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Abstract
Model reuse aims at reducing the need of learn-
ing resources for a newly target task. In previ-
ous model reuse studies, the target task usually re-
ceives labeled data passively, which results in a
slow performance improvement. However, learn-
ing models for target tasks are often required to
achieve good enough performance rapidly for prac-
tical usage. In this paper, we propose the AcMR
(Active Model Reuse) method for the rapid perfor-
mance improvement problem. Firstly, we construct
queries through pre-trained models to facilitate the
active learner when labeled examples are insuffi-
cient in the target task. Secondly, we consider that
pre-trained models are able to filter out not very
necessary queries so that AcMR can save consider-
able queries compared with direct active learning.
Theoretical analysis verifies that AcMR requires
fewer queries than direct active learning. Experi-
mental results validate the effectiveness of AcMR.

1 Introduction
In traditional machine learning, a learning model is tailored
to the target task. Nowadays, however, with the popularity of
machine learning, unlike training data which is often hard to
share due to the privacy issue [Albrecht, 2016], a great deal
of well-trained machine learning models have been available
for use. For example, these models have been trained with
a large amount of labeled training data [Parkhi et al., 2015];
with smart optimization techniques [Kingma and Ba, 2014].
All these models work well on the specific tasks, but have to
be discarded once the target task changes, which causes the
user to retrain a new model for the target task.

Model reuse [Zhou, 2016] tries to reduce the learning re-
sources for a new target task with the exploitation of pre-
trained models (as demonstrated in Figure 1), which has at-
tracted much attention and has shown promising performance
when the labeled examples are limited for the target task. For
example, Yang et al. [2017b] makes predictions for new in-
stances from a collection of different pre-trained models and
shows encouraging results; Ye et al. [2018] adapts the pre-
trained models to a new environment with different features
and shows that the performance will be boosted. However,
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Figure 1: A practical example of model reuse. It is often challenging
to share bank data due to the privacy issue. Instead we can reuse pre-
trained models of banks to help improve the performance.

previous model reuse studies usually assume that the labeled
data for the target task are passively collected. This leads to
a limited performance improvement for the target task, which
may be difficult to meet the demands. Since in many prac-
tical applications, it is expected that the performance of the
target model can be good enough and quickly improved. It
is evident that this scenario is quite different from the clas-
sic model reuse studies. We call this kind of model reuse the
“rapid performance improvement” problem.

The problem is related to but different to standard active
learning [Settles, 2012], which tries to select the most infor-
mative instances to be labeled. The informativeness is typ-
ically defined as maximal expected improvement in classifi-
cation accuracy [Huang et al., 2010]. Many sample selection
criteria (e.g., uncertainty sampling [Lewis and Gale, 1994],
query by committee (QBC) [Seung et al., 1992]) have been
devoted. However, they ignore the use of many pre-trained
models, which results in a slow performance improvement
for target tasks or needing a large amount of query costs.

As illustrated in Figure 2, for a new classification task in
20 Newsgroups, we directly employ active learning method
(e.g., QBC [Seung et al., 1992]) or model reuse method (e.g.,
Safer [Li et al., 2017]). As shown, both of the two approaches
yield slow performance gains or require a large number of
queries to achieve good enough accuracy.

In this paper, we study the rapid performance improve-
ment problem and propose the ACMR (Active Model Reuse)
method. As illustrated in Figure 3, unlike traditional active
learning, we consider pre-trained models to help construct
queries, facilitating active learner when labeled examples are
insufficient on the target task. Moreover, we leverage pre-
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Figure 2: A true example of learning curves of two methods on a
classification task. We expect that with the help of pre-trained mod-
els, the performance of active learner can get rapid improvement.

trained models to filter out not very necessary queries so that
considerable queries could be saved compared with direct ac-
tive learning. During the learning process, the relationships
between pre-trained models and the target task are contin-
ually updated such that they can predict unlabeled samples
more accurately. Theoretical analysis verifies that ACMR re-
quires fewer queries than active learning. Experiments show
the superior performance of the proposed method.

This paper is structured as follows. We first review related
works and then present our proposed method. Next we show
the experiments. Finally we conclude this work.

2 Related Work
Reusability has been emphasized as a crucial characteristic
of the new concept of learnware [Zhou, 2016]. It would be
ideal if models can be reused in scenarios that are very differ-
ent from their original training ones. This is of course a big
challenge, whereas reusing models have already been demon-
strated very useful. Li et al. [2013] has shown that by start-
ing from a trained model, it is easier to construct a model.
FMR [Yang et al., 2017a] integrates the discriminative abil-
ity of fixed models into deep network training, and achieves
promising performance in various applications.

Active learning tries to query the most informative samples
and mainly focuses on representative and uncertain informa-
tion in the unlabeled data [Settles, 2012]. For example, one
of the most common strategies is the uncertainty-based selec-
tion [Lewis and Gale, 1994], in which the certainties are mea-
sured according to the predictions on new unlabeled samples
obtained from the initial classifiers. Chakraborty et al. [2015]
combines the uncertainty and representativeness into a con-
vex framework to perform active learning loops. Huang et
al. [2010] queries the informative and representative samples
based on a min-max framework. Wang and Ye [2015] puts the
discrimination and representativeness together via a trade-off
parameter to query the i.i.d samples.

Transfer learning is one way of implementing model reuse.
However, it typically works on a more general problem set-
ting [Pan and Yang, 2010], such as transferring knowledge
through data representation [Pan et al., 2011], model struc-
tures [Long et al., 2017] and so on. There are several studies
on actively transfer learning [Shi et al., 2008], however, they
require additional data rather than strict model reuse setting.

Notation Meaning
N number of training data
yt ∈ {+1,−1} ture label of instance xt
L labeled data in the target task
U unlabeled data in the target task
{f1, f2, . . . , fk} k pre-trained models
f

(t)
j the prediction of fj on xt
η = [η1, η2, . . . , ηk] the weight vector of k models
l
(t)
j = (1− y(t)f

(t)
j )+ the hinge loss of j-th model for xt

Lj =
∑

xt∈L l
(t)
j the empirical loss of j-th model

fL the active learner built on L
f

(t)
L the prediction of fL on xt

Table 1: Summary of Notation

In recent years, robust model reuse based on semi-
supervised learning [Li et al., 2017; Li and Liang, 2019;
Li et al., 2019] has been proposed, which works on deriving
performance-safe prediction when labeled examples in target
tasks are limited, where safe prediction means that the perfor-
mance would not be worse than direct supervised learning us-
ing only limited labeled data. Although these studies are able
to achieve prudent performance, the performance improve-
ment is often relatively limited since they never consider in-
volving more labeled data.

3 The ACMR Method
3.1 Notation and Setting
Let D = {(x1, y1), (x2, y2), . . . , (xnl

, ynl
),xnl+1, . . . ,xN}

be the training data set of the target task that consists of nl
labeled instances and nu = N − nl unlabeled ones. Each in-
stance xt = [xt1, xt2, . . . , xtd]

> is a vector of d dimensions.
L = {(x1, y1), (x2, y2), . . . , (xnl

, ynl
)} is the labeled data

set and U = {xnl+1, . . . ,xN} is the unlabeled one. Table 1
summarizes the notations in the paper.

Formally, suppose that we have obtained k pre-trained
models {f1, f2, . . . , fk}. We let fL denote the active learner
obtained by training a supervised learner with only labeled
data. The goal of model reuse is to derive a better model:
f+ = g({f1, f2, . . . , fk}, fL), which often outperforms,
meanwhile would not be worse than fL. g represents the form
of model reuse, specifically, with the help of pre-trained mod-
els, f+ can be build by structural risk minimization:

min
f+

L(LY , f+(LX)) + λΩ(f+) (1)

where LX = {x1,x2, . . . ,xnl
}, LY = {y1, y2, . . . , ynl

}, L
is a loss function, e.g., mean square loss, hinge loss, etc and Ω
is a regularizer. The smaller the value of the loss function, the
better the performance. The forms of the loss function, regu-
larizer and f+ are flexible to design for specific tasks. In this
paper, we use the hinge loss and logistic regression [Harrell,
2015] to be the form of loss function and f+ respectively.

3.2 Deficiencies of Baseline Approaches
Previous works on model reuse typically assume that when
labeled examples for the target task are limited, model reuse

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3405



Unlabeled data

Predicted by pre-trained models

Model Model Model

Facilitated active learner
Active 
learner

Pre-trained 
models

Labeled data Provide label

High 
confidence Update weights

Low confidence

Select

�

Active 
Learner

In-domain
Unlabeled 
Samples

In-domain
Labeled  
Samples

EXPERT

Oracle

Figure 3: Model architecture of ACMR. In contrast to traditional active learning, we propose to facilitate the active learner with pre-trained
models, and we also use pre-trained models to filter out not very necessary queries. During the learning process, the weights of k models are
continually updated such that they can predict unlabeled samples more accurately.

could guarantee performance improvement [Ye et al., 2018;
He et al., 2018]. However, this facilitation is only effective
when the number of labeled samples is small and the perfor-
mance improvement is often relatively limited. To get a good
enough model, we still need a lot of queries.

Assume we have obtained confident weights (denoted by
η = [η1, . . . , ηk]) of the pre-trained models about the target
task, according to the weighted voting method [Dietterich,
2000], the prediction ŷ(t) of the unlabeled instance xt is

ŷ(t) = arg max
c∈{−1,+1}

k∑
j=1

ηj · I(f (t)
j = c) (2)

where I(z) = 1 if z is true and 0 otherwise. This predic-
tion, however, may be risky since we can not get accurate
prior weights especially when there are very few labeled ex-
amples in target tasks [Pan and Yang, 2010]. As illustrated in
Figure 2, we consider that the pre-trained models are helpful
while their performance is not good enough.

Thus, rather than fully trusting pre-trained models, we con-
sider trusting the pre-trained models partially and leverage
pre-trained models to filter out not very necessary queries
generated by direct active learning to facilitate an effective
active learner. Moreover, once the label capacity is enhanced,
we continually update the confident weights of pre-trained
models to improve their confidence for target task. It is wor-
thy that the above two steps promote each other in the active
learning iterations. In the following, we introduce them re-
spectively and present the theoretical justification.

3.3 Actively Reuse Pre-trained Models
When the predictions of pre-trained model are risky, we may
have the following observations [Shi et al., 2008]: i) Pre-
trained models assign xt with a class label that is different
from the one given by the facilitated active learner; ii) The
posteriors of the pre-trained models are low.

According to the above considerations, we can design a
query indicator function θ(xt) to reflect the necessity for un-
labeled instance xt to query the label:

P (ŷ(t)|xt) =
k∑
j=1

ηjPj(ŷ
(t)|xt) · I(f (t)

j = ŷ(t)) (3)

α(xt) =
(
1− I(ŷ(t) 6= f

(t)
L )
)
P (ŷ(t)|xt) (4)

θ(xt) =
(
1 + α(xt)

)−1
(5)

Pj(ŷ
(t)|xt) is the predicted probability of pre-trained

model fj for instance xt. As it can be seen, α(xt) is related
to the posteriori probability P (ŷ(t)|xt), and α(xt) = 0 if the
supervised classifier f (t)

L and the pre-trained models have as-
signed different labels to xt. In general, the larger the value
α(xt) is, the less we need to query the label.

Moreover, because mislabeling of the few instances can
put significant negative effect on accuracy, we further set
θ(xt) =

(
1+α(xt)

)−1
so as to guarantee the possibility (ne-

cessity) to query is greater than 50%. In other words, we trust
the label given by the pre-trained models only when its confi-
dence reflected by α(xt) is very high. Accordingly, with the
value of θ(xt), we randomly generate a real numberR within
0 to 1, and then the decision function F(xt) is defined as

F(xt) =

{
0, if R > θ(xt)

1, otherwise
(6)

According to Eq.(6), if F(xt) = 0, then it means that the in-
stance xt should be labeled by the pre-trained models; other-
wise, xt should be labeled by the domain experts. In other
words, we label the instance xt by the pre-trained models
with probability 1− θ(xt).

We then derive its sampling error bound to demonstrate
its ability to mitigate the deficiencies for direct approaches,
which utilizes the predictions only when they are accurate
enough. Additionally, we show its querying bound to vali-
date the claim that ACMR can reduce labeling cost by query-
ing fewer examples. In the algorithm ACMR, let εp and εa
denote the expected error of the pre-trained models and the
active learner fL respectively, and let δ = εp + εa. The re-
sults of theoretical analysis are shown in Table 2.
Theorem 1. In the algorithm ACMR, we assume that εa ≤
εp, then the sampling error ε for ACMR satisfies:

ε ≤
ε2
p

1 + (1− εp)
(7)

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3406



Evaluation Criterion Bound of Value

Sampling Error
ε2p

1+(1−εp)

Querying Rate δ + 1−δ
1+(1−εp)

Table 2: Results of Theoretical Analysis

Proof. According to the analysis of the decision function
F(x) described above, ACMR makes wrong decision only
when both the pre-trained models and the active learner
fL agree on the wrong label. In this case, ACMR has
probability 1 − θ(x) to trust the classification result given
by the pre-trained models, where θ(x) is defined in Eq.(5).
Thus, the sampling error of ACMR can be written as ε =
εpεa(1− θ(x)) ≤ ε2

p(1− θ(x)). Moreover, in this situation,
θ(x) = 1

1+(1−εp) . Thus,

ε ≤
ε2
p × (1− εp)
1 + (1− εp)

≤
ε2
p

1 + (1− εp)
(8)

Theorem 2. In the algorithm ACMR, for an unlabeled in-
stance, the probability that ACMR queries the label from the
experts (with cost) satisfies:

P (Q) ≤ δ +
1− δ

1 + (1− εp)
(9)

Proof. According to the analysis of the decision function
F(x), ACMR will query the experts to label the instance
when the pre-trained models and the active learner hold dif-
ferent predictions on the classification result. And when the
two classifiers agree on the result, it still has probability θ(x)
to query the experts. Thus:

P (Q) = εa(1− εp) +
[
εpεa + (1− εp)(1− εa)

]
θ(x)

+ (1− εa)εp (10)

= θ(x) + (εp + εa − 2εpεa)
(
1− θ(x)

)
≤ δ + (1− δ)θ(x)

≤ δ +
1− δ

1 + (1− εp)
Remark. In contrast to Shi et al. [2008] which suffers from
exponential term exp(−N−1), the results in Theorem 1 and
Theorem 2 show that ACMR avoid this issue and improve
the bound evidently. From theoretical analysis, we can find
that the sampling error and querying probability of the pro-
posed approach are bounded and related to εp and εa. In the
next section we will talk about how to reduce εp to improve
performance in the whole learning process.

3.4 Update Weights for Pre-Trained Models
It is well known that ensemble learning often outperforms
individual models [Zhou, 2012]. However, simply building
a uniformly weighted ensemble of the models is suboptimal,
since it does not measure the precise relationships between
each pre-trained model and the target task.

Inspired by Murugesan et al. [2016], we employ an error-
driven update rule in which the weights of pre-trained models

Algorithm 1 The learning algorithm for ACMR
Input: labeled dataset L, unlabeled dataset U , sampling size
N , k pre-trained models {f1, f2, . . . , fk} and λ > 0
Output: the model fL for the target task

1: Initialize weight vector η = [1/k, ..., 1/k] and fL.
2: for m = 1, 2, · · · , N do
3: Select an instance xt(m) from U by traditional active

learning
4: Predict xt(m) by pre-trained models, and calculate the

decision function F(xt(m)) via Eq.(6)
5: if F(xt(m)) = 0 then
6: yt(m) ← ŷ(t(m))

7: else
8: yt(m) ← query from oracle
9: if yt(m) 6= ŷ(t(m)) then

10: update the weights via Eq.(12)
11: else
12: η(m+1) ← η(m)

13: end if
14: end if
15: L = L ∪ (xt(m), yt(m)), U = U/(xt(m));
16: Train the learner fL with L
17: Facilitate active learner fL via Eq.(1)
18: end for
19: return fL

are updated only when the prediction of pre-trained models
is wrong. Specifically, at time m, the target task receives a
training instance xt(m), the pre-trained models make a pre-
diction and suffer a loss after yt(m) is revealed. Following
the error-driven update rule in which the weights are updated
only when the pre-trained models make a mistake, we con-
sider the following optimization problem at each time:

η(m+1) = arg min
η∈Θ

∑
j∈[k]

ηj l
(t(m))
j + λDKL(η||η(m)) (11)

where DKL(η||η(m)) denotes the Kullback–Leibler (KL) di-
vergence between current and previous soft-attention distri-
butions, which allows η to evolve smoothly over time. The
solution for η(m+1) is given in a closed form:

η
(m+1)
j =

η
(m)
j exp(−lt(m)

j /λ)∑k
j′=1 η

(m)
j′ exp(−lt(m)

j′ /λ)
, j ∈ [k] (12)

Proposition 1. (Weight Concentration). During the weight
update procedure in the whole learning process, the weights
will concentrate on those pre-trained models who suffer a
small cumulative loss on the target task.

Proof. Through the update rule, we know that the weight
associated with the j-th previous model is equal to ηj =

exp(−Lj/λ)∑k
j′=1

exp(−Lj′/λ)
, j ∈ [k]. The smaller the loss Lj of the

pre-trained model, the higher the weight ηj .

We summarize the pseudo-code of ACMR in Algorithm 1.
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Task Q Safer QBC AcTrak-QBC AcMR-QBC Random AcTrak-Ran AcMR-Ran

Task1
30 .876± .033 .792± .118 .817± .107 .923± .016 .806± .126 .839± .079 .926± .014
60 .880± .029 .916± .029 .909± .052 .932± .013 .911± .030 .915± .034 .933± .008
90 .891± .040 .930± .022 .929± .026 .934± .011 .928± .025 .934± .019 .936± .011

Task2
30 .737± .027 .739± .124 .711± .143 .838± .039 .689± .110 .756± .102 .839± .049
60 .738± .036 .821± .076 .809± .091 .870± .044 .833± .059 .842± .071 .873± .038
90 .749± .038 .856± .065 .851± .050 .885± .032 .871± .032 .861± .056 .892± .027

Task3
30 .944± .010 .788± .155 .803± .128 .954± .012 .748± .146 .839± .095 .952± .012
60 .945± .011 .903± .080 .920± .049 .956± .011 .868± .115 .921± .050 .956± .011
90 .945± .010 .937± .040 .948± .015 .957± .012 .928± .043 .951± .020 .957± .009

Task4
30 .689± .059 .705± .119 .664± .133 .905± .027 .786± .142 .757± .131 .910± .027
60 .680± .049 .853± .085 .797± .126 .928± .012 .875± .063 .875± .083 .927± .018
90 .703± .040 .907± .044 .859± .086 .938± .011 .914± .032 .922± .023 .933± .017

Task5
30 .850± .061 .765± .133 .753± .142 .915± .059 .765± .134 .758± .177 .941± .015
60 .869± .053 .888± .081 .880± .065 .941± .029 .864± .085 .833± .128 .937± .027
90 .871± .057 .925± .030 .915± .055 .949± .015 .909± .042 .886± .087 .950± .011

Task6
30 .770± .042 .645± .105 .646± .093 .819± .029 .643± .104 .676± .113 .821± .040
60 .763± .042 .679± .089 .718± .094 .838± .032 .743± .103 .779± .090 .850± .038
90 .788± .034 .747± .106 .781± .081 .860± .031 .841± .083 .823± .075 .867± .031

Table 3: Classification accuracy of compared methods with different queries on 6 classification tasks in 20 Newsgroups dataset. The boldfaces
denote the best and the second best methods in terms of the accuracy, and Q mean that the number of samples labeled by experts.

4 Experiment
In this section, we first give the experimental setup and then
show the evaluation of our proposal compared to several
state-of-the-art algorithms on a number of real-world tasks.

4.1 Experimental Setup
In order to better validate our method, the following methods
are compared in our experiments. Two sample selection cri-
teria: i) QBC [Seung et al., 1992] selects examples that cause
maximum disagreement amongst an ensemble of hypotheses;
ii) Random selects examples randomly; one actively trans-
fer learning method AcTraK [Shi et al., 2008]; one baseline
method Safer [Li et al., 2017].

For ACMR, we choose QBC and Random to implement
the base sampling strategy respectively, and we take the pre-
trained models as the input to ACMR. For example, in the
sentiment analysis task of book, we take the pre-trained mod-
els in DVD as the input to ACMR; in the classification task
of rec.autos and sci.crypt, we take the pre-trained models in
“rec.motorcycles and sci.electronics” as the input to ACMR.

Because ACMR need experts to annotate unlabeled sam-
ples, we should compare these methods in different number
of samples labeled by experts. For each task, we randomly
divide the data into two parts: 75% as the unlabeled pool, and
the rest 25% as the test set. Experiments are repeated for 30
times, and the average classification accuracy is reported.

4.2 Text Classification Task
The text classification task is collected from 20 Newsgroups1.
20 Newsgroups has a two-level hierarchy, for example,

1https://www.cse.ust.hk/TL/

the four sub-categories (sci.crypt, sci.electronics, sci.med,
sci.space) belong to the top-category sci. Because the dif-
ference among top-categories is relatively large and the sub-
categories under each top-category are similar, we can design
the top-categories classification problem. For example, we
generate 6 text classification tasks (comp vs. talk, comp vs.
sci, comp vs. rec, rec vs. talk, rec vs. sci, sci vs. talk).

Results are shown in Table 3, which can be seen that
ACMR can achieve better performance than other methods.
It can be seen that ACMR obtains quite promising perfor-
mance as the number of queries increases, for various sample
selection criteria. Actively transfer learning methods also ob-
tain good performance but is not that competitive as ACMR.
This suggests that the use of pre-trained models is beneficial
to improve performance rapidly.

4.3 Sentiment Analysis Task
The second task is a sentiment analysis problem1, and the
goal is to label the documents with respect to what types of
problems they describe. We evaluate our algorithm on prod-
uct reviews from Amazon on a dataset containing reviews
from 4 domains: Book, DVD, Electronics and Kitchen. We
consider each domain as a binary classification task: reviews
with rating > 3 are labeled positive(+), those with rating <
3 are labeled negative(-). For sentiment analysis dataset we
have 4 classification tasks.

Results are shown in Table 4, which can be seen that
ACMR can significantly outperform its based active learning
methods in most cases. Moreover, ACMR also consistently
performs better as the number of labeled examples increases.
More importantly, we find that even though the performance
improvement of pre-trained models is very limited, our pro-
posal can also use them to improve performance rapidly. It
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Task Q Safer QBC AcTrak-QBC AcMR-QBC Random AcTrak-Ran AcMR-Ran

Task1
30 .612± .022 .529± .033 .578± .033 .607± .028 .577± .036 .582± .039 .598± .032
60 .614± .018 .579± .048 .609± .035 .631± .023 .607± .025 .615± .037 .631± .026
90 .614± .018 .615± .047 .627± .038 .645± .023 .625± .024 .637± .034 .649± .020

Task2
30 .648± .020 .562± .048 .582± .041 .610± .033 .594± .031 .594± .036 .611± .046
60 .648± .018 .591± .049 .626± .038 .631± .030 .623± .033 .629± .034 .643± .032
90 .648± .020 .621± .047 .649± .033 .660± .031 .650± .026 .657± .028 .668± .029

Task3
30 .651± .044 .578± .057 .629± .033 .645± .036 .612± .036 .629± .033 .642± .037
60 .654± .041 .640± .046 .665± .024 .676± .028 .643± .032 .664± .032 .676± .026
90 .665± .033 .672± .035 .685± .023 .694± .025 .671± .027 .679± .029 .690± .025

Task4
30 .621± .049 .628± .032 .634± .033 .644± .026 .624± .036 .628± .045 .641± .035
60 .631± .051 .657± .035 .666± .024 .680± .018 .652± .032 .663± .035 .684± .029
90 .643± .054 .684± .026 .687± .026 .702± .022 .678± .026 .681± .033 .705± .024

Table 4: Classification accuracy of compared methods with different queries on 4 classification tasks in Sentiment dataset. The boldfaces
denote the best and the second best methods in terms of the accuracy, and Q mean that the number of samples labeled by experts.

Task Q Safer QBC AcTrak-QBC AcMR-QBC Random AcTrak-Ran AcMR-Ran

Task1
30 .925± .028 .757± .152 .734± .144 .956± .016 .673± .148 .681± .149 .951± .017
60 .935± .028 .778± .142 .750± .116 .954± .021 .731± .139 .755± .113 .957± .018
90 .939± .021 .788± .117 .761± .092 .954± .024 .805± .143 .806± .088 .957± .023

Task2
30 .906± .037 .750± .163 .770± .161 .952± .032 .707± .170 .751± .159 .949± .024
60 .908± .037 .824± .118 .791± .151 .965± .017 .787± .136 .849± .110 .962± .021
90 .901± .038 .872± .097 .838± .144 .968± .014 .843± .099 .910± .078 .960± .019

Task3
30 .897± .051 .846± .116 .875± .098 .970± .024 .860± .064 .879± .047 .965± .031
60 .914± .052 .895± .052 .916± .037 .984± .014 .895± .055 .895± .044 .981± .015
90 .913± .042 .928± .039 .908± .042 .986± .013 .902± .046 .888± .039 .983± .014

Task4
30 .962± .023 .928± .072 .924± .081 .959± .023 .944± .030 .942± .022 .961± .021
60 .964± .023 .964± .023 .968± .019 .970± .019 .959± .020 .967± .015 .967± .016
90 .964± .023 .964± .023 .968± .019 .970± .019 .963± .021 .969± .012 .973± .013

Table 5: Classification accuracy of compared methods with different queries on 4 classification tasks in Spam dataset. The boldfaces denote
the best and the second best methods in terms of the accuracy, and Q mean that the number of samples labeled by experts.

also clearly shows the advantage of our proposed approach
which is able to exploit useful pre-trained models.

4.4 Spam Detection Task

The last task is a spam detection problem, and we use the
dataset obtained from ECML PAKDD Discovery challenge2

to verify whether our method can help improve the perfor-
mance. We use the task B challenge dataset which consists of
labeled training data from the inboxes of 15 users. Each task
is a binary classification problem: spam or non-spam. For
spam detection task, we test the top 4 classification tasks.

Results from Table 5 show that ACMR achieves highly
competitive performance with compared methods. Once
again, our proposal works better than state-of-the-art active
learning and Safer model prediction algorithms. This shows
that in the frame of active learning, taking pre-trained models
into account can get a rapid performance improvement.

2http://ecmlpkdd2006.org/challenge.html

5 Conclusion
Reusable model design becomes a desire for the rapid ex-
pansion of machine learning applications. However, previous
model reuse studies assume that the target task receives la-
beled data passively. This leads to a slow performance im-
provement to the target task. In this paper, we study a kind of
new model reuse problem, where the goal is that the model
performance for the target task can be quickly improved. We
propose the ACMR method which constructs queries through
pre-trained models when labeled examples are insufficient for
the target task, and leverages pre-trained models to filter out
not very necessary queries. Extending our work into deep
learning problem and applying it to more applications are in-
teresting for future study.

Acknowledgments
This research was supported by the National Key R&D Pro-
gram of China (2018YFB1004300), the National Natural Sci-
ence Foundation of China (61772262) and the Fundamental
Research Funds for the Central Universities (020214380053).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3409



References
[Albrecht, 2016] Jan Philipp Albrecht. How the gdpr will

change the world. European Data Protection Law Review,
2:287, 2016.

[Chakraborty et al., 2015] Shayok Chakraborty, Vineeth
Balasubramanian, Qian Sun, Sethuraman Panchanathan,
and Jie-Ping Ye. Active batch selection via convex
relaxations with guaranteed solution bounds. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
37(10):1945–1958, 2015.

[Dietterich, 2000] Thomas G Dietterich. Ensemble methods
in machine learning. In International Workshop on Mul-
tiple Classifier Systems, pages 1–15, Günzburg, Germany,
2000.

[Harrell, 2015] Frank E Harrell. Ordinal logistic regression.
In Regression modeling strategies, pages 311–325. 2015.

[He et al., 2018] Kai-Ming He, Ross Girshick, and Piotr
Dollár. Rethinking imagenet pre-training. arXiv preprint
arXiv:1811.08883, 2018.

[Huang et al., 2010] Sheng-Jun Huang, Rong Jin, and Zhi-
Hua Zhou. Active learning by querying informative and
representative examples. In Advances in Neural Infor-
mation Processing Systems, pages 892–900, Vancouver,
Canada, 2010.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Lewis and Gale, 1994] David D Lewis and William A Gale.
A sequential algorithm for training text classifiers. In Pro-
ceedings of the 17th International ACM SIGIR Conference
on Research and Development in Information Retrieval,
pages 3–12, 1994.

[Li and Liang, 2019] Yu-Feng Li and De-Ming Liang. Safe
semi-supervised learning: a brief introduction. Frontiers
of Computer Science, pages 1–8, 2019.

[Li et al., 2013] Nan Li, Ivor W Tsang, and Zhi-Hua Zhou.
Efficient optimization of performance measures by classi-
fier adaptation. IEEE transactions on Pattern Analysis and
Machine Intelligence, 35(6):1370–1382, 2013.

[Li et al., 2017] Yu-Feng Li, Han-Wen Zha, and Zhi-Hua
Zhou. Learning safe prediction for semi-supervised re-
gression. In Proceedings of the 31st AAAI Conference
on Artificial Intelligence, volume 2017, pages 2217–2223,
San Francisco, CA, 2017.

[Li et al., 2019] Yu-Feng Li, Hai Wang, Tong Wei, and Wei-
Wei Tu. Towards automated semi-supervised learning. In
Proceedings of the 33rd AAAI conference on Artificial In-
telligence, Honolulu, HI, 2019.

[Long et al., 2017] Ming-Sheng Long, Han Zhu, Jian-Min
Wang, and Michael I Jordan. Deep transfer learning with
joint adaptation networks. In Proceedings of the 34th
International Conference on Machine Learning, pages
2208–2217, Sydney, Australia, 2017.

[Murugesan et al., 2016] Keerthiram Murugesan, Han-Xiao
Liu, Jaime Carbonell, and Yi-Ming Yang. Adaptive
smoothed online multi-task learning. In Advances in Neu-
ral Information Processing Systems, pages 4296–4304,
Barcelona, Spain, 2016.

[Pan and Yang, 2010] Sinno Jialin Pan and Qiang Yang. A
survey on transfer learning. IEEE Transactions on Knowl-
edge and Data Engineering, 22(10):1345–1359, 2010.

[Pan et al., 2011] Sinno Jialin Pan, Ivor W Tsang, James T
Kwok, and Qiang Yang. Domain adaptation via transfer
component analysis. IEEE Transactions on Neural Net-
works, 22(2):199–210, 2011.

[Parkhi et al., 2015] Omkar M. Parkhi, Andrea Vedaldi, and
Andrew Zisserman. Deep face recognition. In Proceedings
of the 26th British Machine Vision Conference, Swansea,
UK, 2015.

[Settles, 2012] Burr Settles. Active learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning,
6(1):1–114, 2012.

[Seung et al., 1992] H Sebastian Seung, Opper Manfred, and
Sompolinsky Haim. Query by committee. In Proceedings
of the 5th Annual Workshop on Computational Learning
Theory, pages 287–294, Pittsburgh, PA, 1992.

[Shi et al., 2008] Xiao-Xiao Shi, Wei Fan, and Jiang-Tao
Ren. Actively transfer domain knowledge. In Proceed-
ings of Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 342–357,
Antwerp, Belgium, 2008.

[Wang and Ye, 2015] Zheng Wang and Jie-Ping Ye. Query-
ing discriminative and representative samples for batch
mode active learning. ACM Transactions on Knowledge
Discovery from Data, 9(3):17, 2015.

[Yang et al., 2017a] Yang Yang, De-Chuan Zhan, Ying Fan,
Yuan Jiang, and Zhi-Hua Zhou. Deep learning for fixed
model reuse. In Proceedings of the 31st AAAI Conference
on Artificial Intelligence, pages 2831–2837, San Fran-
cisco, CA, 2017.

[Yang et al., 2017b] Yang Yang, De-Chuan Zhan, Xiang-Yu
Guo, and Yuan Jiang. Modal consistency based pre-trained
multi-model reuse. 2017.

[Ye et al., 2018] Han-Jia Ye, De-Chuan Zhan, Yuan Jiang,
and Zhi-Hua Zhou. Rectify heterogeneous models with
semantic mapping. In Proceedings of the 35th Inter-
national Conference on Machine Learning, pages 1904–
1913, Stockholm, Sweden, 2018.

[Zhou, 2012] Zhi-Hua Zhou. Ensemble Methods: founda-
tions and algorithms. 2012.

[Zhou, 2016] Zhi-Hua Zhou. Learnware: on the future
of machine learning. Frontiers of Computer Science,
10(4):589–590, 2016.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3410


