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Abstract
Semi-supervised learning is pervasive in real-world
applications, where only a few labeled data are
available and large amounts of instances remain un-
labeled. Since AUC is an important model eval-
uation metric in classification, directly optimiz-
ing AUC in semi-supervised learning scenario has
drawn much attention in the machine learning com-
munity. Recently, it has been shown that one could
find an unbiased solution for the semi-supervised
AUC maximization problem without knowing the
class prior distribution. However, this method is
hardly scalable for nonlinear classification prob-
lems with kernels. To address this problem, in
this paper, we propose a novel scalable quadru-
ply stochastic gradient algorithm (QSG-S2AUC)
for nonlinear semi-supervised AUC optimization.
In each iteration of the stochastic optimization pro-
cess, our method randomly samples a positive in-
stance, a negative instance, an unlabeled instance
and their random features to compute the gradient
and then update the model by using this quadru-
ply stochastic gradient to approach the optimal so-
lution. More importantly, we prove that QSG-
S2AUC can converge to the optimal solution in
O(1/t), where t is the iteration number. Exten-
sive experimental results on a variety of benchmark
datasets show that QSG-S2AUC is far more effi-
cient than the existing state-of-the-art algorithms
for semi-supervised AUC maximization, while re-
taining the similar generalization performance.

1 Introduction
Semi-supervised learning addresses the problems where the
available data is composed of a small size of labeled sam-
ples and a huge size of unlabeled samples. It is of immense
practical interest in a wide range of applications, such as
image retrieval [Wang et al., 2010], natural language pro-
cessing [Liang, 2005] and speech analysis [Sholokhov et al.,
2018]. Since semi-supervised learning requires less human
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effort and can achieve a better generalization performance, it
has attracted a great deal of attention in the machine learn-
ing communities, i.e., [Gu et al., 2018c; Sakai et al., 2017;
Sakai et al., 2018].

The area under the ROC curve (AUC) [Hanley and Mc-
Neil, 1982] measures the probability of a randomly drawn
positive instance being ranked higher than a randomly drawn
negative instance. Thus, AUC is a more effective perfor-
mance measure than the accuracy in data imbalance binary
classification problem. Many studies [Gao et al., 2013;
Gao and Zhou, 2015] have also pointed out that optimizing
AUC can achieve a better generalization performance than
directly optimizing accuracy. Due to the superiority of AUC
as mentioned above, a large amount of attention has been at-
tracted to introduce AUC to semi-supervised learning.

Recently, several algorithms have been proposed to ad-
dress the semi-supervised AUC optimization problem. For
instance, to train a classifier, SSRankBoost [Amini et al.,
2008] and OptAG [Fujino and Ueda, 2016] exploited the as-
sumption that two samples share the same label if their dis-
tance in a metric space is small. However, this restrictive
assumption may not always hold in real-world applications,
and could lead to biased solutions. Sakai et al., [2018] pointed
out that both unlabeled instances and labeled instances follow
the same joint probability distribution and the restrictive as-
sumption is not necessary. However, their method PNU-AUC
requires to estimate the class prior which is difficult to be ob-
tained when labeled instances are extremely small. Recently,
Xie and Li, [2018] proposed that neither the class priors nor
any other distributional assumption about the unlabeled data
are necessary to find the unbiased solution. We summarize
these algorithms in Table 1.

Nonlinear data structures widely exist in many real-world
problems, and kernel method is a typical way to solve such
problems. However, this approach can hardly scale to large
datasets. Specifically, the kernel matrix needs O(n2d) oper-
ations to be calculated and O(n2) to be stored, where n de-
notes the number of instances and d denotes the dimension-
ality of the data [Gu and Huo, 2018]. However, the bottle-
necks of the computational complexities become more severe
for semi supervised learning because the sample size n is al-
ways very large in the semi-supervised scenario. Even worse,
PNU-AUC and SAMULT [Xie and Li, 2018] needO(n3) op-
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Algorithm Reference Function model Computational complexity Space complexity
SSRankBoost [Amini et al., 2008] Nonlinear model — O(n2)
OptAG [Fujino and Ueda, 2016] Linear model — O(n2)
PNU-AUC [Sakai et al., 2018] Nonlinear model O(n3) O(n2)
SAMULT [Xie and Li, 2018] Nonlinear model O(n3) O(n2)
QSG-S2AUC Ours Nonlinear model O(Dt2) O(t)

Table 1: Several representative semi-supervised AUC optimization algorithms. (D denotes the number of random features, n denotes the
number of training samples and t denotes number of iterations.)

erations to compute the matrix inverse. Thus, scaling up non-
linear semi-supervised AUC maximization is a challenging
problem.

To scale up kernel-based algorithms, a large amount of
methods has been proposed, i.e., asynchronous parallel al-
gorithms [Gu et al., 2018a; Gu and Huo, 2018; Gu et
al., 2016], kernel approximation [Rahimi and Recht, 2008;
Smola and Schölkopf, 2000]. To our knowledge, doubly
stochastic gradient (DSG) [Dai et al., 2014] is the most ef-
fective method to scale up kernel-based algorithms. Specif-
ically, DSG samples a random instance and the random fea-
tures to compute the doubly stochastic gradient which is used
to update the model. However, different from the standard
DSG, semi-supervised learning has three sources of data, i.e.,
positive instances, negative instances and unlabeled datasets.
In addition, optimizing AUC is a pairwise learning problem
which is more complicated than the pointwise learning prob-
lem considered in the standard DSG algorithm. Therefore,
the existing algorithms and theoretical analysis for DSG can-
not be directly applied to non-linear semi-supervised AUC
maximization.

To address this challenging problem, we introduce multi-
ple sources of randomness. Specifically, we randomly sam-
ple a positive, a negative and an unlabeled instance in each
iteration to compose a triplet of data points. Then we use
the random features w.r.t these data triplets to compute the
stochastic gradient. Since the stochastic gradient would then
contain four sources of randomness, we denote our algorithm
as quadruply stochastic semi-supervised AUC maximization
(QSG-S2AUC). Theoretically, we prove that QSG-S2AUC
can converge to the optimal solution at the rate of O(1/t),
where t is the number of gradient iterations. Extensive exper-
imental results on a variety of benchmark datasets show that
QSG-S2AUC is far more efficient than the existing state-of-
the-art algorithms for semi-supervised AUC maximization,
while retaining the similar generalization performance.
Contributions. The main contributions of this paper are sum-
marized as follows.

1. We propose an efficient nonlinear semi-supervised AUC
optimization algorithm based on the DSG framework.
Since semi-supervised learning contains three sources of
data, we employ triplets of data points in each iteration
and extend the standard DSG framework.

2. We prove that QSG-S2AUC has the convergence rate of
O(1/t) which is same to the one of standard SGD even
though our QSG-S2AUC has four sources of random-
ness.

2 Related Works

In this section, we give a brief review of kernel approximation
and large scale AUC maximization methods respectively.

2.1 Kernel Approximation

Kernel approximation has attracted great amounts of atten-
tion to scale up kernel-based learning algorithms. The data-
dependent methods, such as greedy basis selection techniques
[Smola and Schölkopf, 2000], incomplete Cholesky de-
composition [Fine and Scheinberg, 2001], Nyström method
[Drineas and Mahoney, 2005], utilize the given training set
to compute a low-rank approximation of the kernel matrix.
However, they need a large amount of training instances to
achieve a better generalization. To handle this challenge, ran-
dom Fourier feature (RFF) [Rahimi and Recht, 2008] directly
approximates the kernel function unbiasedly with some basis
functions. However, large amounts of memory are required
since the number random features D need to be larger than
the original features to achieve low approximation error. To
further improve RFF, Dai et al., [2014] proposed DSG algo-
rithm. It uses pseudo-random number generators to calcu-
late the random features on-the-fly, which highly reduces the
memory requirement. These methods have been widely ap-
plyed to scale up kernel-based learning algorithms, such as
[Li et al., 2017; Gu et al., 2018b].

2.2 Large Scale AUC Optimization

Recently, several efforts have been devoted to scale up the
AUC optimization. For example, Ying et al., [2016] for-
mulated the AUC optimization as a convex-concave saddle
point problem and proposed a stochastic online method (SO-
LAM) which has the time and space complexities of one
datum. FSAUC [Liu et al., 2018] developed a multi-stage
scheme for running primal-dual stochastic gradient method
with adaptively changing parameters. FSAUC has the con-
vergence rate of O(1/n), where n is the number of random
samples. However, both SOLAM and FSAUC focus on scal-
ing up the linear AUC optimization and are incapable of max-
imizing AUC in the nonlinear setting. Recently, FOAM and
NOAM [Ding et al., 2017] used RFF and Nyström method,
respectively, to scale up the kernel based AUC optimization
problem. However, as mentioned above, both methods re-
quire large amounts of memory to achieve a better general-
ization performance and not trivial to scale up the nonlinear
semi-supervised AUC optimization problems based.
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3 Preliminaries
3.1 Supervised AUC Optimization
In supervised learning, let x ∈ Rd be a d-dimensional pattern
and y ∈ {+1,−1} be a class label. Let p(x, y) be the un-
derlying joint density of (x, y). The AUC optimization is to
train a classifier f that maximizes the following function.

AUC = 1− Exp∼p+(x)

[
Exn∼p−(x)[l01(f(x

p), f(xn))]
]
,

where p+(x) = p(x|y = +1), p−(x) = p(x|y = −1) and
l01(u, v) = (1 − sign(u − v))/2. Obviously, maximizing
AUC is equivalent to minimizing the following PN AUC risk.

RPN = Exp∼p+(x)

[
Exn∼p−(x)[l01(f(x

p), f(xn))]
]
. (1)

Given the positive and negative datasets as Dp =
{xi}pi=1 ∼ p+(x) and Dn = {xj}nj=1 ∼ p−(x) respectively.
Thus, the PN AUC risk can be rewritten as follows.

RPN = Exp∈Dp [Exn∈Dn [l(f(x
p), f(xn))]] . (2)

where Exp∈Dp and Exn∈Dn denote the means of Dp and Dn,
respectively.

3.2 Semi-Supervised AUC Optimization
Since large amounts of instances remain unlabeled in semi-
supervised learning, we assume that the labeled dataset is lim-
ited while the unlabeled data can be infinite and has the under-
lying distribution density of p(x), where p(x) = πp+(x) +
(1 − π)p−(x) and π denotes the positive class prior. Re-
cently, Xie and Li, [2018] have shown that it is unnecessary to
estimate distributional assumptions or class prior to achieve
an unbiased solution for semi-supervised AUC optimization.
Specifically, PU AUC risk RPU and NU AUC risk RNU are
equivalent to the supervised PN AUC risk RPN risk with a
linear transformation, where PU AUC risk RPU is estimated
by positive and unlabeled data treated as negative data, and
NU AUC risk RNU is estimated by negative and unlabeled
data treated as positive data. We define RPU and RNU as
follows,

RPU = Exp∈Dp

[
Exu∼p(x)[l(f(x

p), f(xu))]
]
, (3)

RNU = Exu∼p(x) [Exn∈Dn
[l(f(xu), f(xn))]] , (4)

where Exu∼p(x) denotes the expectation over the density
p(x). PU AUC risk can be written as follows.

RPU =Exp∈Dp
[Exu∼p(x)[l(f(x

p), f(xu))]]

=Exp∈Dp
[πEx′p∼p+(x)[l(f(x

p, x′p))]

+ (1− π)Ex′n∼p−(x)[l(f(xp, x′n))]]

=
1

2
π + (1− π)RPN, (5)

where x′p and x′n denotes the positive and negative instances
in unlabeled dataset. Similarly, NU AUC risk RNU can be
rewritten as

RNU =
1

2
(1− π) + πRPN. (6)

Then PN AUC risk RPN can be formulated as follows.

RPU +RNU −
1

2
= RPN. (7)

Thus, the semi-supervised AUC optimization can be formu-
lated as follows.

RPNU = (1− γ)
(
RPU +RNU −

1

2

)
+ γRPN. (8)

where γ ∈ [0, 1] is the trade-off parameter. To reduce the risk
of overfitting, we add a l2-regularizer into (8) and have the
following objective for semi-supervised AUC optimization.

L = RPNU(f) +
λ

2
‖f‖2H, (9)

where λ is the regularized parameter and ‖ · ‖H denotes the
norm in a reproducing kernel Hilbert space (RKHS)H.

3.3 Random Fourier Feature
In this section, we give a brief review of RFF. Assume that we
have a continuous, real-valued, symmetric and shift-invariant
kernel function k(x, x′). According to Bochner Theorem
[Rudin, 2017], this kernel function is positive definite and
has a nonnegative Fourier transform function as k(x, x′) =∫
Rd p(ω)e

jωT (x−x′)dω, where p(w) is a density function as-
sociated with k(x, x′). The integrand ejω

T (x−x′) can be
replaced with cosωT (x − x′) [Rahimi and Recht, 2008].
Then we can obtain a real-valued feature map φωi

(x) =
[cos(ωTi x), sin(ω

T
i x)]

T , where ωi is randomly sampled ac-
cording to the density function p(ω). We can obtain the fea-
ture map for m random features of a real-valued kernel as
follows.

φω(x) =
√

1/D[cos(ωT1 x), · · · , cos(ωTmx),
sin(ωT1 x), · · · , sin(ωTmx)]T . (10)

Obviously, φTω (x)φω(x
′) is an unbiased estimate of k(x−x′).

4 Quadruply Stochastic Semi-Supervised
AUC Maximization

4.1 Quadruply Stochastic Gradients
Based on the definition of the function f ∈ H, we easily
obtain ∇f(x) = ∇〈f, k(x, ·)〉, and ∇‖f‖2H = ∇〈f, f〉H =
2f . Thus, the gradient of the objective (9) can be written as:

∇L =λf + γExp∈Dp [Exn∈Dn [l
′
1k(x

p, ·) + l′2k(x
n, ·)]]

+ (1− γ)(Exp∈Dp
[Exu∼p(x)[l

′
3k(x

p, ·) + l′4k(x
u, ·)]]

+ Exu∼p(x)[Exn∈Dn
[l′5k(x

u, ·) + l′6k(x
n, ·)]]), (11)

where l′1k(x
p, ·) denotes the derivative of l(f(xp), f(xn))

w.r.t. f(xp), l′2k(x
n, ·) denotes the derivative of

l(f(xp), f(xn)) w.r.t. f(xn), l′3k(x
p, ·) denotes the deriva-

tive of l(f(xp), f(xu)) w.r.t. f(xp), l′4k(x
u, ·) denotes the

derivative of l(f(xp), f(xu)) w.r.t. f(xu), l′5k(x
u, ·) denotes

the derivative of l(f(xu), f(xn)) w.r.t. f(xu) and l′6k(x
n, ·)

denotes the derivative of l(f(xu), f(xn)) w.r.t. f(xn).
In order to update the classifier f in a stochastic manner,we

randomly sample a positive data point xp and a negative data
point xn from Dp and Dn, respectively. In addition, we ran-
domly sample an unlabeled data point xu according to the
unlabeled data distribution density p(x). In each iteration,
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we use a triplet of these data points to compute the stochastic
functional gradient of (8) as follows.

ξ(·) =γ(l′1k(xp, ·) + l′2k(x
n, ·)) + (1− γ)(l′3k(xp, ·)

+ l′4k(x
u, ·) + l′5k(x

u, ·) + l′6k(x
n, ·)). (12)

We can apply the random Fourier feature method to fur-
ther approximate the stochastic functional gradient ξ(·) as
follows.

ζ(·) =γ(l′1φω(xp)φω(·) + l′2φω(x
n)φω(·))

+ (1− γ)(l′3φω(xp)φω(·) + l′4φω(x
u)φω(·)

+ l′5φω(x
u)φω(·) + l′6φω(x

n)φω(·)). (13)

Obviously, we have that ξ(·) = Eω[ζ(·)]. Thus, we can
achieve the unbiased estimate of the gradient (11) by using
either ξ(·) or ζ(·) as follows,

∇L = Exp,xn,xu [ξ(·)] + λf,∇L = Exp,xn,xu [Eω[ζ(·)]] + λf.

Because four randomness (i.e. xp, xn, xu and ω) are in-
volved in ζ(·), we call the functional gradient ζ(·) as quadru-
ply stochastic functional gradient.

Then, we first give the update rule with the stochastic gra-
dient ξ(·) as follow,

ht+1(·) = ht(·)− ηt (ξt(·) + λht(·)) =
t∑
i=1

aitξt(·), ∀t > 1,

where ait = −ηt
∏t
j=i+1(1 − ηjλ), ηt denotes the step size

and ht+1(x) denotes the function value if we use gradient
ξ(·). Since ζ(·) is an unbiased estimate of ξ(·), the update
rule using ζ(·) after t iterations can be written as follow,

ft+1(·) = ft(·)− ηt (ζt(·) + λft(·)) =
t∑
i=1

aitζi(·), ∀t > 1,

where f1(·) = 0, and ft+1(x) denotes the function value for
the input x if we use the functional gradient ζ(·).

In order to implement the update process in computer pro-
gram, we rewrite the update rule as the following iterative
update rules with constantly-changing coefficients {αi}ti=1,

ft =
t∑
i=1

αiφω(x), (14)

αi = −ηi(γ(l′1φω(xp) + l′2φω(x
n))

+(1− γ)(l′3φω(xp) + l′4φω(x
u)

+l′5φω(x
u) + l′6φω(x

n))), (15)

αj = (1− ηjλ)αj , for j = 1, ..., i− 1. (16)

4.2 QSG-S2AUC Algorithms
In our implementation, we use pseudo-random number gen-
erators with seed i to sample random features. In each itera-
tion, we only need to keep the seed i aligned between predic-
tion and training. Then the prediction function f(x) can be
restored much more easily. Besides, the QSG-S2AUC main-
tains a sequence of {αi}ti=1 at each ieration which has low
memory requirement. Specifically, each iteration of the train-
ing algorithm executes the following steps.

Algorithm 1 {αi}ti=1 = QSG-S2AUC(Dp, Dn, p(x))

Input: p(ω), φω(x), l(u, v), λ.
Output: {αi}ti=1

1: for i = 1, ..., t do
2: Sample xp from Dp.
3: Sample xn from Dn.
4: Sample xu ∼ p(x).
5: Sample ωi ∼ p(ω) with seed i.
6: f(xi) = Predict(xi, {αi}i−1j=1).
7: αi = −ηi(γ(l′1φω(xp) + l′2φω(x

n)) + (1 −
γ)(l′3φω(x

p) + l′4φω(x
u) + l′5φω(x

u) + l′6φω(x
n)))

8: αj = (1− ηjλ)αj for j = 1, ..., i− 1.
9: end for

Algorithm 2 f(x) =Predict(x, {αi}ti=1)

Input: p(ω), φω(x)
Output: f(x)

1: Set f(x) = 0.
2: for i = 1, ..., t do
3: Sample ωi ∼ p(ω) with seed i.
4: f(x) = f(x) + αiφω(x)
5: end for

1. Select Random Data Triplets: Randomly sample a pos-
itive instance, a negative instance and an unlabeled in-
stance to compose a data triplet. In addition, we use
mini-batch of these data points to achieve a better effi-
ciency.

2. Approximate the Kernel Function: Sample ωi ∼ p(ω)
with random seed i to calculate the random features
on-the-fly. We keep this seed aligned between pre-
diction and training to speed up computing f(xi) =∑t
i=1 αiφω(x).

3. Update Coefficients: We compute the current coeffi-
cient αi in i-th loop and then update the former coef-
ficients αj for j = 1, · · · , i− 1 according to the update
rule (15) and (16), respectively.

We summarize the algorithms for training and prediction in
Algorithm 1 and 2 respectively.

5 Convergence Analysis
In this section, we prove that QSG-S2AUC converges to the
optimal solution at the rate of O(1/t). We first give several
assumptions which are standard in DSG [Dai et al., 2014].
Assumption 1 (Bound of kernel function). The kernel func-
tion is bounded, i.e., k(x, x′) ≤ κ, where κ > 0.

Assumption 2 (Bound of random feature norm). The ran-
dom feature norms are bounded, i.e., |φω(x)φω(x′)| ≤ φ.

Assumption 3 (Lipschitz continuous). The first order
derivation of l(f(xp), f(xn)) is L1-Lipschitz continuous in
terms of f(xp) and L2-Lipschitz continuous in terms of
f(xn). Similarly, the first order derivation of l(f(xp), f(xu))
is L3-Lipschitz continuous in terms of f(xp) and L4-
Lipschitz continuous in terms of f(xu) and the first order
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Dataset Features Samples Source
Codrna 8 59,535 LIBSVM
Ijcnn1 22 49,990 LIBSVM
Susy 18 5,000,000 LIBSVM

Covtype 54 581,012 LIBSVM
Higgs 28 1,100,000 LIBSVM
Skin 3 245,057 LIBSVM

Dota2 116 92650 UCI
Unclonable 129 6,000,000 UCI

Table 2: Datasets used in the experiments.

derivation of l(f(xu), f(xn)) is L5-Lipschitz continuous in
terms of f(xu) and L6-Lipschitz continuous in terms of
f(xn).

Assumption 4 (Bound of derivation). There exists M1 > 0,
M2 > 0, M3 > 0, M4 > 0, M5 > 0 and M6 > 0, such that
|l′1| ≤ M1, |l′2| ≤ M2, |l′3| ≤ M3, |l′4| ≤ M4, |l′5| ≤ M5,
|l′6| ≤M6,

We use the framework of [Dai et al., 2014] to prove that
ft+1 can converge to the optimal solution f∗. Specifically,
we use the aforementioned ht+1 as an intermediate value to
decompose the difference between ft+1 and f∗ as follows,

|ft+1(x)− f∗(x)|2

≤ 2 |ft+1(x)− ht+1(x)|2︸ ︷︷ ︸
error due to random features

+2κ ‖ht+1 − f∗‖H.︸ ︷︷ ︸
error due to random data

.(17)

In other words, the total approximation error includes the er-
ror caused by approximating the kernel with random features,
and the error caused by sampling random data. Finally, the
boundary of the original error can be obtained by summing
up the boundary of these two parts.

We first give the convergence of error due to random fea-
tures and random data in Lemmas 1 and 3 respectively. All
the detailed proofs are provided in our Appendix1.

Lemma 1 (Error due to random features) Let χ denotes
the whole training set in semi-supervised learning problem.
For any x ∈ χ, we have

Exp
t ,x

n
t ,x

u
t ,ω

[|ft+1(x)− ht+1(x)|2] ≤ B2
1,t+1, (18)

where B2
1,t+1 := M2(κ + φ)2

∑t
i=1 |ait|2, B1,1 = 0 and

M = γ(M1 +M2) + (1− γ)(M3 +M4 +M5 +M6).

Obviously, the upper bound B2
1,t+1 depends on the conver-

gence of |ait|, which is given in Lemma 2.

Lemma 2 Suppose ηi =
θ

i
(1 ≤ i ≤ t) and θλ ∈ (1, 2)∪Z+.

We have |ait| ≤
θ

t
and

∑t
i=1 |ait|2 ≤

θ2

t
.

Remark 1 According to Lemmas 1 and 2, the error caused
by random features has the convergence rate of O(1/t) with
proper learning rate and θλ ∈ (1, 2).

1Appendix is available at https://drive.google.com/open?id=
16qVZGYeL7xhB4BATIMdcGkxLEyw7LIYg.
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Figure 1: The boxplot of testing AUC results for PNU-AUC, SA-
MULT and our QSG-S2AUC.

Lemma 3 (Error due to random data) Set ηt =
θ

t
, θ > 0,

such that θλ ∈ (1, 2) ∪ Z+, we have

Exp
t ,x

n
t ,x

u
t ,ωt

[
‖ht+1 − f∗‖2H

]
≤ Q2

1

t
, (19)

whereQ1 = max

{
‖f∗‖H,

Q0+
√
Q2

0+(2θλ−1)(1+θλ)2θ2κM2

2θλ−1

}
,

Q0 =
√
2κ1/2(κ + φ)LMθ2 and L = γ(L1 + L2) + (1 −

γ)(L3 + L4 + L5 + L6).

According to Lemmas 1 and 3, we can obtain the convergence
rate of QSG-S2AUC in Theorem 1.

Theorem 1 (Convergence in expectation) Let χ denote the
whole training set in semi-supervised learning problem. Set

ηt =
θ

t
, θ > 0, such that θλ ∈ (1, 2) ∪ Z+. ∀x ∈ χ, we have

Exp
t ,x

n
t ,x

u
t ,ωt

[
|ft+1(x)− f∗(x)|2

]
≤ 2C2 + 2κQ2

1

t
,

where C2 = (κ+ φ)2M2θ2.

Remark 2 Theorem 1 shows that for any given x, the eval-
uated value of ft+1 at x will converge to that of f∗ in terms
of the Euclidean distance at the rate of O(1/t). This rate is
the same as that of standard DSG even though our problem is
much more complicated and has four sources of randomness.

6 Experiments
In this section, we present the experimental results on sev-
eral datasets to demonstrate the effectiveness and efficiency
of QSG-S2AUC.

6.1 Experimental Setup
We compare the AUC results and running time of QSG-
S2AUC with the state-of-the-art semi-supervised AUC maxi-
mization algorithms as summarized as follows.

1. PNU-AUC: Unbiased semi-supervised AUC optimiza-
tion method proposed in [Sakai et al., 2018] based on
positive and unlabeled learning.

2. SAMULT: The method proposed in [Xie and Li, 2018]
which does not require the class prior distribution to
achieve the unbiased solution.
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Figure 2: The training time of QSG-S2AUC, SAMULT and PNU-AUC against different sizes of unlabeled samples, where the sizes of labeled
samples are fixed at 200. (The lines of SAMULT and PNU-AUC are incomplete because their implementations crash on larger training sets.)

All the experiments were ran on a PC with 56 2.2GHz cores
and 80GB RAM. We implemented QSG-S2AUC and SA-
MULT algorithms in MATLAB. We used the MATLAB code
from https://github.com/t-sakai-kure/PNU as the implemen-
tation of PNU-AUC. For all algorithms, we use the square
pairwise loss l(u, v) = (1 − u + v)2 and Gaussian kernel
k(x, x′) = exp(−σ‖x − x′‖2). The hyper-parameters (λ,
σ and γ) are chosen via 5-fold cross-validation. λ and σ
were searched in the region {(λ, σ)|2−3 ≤ λ ≤ 23, 2−3 ≤
σ ≤ 23}. The trade-off parameter γ in SAMULT and QSG-
S2AUC was searched from 0 to 1 at intervals of 0.1, and that
in PNU-AUC was searched from −1 to 1 at intervals of 0.1.
In addition, the class prior π in PNU-AUC is set to the class
proportion in the whole training set, which can be estimated
by [du Plessis et al., 2015]. All the results are the average of
10 trials.

6.2 Datasets
We carry out the experiments on eight large scale bench-
mark datasets collected from LIBSVM2 and UCI3 reposito-
ries. The size n of the dataset and the feature dimensionality
d are summarized in Table 2. To conduct the experiments for
semi-supervised learning, we randomly sample 200 labeled
instances and treat the rest of the data as unlabeled. All the
data features are normalized to [0, 1] in advance.

6.3 Results and Discussion
Figure 2 shows the training time of the three algorithms
against different sizes of unlabeled samples on the eight
benchmark datasets, where the sizes of labeled samples are
fixed at 200. We can find that QSG-S2AUC is always faster
than SAMULT and PNU-AUC. This is because the SAMULT
and PNU-AUC needO(n3) operations to compute the inverse
matrixes with kernel. Differently, QSG-S2AUC uses RFF to

2LIBSVM is available at https://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets/binary/.

3UCI is available at http://archive.ics.uci.edu/ml/datasets.html.

approximate the kernel function, and each time it only needs
O(D) operations to calculate the random features with seed
i. In addition, the low memory requirement of QSG-S2AUC
allows it to do an efficient training for large scale datasets
while PNU-AUC and SAMULT are out of memory. Figure
1 presents the testing AUC results of these algorithms on
the eight benchmark datasets. The results show that QSG-
S2AUC has the similar AUC results with other methods on
the most datasets, and has the highest AUC on the datasets of
Covtype and Ijcnn1. Based on these results, we conclude that
QSG-S2AUC is superior to other state-of-the-art algorithms
in terms of efficiency and scalability, while retaining the sim-
ilar generalization performance.

7 Conclusion
In this paper, we propose a novel scalable semi-supervised
AUC optimization algorithm, QSG-S2AUC. Considering that
semi-supervised learning contains three data sources, DSG-
S2AUC is designed to randomly sample one instance from
each data source in each iteration. Then, their random fea-
tures are generated and used to calculate a quadruply stochas-
tic functional gradient for model update. Even though this op-
timization process contains multiple layers of stochastic sam-
pling, theoretically, we prove that QSG-S2AUC has a con-
vergence rate of O(1/t). The experimental results on vari-
ous datasets also demonstrate the superiority of the proposed
QSG-S2AUC.
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