space vectors z;, where f is the dimension of the latent
space, is the output of a Graph Neural Network (GNN) ap-
plied on A and, potentially, X . To reconstruct A from Z, one
could resort to another GNN. However, [Kipf and Welling,
2016b] and several extensions of their model implement a
simpler inner product decoder between latent variables, along
with a sigmoid activation o (-) or, if A is weighted, some more
complex thresholding. The drawback of this simple decoding
is that it involves the multiplication of the two dense matrices
Z and ZT, which has a quadratic complexity O(fn?) w.r.t.

the number of nodes. To sum up, with A the reconstruction:
A=0(2Z") with Z = GNN(XA).

The model is trained by minimizing the reconstruction loss
|A — A||p of the graph structure where || - || denotes the
Frobenius matrix norm, or alternatively a weighted cross en-
tropy loss, by stochastic gradient descent.

2.2 Graph Convolutional Networks (GCN)

[Kipf and Welling, 2016b], and a majority of following
works, assume that the GNN encoder is a Graph Convo-
lutional Network (GCN). Introduced by [Kipf and Welling,
2016al, GCNs leverage both 1) the features information X,
and 2) the graph structure summarized in A. In a GCN with
L layers, with H(®) = X and H") = Z, each layer returns:

HUD = ReLU(D™Y2(A+ 1) D~ 2HOW®)

i.e. it averages the feature vectors from H (") of the neighbors
of a given node (and itself, thus the I), with a ReLU activa-
tion ReLU(z) = max(z,0). D denotes the diagonal degree
matrix of A + I, so D™Y2(A + I)D~'/2 is its symmetric
normalization. ReLU is absent from output layer. Weights
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matrices W), of potentially different dimensions, are trained
by stochastic gradient descent. Implementing GCN encoders
is mainly driven by complexity purposes. Indeed, the cost
of computing each hidden layer is linear w.r.t. m [Kipf and
Welling, 2016al, and its training efficiency can also be im-
proved via importance sampling [Chen et al., 2018]. How-
ever recent works, e.g. [Xu er al., 2019], highlight some fun-
damental limits of the simple GCN heuristics. It incites to
resort to more powerful albeit more complex GNN encoders,
such as [Bruna et al., 2014] computing actual spectral graph
convolutions, a model later extended by [Defferrard et al.,
2016], approximating smooth filters in the spectral domain
with Chebyshev polynomials (GCN being a faster first-order
approximation of [Defferrard et al., 2016]). In this paper, we
show that our scalable degeneracy framework adequately fa-
cilitates the training of such more complex encoders.

2.3 Variational Graph Autoencoders (VGAE)

[Kipf and Welling, 2016b] also introduced Variational Graph
Autoencoders (VGAE). They assume a probabilistic model
on the graph structure involving some latent variables z; of
length f for each node ¢ € V), later interpreted as latent rep-
resentations of nodes in an embedding space of dimension
f- More precisely, with Z the n x f latent variables matrix,
the inference model (encoder) is defined as ¢(Z|X,A) =
[T, q(=i]X, A) where q(z,|X, A) = N (=, diag(o2).
Parameters of Gaussian distributions are learned using two
two-layer GCN. Therefore, u, the matrix of mean vectors
Wi, is defined as 4 = GCN,(X,A). Also, logo =
GCN, (X, A), and both GCNs share the same weights in first
layer. Then, as for GAE, a generative model (decoder) aim-
ing at reconstructing A is defined as the inner product be-
tween latent variables: p(A|Z) = [[;_, [Tj_, p(Aij|zi, 2)
where p(Ai; = 1|21, 2j) = (2] z;) and o () is the sigmoid
function. As explained for GAE, such reconstruction has a
limiting quadratic complexity w.r.t. n. [Kipf and Welling,
2016b] optimize weights of GCN by maximizing a tractable
variational lower bound (ELBO) of the model’s likelihood:

£ =Eyz1x,4) | 108 p(AlZ)| = Dici(a(Z]X, 4)|p(2)),

where Dk (-,-) is the Kullback-Leibler divergence. They
perform full-batch gradient descent, using the reparameter-
ization trick [Kingma and Welling, 2013], and choosing a
Gaussian prior p(Z) = [[, p(zi) = [, N(20,I).

2.4 Applications, Extensions and Limits

GAE and VGAE have been successfully applied for vari-
ous graph learning tasks, such as link prediction [Kipf and
Welling, 2016b], clustering [Wang er al., 2017] and matrix
completion for recommendation [Berg er al., 2018]. Ex-
tensions of these models also recently tackled multi-task
learning problems [Tran, 2018], added adversarial training
schemes enforcing the latent representation to match the prior
[Pan er al., 2018] or proposed RNN graph autoencoders to
learn graph-level embeddings [Taheri et al., 2018].

We also note the existence of several applications of graph
VAE to biochemical data and small molecular graphs [Ma
et al., 2018]. Most of them put the emphasis on plausible
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graph generation using the decoder. Among these works, [Si-
monovsky and Komodakis, 2018] introduced a model able
to reconstruct both 1) the topological graph information, 2)
node-level features, and 3) edge-level features. However, it
involves a graph matching step in O(n*) complexity that,
while being acceptable for molecules with tens of nodes, pre-
vents the model to scale.

Overall, all existing experiments are restricted to small or
medium-size graphs with up to a few thousand nodes and
edges. Most models suffer from scalability issues, either by
training complex GNN models or by using dense inner prod-
uct decoding in O(fn?) complexity as in [Kipf and Welling,
2016b]. This problem has already been raised and partially
addressed but without applications to large graphs. For in-
stance, [Grover ef al., 2018] proposed Graphite that replaces
the standard decoder by more scalable reverse message pass-
ing schemes, but only report results on [Kipf and Welling,
2016b]’s medium-size graphs (3K to 20K nodes). To sum up,
graph AE and VAE showed very promising results on various
tasks for small and medium-size datasets, but the question of
their extension to very large graphs remains widely open.

3 Scaling up Graph AE/VAE with Degeneracy

In this section, we introduce a flexible framework, aiming
at scaling existing graph autoencoders (variational or not) to
large graphs. Here, we assume that nodes are featureless, i.e.
that models only learn from the graph structure. Node fea-
tures will be re-introduced in section 4.

3.1 Overview of the Framework

To deal with large graphs, the key idea of our framework is
to optimize the reconstruction loss (for AE) or the variational
lower bound (for VAE) only from a wisely selected subset of
nodes, instead of using the entire graph G which would be
intractable. More precisely, we proceed as follows:

1. Firstly, we identify the nodes on which the AE/VAE
model should be trained, by computing a k-core decom-
position of the graph. The selected subgraph is the so-
called k-degenerate version of the original one. We jus-
tify this choice in section 3.2 and explain how we choose
the value of k.

2. Then, we train a graph autoencoder (GAE, VGAE or any
variant) on this k-degenerate subgraph. Hence, we only
derive latent representation vectors (embeddings) for the
nodes included in this subgraph.

3. Regarding the nodes of G that are not in this subgraph,
we infer their latent representations using a simple and
fast propagation heuristic, presented in section 3.3.

In a nutshell, training the autoencoder (step 2) still has a
potentially high complexity, but now the input graph is much
smaller, making the training tractable. Moreover, we will
show that steps 1 and 3 have linear running times w.r.t. m.
Therefore, our strategy significantly improves speed and scal-
ability and, as we later experimentally verify, is able to effec-
tively process large graphs with millions of nodes and edges.
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Figure 1: A graph G of degeneracy 3 and its cores. Some nodes are
labeled for the purpose of section 3.3.

Algorithm 1 k-core Decomposition
Input: Graph G = (V, €)
Output: Set of k-cores C = {Co,Ci, ...,Cs-(g) }
1: Initialize C = {V} and k = min,ey d(v)
2: fori =1tondo
3: v = node with smallest degree in G
4:  ifd(v) > k then
5 Append V to C
6: k=d(v)
7
8
9:

end if
VY =V \ {v} and remove edges linked to v
end for

3.2 Graph Degeneracy

In this subsection, we detail the first step of our framework,
i.e. the identification of a representative subgraph on which
the autoencoder should be trained. Our method resorts to the
k-core decomposition, a powerful tool to analyze the struc-
ture of a graph. Formally, the k-core, or k-degenerate version
of graph @G, is the largest subgraph of G for which every node
has a degree of at least k£ within the sub-graph. Therefore, in
a k-core, each node is connected to at least k nodes, that are
themselves connected to at least k nodes. Moreover, the de-
generacy 0*(G) of a graph is the maximum k for which the k-
core is not empty. Nodes from each core k, denoted Cj, € V,
form a nested chain i.e. Cs+(g) € Cs+(gy—1 € ... € Co = V.
Figure 1 illustrates an example of core decomposition.

In step 2, we therefore train an autoencoder, either only
on the 0*(G)-degenerate version of G, or on a larger k-
degenerate subgraph, i.e. fora k < 0*(G). Our justification
for this strategy is twofold. The first reason is computational:
the k-core decomposition can be computed in a linear run-
ning time for an undirected graph [Batagelj and Zaversnik,
2003]. More precisely, to construct a k-core, the strategy
is to recursively remove all nodes with degree lower than &
and their edges from G until no node can be removed, as
described in Algorithm 1. It involves sorting nodes by de-
grees, in O(n) time using a variant of bin-sort, and going
through all nodes and edges once (see [Batagelj and Zaver-
snik, 2003] for details). Time complexity is O(max(m,n))
with max(m,n) = m in most real-world graphs, and same
space complexity with sparse matrices. Our second reason to
rely on k-degenerate graphs is that, despite being simple, they
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have been proven to be very useful tools to extract representa-
tive subgraphs over the past years, including for node cluster-
ing [Giatsidis et al., 2014], keyword extraction in graph-of-
words [Tixier et al., 2016] and graph similarity via core-based
kernels [Nikolentzos et al., 2018]. We refer to [Malliaros et
al., 2019] for an exhaustive overview of the history, theory,
extensions and applications of core decomposition.

On the Selection of k. To select k, one must face an in-
herent performance/speed trade-off, as illustrated in section
4. Besides, on large graphs, training AE/VAE is usually im-
possible on lowest cores due to overly large memory require-
ments. In our experiments, we adopt a simple strategy when
dealing with large graphs, and train models on the lowest
computationally tractable cores, i.e. on largest possible sub-
graphs. In practice, these subgraphs are significantly smaller
than the original ones (at least 95% of nodes are removed).
Moreover, when running experiments on medium-size graphs
where all cores are tractable, we plainly avoid choosing k£ < 2
(since ¥V = Cy = Cy, or Cy = Cq, in all our graphs). Setting
k = 2, i.e. removing leaves from the graph, empirically ap-
pears as a good option, preserving performances w.r.t. mod-
els trained on G while significantly reducing running times by
pruning up to 50% of nodes in our graphs.

3.3 Propagation of Latent Representations

From steps 1 and 2, we computed latent representation vec-
tors z; of dimension f for each node i of the k-core. Step
3 is the inference of such representation for the remaining
nodes of G in a scalable way. Nodes are assumed featureless
so the only information we leverage comes from the graph
structure. Our strategy starts by assigning representations to
nodes directly connected to the k-core. We average the values
of their embedded neighbors and of the nodes being embed-
ded at the same step of the process. For instance, in the graph
of Figure 1, to compute zp and zg we would solve the system
Zp = %(zA +z2g)and zg = %(ZB +2c+2zp) (or a weighted
mean, if edges are weighted). Then, we repeat this process
on the neighbors of these newly embedded nodes, and so on
until no new node is reachable. Taking into account the fact
that nodes D and E' are themselves connected is important.
Indeed, node A from the maximal core is also a second-order
neighbor of F; exploiting such proximity when computing
zg empirically improves performance, as it also strongly im-
pacts all the following nodes whose latent vectors will then
be derived from zg (in Figure 1, nodes F, G and H).

More generally, let V; denote the set of nodes whose la-
tent vectors are computed, Vs the set of nodes connected to
V, and without latent vectors, A; the |V;| X |Vs| adjacency
matrix linking V; and V,’s nodes, and As the [Va| X Vs
adjacency matrix of Vs’s nodes. We normalize A; and Ao
by the total degree in V; U Vs, i.e. we divide rows by row
sums of the (A7|A;) matrix row-concatenating AT and A,.
We denote by 1211 and 1212 these normalized versions. We al-
ready learned the |V;| x f latent representations matrix Z;
for nodes in V;. To implement our strategy, we want to de-
rive a |Va| X f representation matrix Z5 for nodes in Vs,

verifying Zy = /~1~1Z1 +~/~ng2. The solution of this sys-
temis Z* = (I — Ay)~1A;Z;, which exists since (I — Asz)

Algorithm 2 Propagation of Latent Representations

Input: Graph G, list of embedded nodes V;, |V| x f latent
matrix Z; (already learned), number of iterations ¢
Output: Latent representations of each node in G

1: Vs = set of not-embedded nodes reachable from )V,

2: while [V2| > 0 do

3: Ay =V1| X |Va| adj. matrix linking }; and V5 nodes
Az = [Va| x | V2| adj. matrix of Vs nodes

Ay, Ay = normalized Ay, Ao by row sum of (A7 |Az)
Randomly initialize |Vs| x f matrix Zy (rows of Za
will be latent representation vectors of Vo ’s nodes)

7. fori=1totdo

SANAN

8: Z2 = AlZl + 121222
9:  end for
10: Vi=V,

11: Vs = set of not-embedded nodes reachable from V;
12: end while
13: Assign random vectors to remaining unreachable nodes

is strictly diagonally dominant are therefore invertible from
Levy-Desplanques theorem. Unfortunately, the exact compu-
tation of Z* has a cubic complexity. We approximate it by
randomly initializing Zs with values in [—1, 1] and iterating
Zoy = A1 Z1 + A3 Z5 until convergence to a fixed point, which
is guaranteed to happen exponentially fast as stated below.
Theorem 1. Let Z*) the |Vy| x f matrix obtained from iter-
ating ZW = A1Zy + Ay Z=V t times starting from Z(©).
Let || - || ¢ the Frobenius norm. Then, exponentially fast,

129~ 2| p ——
t——+o0

Proof. Wehave Z(t) — 7% = [A1 Z) 4+ Ay 2D — [A, 2% +
(I —A3)Z*) = Ay Zy + Ag 200 — Ay 2% — (I — Ag)(I —
A TAZ) = Ay(ZD —72%). S0, ZW — 7+ = AL(Z(0) —
Z*). Then, as a consequence of Cauchy-Schwarz inequality:
129 —2* | = A2 = Z7)||lr < | A5) 120 =27 p.

Futhermore, AL, = PD*P~! , with Ay = PDP~" the eigen-
decomposition of symmetric matrix A,. For diagonal matrix

D' we have || D'||r = /SSE A2 < /o] (max [ Ad])!
with )\; the i-th eigenvalue of 1212. Since Ag has non-
negative entries, we derive from Perron—Frobenius theorem
(see [Lovasz, 2007]) that a) maximum absolute value among
all eigenvalues of Aj is reached by a nonnegative real eigen-
value, and b) that max; \; is bounded above by the maximum
degree in Ay’s graph. By definition, each node in V, has at
least one connection to V; ; moreover rows of /12 are nor-
malized by row sums of (AT]A5), so the maximum degree
in Ay’s graph is strictly lower than 1. We conclude with a)
and b) that 0 < |A\;| < 1foralli € {1,...,|V2|}, s00 <
max; |\;| < 1. This result implies that || D*||z —; 0 expo-
nentially fast, and so does ||AL|z < || P||#| D! 7| P~ e
then || Z) — Z*||p. O

Our propagation process is summarized in Algorithm 2. If
some nodes are unreachable by such process because G is
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Model Size of input | Mean Perf. on Test Set (in %) Mean Running Times (in sec.)
k-core AUC AP ‘ k-core dec. Model train Propagation Total ‘ Speed gain
VGAE on G - 83.02+0.13 87.55+0.18 - 710.54 - 710.54 -
on 2-core 9,277 £ 25 83.97 £0.39 85.804+0.49 1.35 159.15 0.31 160.81 x4.42
on 3-core 5,551 + 19 8392 +0.44 85.494+0.71 1.35 60.12 0.34 61.81 x11.50
on 4-core 3,269 30 | 82.40+0.66 83.39+0.75 1.35 22.14 0.36 23.85 x29.79
on 5-core 1,843 £25 | 7831 +1.48 79.21+1.64 1.35 7.71 0.36 9.42 x75.43
on8core | 414+89 | 6727+1.65 67.65+£2.00 | 1.35  1.55 038 328 | x216.63
on 9-core 149 +93 61.92 +288 63.97 & 2.86 1.35 1.14 0.38 2.87 x247.57
DeepWalk - 81.04+0.45 84.04 +0.51 - 342.25 - 342.25 -
LINE - 81.21 £0.31  84.60 4+ 0.37 - 63.52 - 63.52 -
node2vec - 81.25+0.26 85.55 4+ 0.26 - 48.91 - 48.91 -
Spectral - 83.14+0.42 86.554+0.41 - 31.71 - 31.71 -

Table 1: Link Prediction on Pubmed graph (n = 19,717, m = 44, 338), using VGAE model, its k-core variants, and baselines

not connected, then we eventually assign them random latent
vectors. Using sparse representations for A; and Ay, mem-
ory requirement is O(m + nf), and the computational com-
plexity of each evaluation of line 7 also increases linearly
w.r.t. the number of edges m in the graph. Moreover, in
practice ¢ is small: we set £ = 10 in our experiments (we
illustrate the impact of ¢ in Annex 2). The number of iter-
ations in the while loop of line 2 corresponds to the size of
the longest shortest-path connecting a node to the k-core, a
number bounded above by the diameter of the graph which
increases at a O(log(n)) speed in most real-world graphs
[Chakrabarti and Faloutsos, 2006]. In next section, we em-
pirically check our claim that both steps 1 and 3 run linearly
and therefore scale to large graphs with millions of nodes.

4 Empirical Analysis

In this section, we empirically evaluate our framework. Al-
though all main results are presented here, we report addi-
tional and more complete tables in supplementary material'.

4.1 Experimental Setting

Datasets. We provide experiments on the three medium-
size graphs used in [Kipf and Welling, 2016b]: Cora (n =
2,708 and m = 5,429), Citeseer (n = 3,327 and m =
4,732) and Pubmed (n = 19,717 and m = 44, 338), and
on two large graphs from Stanford’s SNAP project: the
Google web graph (n = 875,713 and m = 4,322,051)
and the US Patent citation networks (n = 2,745,762 and
m = 13,965, 410). Details, statistics and full k-core decom-
positions of these graphs are reported in Annex 1. Cora, Cite-
seer and Pubmed’s nodes have bag-of-words features. Graphs
are unweighted and we ignore edges’ potential directions.

Tasks. We consider two learning tasks. The first one, as in
[Kipf and Welling, 2016b], is a link prediction task. We train
models on incomplete versions of graphs where some edges
were randomly removed. We create validation and test sets
from removed edges and from the same number of randomly
sampled pairs of unconnected nodes, and check the model’s

'Supplementary material in: https://arxiv.org/abs/1902.08813
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ability to classify edges (i.e. the true A;; = 1) from non-
edges (A;; = 0) via the reconstructed value A;; = o(27 z;).
Validation and test sets gather 5% and 10% of edges (respec-
tively 2% and 3%), for medium-size (resp. large-size) graphs.
The incomplete train adjacency matrix is used when running
Algorithm 2. Validation set is only used for model tuning. We
compare performances using Area Under the Receiver Oper-
ating Characteristic (ROC) Curve (AUC) and Average Pre-
cision (AP) scores. The second task is node clustering from
latent representations z;. More precisely, we run k-means in
embedding spaces, compare clusters to ground-truth commu-
nities and report normalized Mutual Information (MI) scores.

Models. We apply our degeneracy framework to ten graph
autoencoders: the seminal two-layer GAE and VGAE mod-
els [Kipf and Welling, 2016b], two deeper variants of
GAE/VGAE with two GCN hidden layers, Graphite and
Variational Graphite [Grover et al., 20181, [Pan et al,
2018]’s adversarially regularized models (denoted ARGA
and ARVGA), ChebAE and ChebVAE i.e. two variants of
GAE/VGAE with ChebNets [Defferrard et al., 2016] of order
3 instead of GCN. We omit models designed for small molec-
ular data. All models are trained on 200 epochs to return
16-dim embeddings (32-dim for Patent) to reproduce [Kipf
and Welling, 2016b]’s results. We also compare to DeepWalk
[Perozzi et al., 2014], LINE [Tang et al., 2015] and node2vec
[Grover and Leskovec, 2016] node embeddings. We focus
on these methods because they directly claim scalability. For
each model, hyperparameters were tuned on AUC scores us-
ing validation set (see Annex 2 for details). We also imple-
mented a spectral decomposition baseline (embedding axis
are first eigenvectors of G’s Laplacian matrix) and, for node
clustering, Louvain’s method [Blondel et al., 2008]. We used
Python and especially the Tensorflow library, training models
on a NVIDIA GTX 1080 GPU and running other operations
on a double Intel Xeon Gold 6134 CPU.

4.2 Results

Medium-Size Graphs. For Cora, Citeseer and Pubmed, we
apply our framework to all possible subgraphs from 2-core to
0*(G)-core and on entire graphs, which is still tractable. Table
1 reports mean AUC and AP and their standard errors on 100
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Model Perf. on Test Set (in %) Total Model Perf. on Test Set (in %) Total
(using framework, k=17) AUC AP ‘ run. time (using framework, k=15) Normalized MI run. time
GAE 94.02 +0.20 94.31 £0.21 23min GAE 23.76 + 2.25 56min
VGAE 93.22+0.40 93.20 4+ 0.45 22 min VGAE 24.53 +1.51 54min
DeepGAE 93.74 £ 0.17 92.94 4+ 0.33 24min DeepGAE 24.27+1.10 1h01
DeepVGAE 93.12+0.29 92.71 +£0.29 24min DeepVGAE 24.54 +1.23 58min
Graphite 93.29 £ 0.33 93.11 £0.42 23min Graphite 24.22 +1.45 59min
Var-Graphite 93.13£0.35 92.90 £0.39 22 min Var-Graphite 24.25£1.51 58min
ARGA 93.82+0.17 94.17 £ 0.18 23min ARGA 24.26 £ 1.18 1h01
ARVGA 93.00 +£0.17 93.38 £ 0.19 23min ARVGA 24.76 +1.32 58min
ChebGAE 95.24 +0.26 96.94 + 0.27 41min ChebGAE 25.23 +=1.21 1h41
ChebVGAE 95.03 +£0.25 96.58 +0.21 40min ChebVGAE 25.30 +1.22 1h38
node2vec on G 94.89 £ 0.63 96.82 £+ 0.72 4h06 node2vec on G 24.10 = 1.64 7h1l5
(best baseline) (best baseline)

Table 2: Link Prediction on Google graph (n = 875K, m = 4,3M)
using our framework on 17-core (|C17| = 23,787 + 208) on graph
AE/VAE variants.

runs (train incomplete graphs and masked edges are different
for each run) along with mean running times, for link predic-
tion task with VGAE on Pubmed. Sizes of k-cores vary over
runs due to the edge masking process in link prediction; this
phenomenon does not occur for node clustering task. Over-
all, our framework significantly improves running times w.r.t.
training VGAE on G. Running time decreases when k in-
creases (up to x247.57 speed gain in Table 1), which was
expected since the k-core is smaller. We observe this im-
provement on all other datasets, on both tasks, and for GAE
and all GAE/VGAE variants (see Annex 2 and 3). Also, for
low cores, especially for the 2-core subgraphs, performances
are consistently competitive w.r.t. models trained on entire
graphs, and sometimes better both for link prediction (e.g.
+0.95 point in AUC for 2-core in Table 1) and node cluster-
ing. It highlights the relevance of our propagation process,
and the fact that training models on smaller graphs is eas-
ier. Choosing higher cores leads to even faster training, at the
price of decreasing performance scores.

Large Graphs. Table 2 details link prediction results on
Google from 17-core and for all autoencoders variants. Also,
in Table 3 we display node clustering results on Patent, whose
ground-truth clusters are six roughly balanced patent cate-
gories, reporting performances from all autoencoders variants
trained on 15-core. Core numbers were selected according to
section 3’s tractability criterion. Scores are averaged over 10
runs. Overall, we reach similar conclusions w.r.t. medium-
size graphs, both in terms of good performance and of scala-
bility. However, comparison with full models on G, i.e. with-
out using our framework, is impossible on these graphs due
due to overly large memory requirements. We therefore com-
pare performances on several computationally tractable cores
(see Annex 2 and 3 for complete tables), illustrating once
again the inherent performance/speed trade-off when choos-
ing k and validating previous insights.

Graph AE/VAE Variants. For both tasks, we note that
adversarial training from ARGA/ARGVA and Graphite’s
decoding tend to slightly improve predictions, as well as
ChebNet-based models that often stand out in terms of AUC,
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Table 3: Node Clustering on Patent graph (n = 2,7M, m =
13,9M) using our framework on 15-core (|Ci14| = 35,432) on
graph AE/VAE variants.

AP and MI (e.g. a top 95.24 AUC for ChebGAE in Table 2).
It indicates the relevance of replacing GCN by more complex
encoders, which is facilitated by our framework.

Baselines. Our core variants are competitive w.r.t. base-
lines. They are significantly faster on large graphs while
achieving comparable or outperforming performances in
most experiments, which emphasizes the interest of scaling
graph AE and VAE. Futhermore, we specify that 64 dimen-
sions were needed to reach stable performing results on base-
lines, against 16 for autoencoders. This suggests that graph
autoencoders are more suitable to encode information in low
dimensional embeddings. On the other hand, baselines, no-
tably Louvain and node2vec, are better to cluster nodes in
Cora and Pubmed (410 points in MI for Louvain on Cora)
which questions the global ability of existing graph AE/VAE
to identify clusters in a robust way.

Extensions and Openings. Based on this last finding, fu-
ture works on graph VAE will investigate alternative prior dis-
tributions designed to detect communities in graphs. More-
over, while this paper mainly considered featureless nodes,
we note that our method easily extends to attributed graphs,
since we can add node features from the k-core subgraph as
input of GAE/VGAE models. In this direction, we also report
experiments on GAE and VGAE with node features (when
available) for both tasks in supplementary materials, signifi-
cantly improving scores (e.g. from 85.24 to 88.10 AUC for
2-core GAE on Cora). However, node features are not in-
cluded in step 3’s propagation : future works will study more
efficient features integrations. Last, we also aim at obtain-
ing theoretical guarantees on k-core approximations, and at
extending existing approaches to directed graphs.

5 Conclusion

We introduced a degeneracy-based framework to easily scale
graph (variational) autoencoders, and provided experimental
evidences of its ability to effectively process large graphs.
Our work confirms the representational power of these mod-
els, and identifies several directions that, in future research,
should lead towards their improvement.
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