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Abstract

Learning rational behaviors in First-person-shooter
(FPS) games is a challenging task for Reinforce-
ment Learning (RL) with the primary difficulties
of huge action space and insufficient exploration.
To address this, we propose a hierarchical agent
based on combined options with intrinsic rewards
to drive exploration. Specifically, we present a hi-
erarchical model that works in a manager-worker
fashion over two levels of hierarchy. The high-
level manager learns a policy over options, and the
low-level workers, motivated by intrinsic reward,
learn to execute the options. Performance is further
improved with environmental signals appropriately
harnessed. Extensive experiments demonstrate that
our trained bot significantly outperforms the alter-
native RL-based models on FPS games requiring
maze solving and combat skills, etc. Notably, we
achieved first place in VDAIC 2018 Track(1).

1 Introduction

First-person-shooter (FPS) games, e.g. Doom, provide an im-
portant yet challenging benchmark for deep Reinforcement
Learning (DRL) [Li, 2017]. Different from the classic ar-
cade games [Cook and Colton, 2011], FPS games have 3D
graphics with partially observable states, which is a more
realistic environment to study DRL. In general, FPS games
directly simulate reality as humans perceive it (in a first-
person point-of-view) and set novel, competitive goals such
as navigation and shooting for agents, the overall managing
of which is much desired for general intelligence. The avail-
ability of well-designed game environments (e.g., ViZDoom
competition?) also accelerates the development of DRL al-
gorithms [Lample and Chaplot, 2017; Wu and Tian, 2016].

*The authors contributed equally to this work.

tJ. Zhu is the corresponding author.

"http://vizdoom.cs.put.edu.pl/competitions/vdaic-2018-cig/
results

*Many participants submit pre-trained agents to fulfill a speci-
fied task and compete with multiple adversaries.
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Figure 1: Example of single-player scenarios in Doom (an FPS
game). Left: a 2D map of this game. The green line denotes the
fastest way to complete the game. Right: A wide range of cogni-
tive abilities are generally required for an agent, including but not
limited to navigation in a complex 3D environment (a) to open
the door and accomplish the game (d), spotting and quickly aim-
ing at multiple enemies (c), collecting resources when necessary
(b), and team-based collaboration in some game modes. It may
also introduce additional challenges of extracting visual information
when only pixels on the screen are allowed. Demos are available at
https://github.com/Trinkle23897/ViZDoom2018-Track].

However, FPS games pose great challenges to DRL as an
FPS agent is expected to orient and move in a 3D environ-
ment, collect resources when necessary, as well as locate and
destroy multiple adversaries, as shown in Figure 1.

Most of the existing works are within the framework of
end-to-end model-free DRL along with a CNN network,
which learns to play directly from raw pixels by interacting
with the game environments [Wu and Tian, 2016]. Although
it can achieve human-like behaviors in basic scenarios, it still
exhibits a multitude of challenges, especially the delayed re-
wards and long-term credit assignment as they usually receive
rewards after a long sequence of actions. The problem is usu-
ally tackled by reward shaping [Lample and Chaplot, 2017;
Dosovitskiy and Koltun, 2017] or curriculum learning [Wu
and Tian, 2016]. However, it is generally non-trivial to design
an appropriate reward shaping function or learning curricu-
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lum, which makes these methods usually hard to generalize
to other tasks.

Moreover, FPS games often have a vast action space
due to the compositional nature of the actions, that is, sev-
eral actions can be executed at the same time, e.g., mov-
ing around to avoid being attacked when shooting enemies.
Most of the existing works for FPS games simplify the prob-
lem by forcing one action to be chosen at a single time
step, for example, DoomNet [Kolishchak, 2018]. However,
the unwarranted assumption may sacrifice the performance
significantly. More recently, [Huang er al., 2019] designs
temporary-extended macro-actions to reduce the action space
and trains ()-Learning networks over these actions, but this
method still relies on substantial human design and reward
shaping.

Finally, FPS games require the agent to play in a 3D en-
vironment, which introduces another challenge of extracting
relevant information from raw pixels. Without a proper under-
standing of this information, the agent may experience quick
death because of the enemy attack in Figure 1 (c), or cannot
beat enemies due to unavailable weapons in Figure 1 (b). It,
therefore, requires an agent to recognize the resources, en-
emies and be aware of the depth information to implement
spatial reasoning about 3D environmental structures.

1.1 Our Proposal

To address the above issues, we formulate the decision pro-
cess of FPS games as a combination of a Semi-Markov de-
cision process (Semi-MDP) [Sutton er al., 1999] and sev-
eral MDPs. This formulation leads to a scalable hierarchical
model that consists of a two-level hierarchy in a manager-
worker fashion jointly optimized, following the terminology
definitions of the manager and workers in [Vezhnevets et al.,
2017]. The top-level manager decides options (subgoals), and
the low-level workers learn policies of the options. The work-
ers are, therefore, intrinsically motivated, allowing them to
explore new behaviors without the need to consider the over-
all task.

Technically, to alleviate the issue of reward delay and long
term credit assignment, we use a hierarchical model com-
bined with an intrinsic reward for each worker according to
its utility, drawing inspiration from [Kulkarni et al., 2016al.
The manager which lies in the center of the network, aware of
the environmental information, learns a policy over subgoals
or options [Sutton er al., 1999] to maximize the extrinsic re-
ward and then dispatches the workers to fulfill the subgoals
accordingly. With the manager reasoning at a coarse temporal
resolution, its learning process can be much accelerated.

To address the issue of huge action space, we take into ac-
count the different characteristics of the primitive actions and
divide the action space into a few subspaces within which
each worker acts. The action subspaces between workers are
disentangled and orthogonal such that different workers can
execute actions simultaneously, forming combined options
across workers, contrary to the conventional mutually exclu-
sive options in most existing works.

Finally, to make a more general awareness of the 3D envi-
ronment, we introduce an environment-aware block to better
extract and utilize environmental information. This block is
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a compressed representation of environmental semantic in-
formation, which is composed of enemies, resources as well
as depth estimation. The extraction of this information is
achieved by using detection networks, such as Yolov3 [Red-
mon and Farhadi, 2018], which facilitates the design for the
intrinsic reward.

Taking Figure 1 as an example: we separate the whole task
into four workers corresponding to four sub-tasks according
to the orthogonality of the action space, i.e. motion for nav-
igating, collecting resources, attacking for keeping safe, and
using tools for opening the final door. When a combined op-
tion terminates, the manager chooses a new combined option
which is composed of several basic options formed by the
workers’ policies.

Furthermore, our method with action division, combined
options and environmental awareness on a hierarchical RL
structure tackles the underlying challenges of all such single-
agent multi-task environments as FPS games correspondingly
and could be easily transferred to other single-agent multi-
task scenarios, for example, domestic robots, mineral mining
robots, etc. All of these potentially supported bots need to
finish a sequence of, possibly concurrent, subgoals to com-
plete their tasks. It’s not hard to transfer our method to other
tasks with the same general framework and redesign of the
low-level workers.

Extensive experiments on FPS games show that our pro-
posed method enables the FPS agent to converge to a reason-
able policy, which significantly outperforms the alternative
RL-based models with substantial evidence that we won the
champion in the recent international competition. Our main
contributions are as follows:

e We propose a novel hierarchical manager-worker agent
acting with combined options to reduce the action space
of FPS games. The combined options, together with our
proposed intrinsic rewards, alleviate the original reward
sparsity.

e We incorporate environmental awareness into our agent
with detection networks and depth estimation for a better
understanding of the 3D environment.

e We empirically validate our methods through extensive
experiments, and won the first place in the ViZDoom
2018 competition Track.

2 Related Work

Training an agent in FPS games has been extensively stud-
ied recently. Facing with the sparse reward and reward delay
problem, F1 [Wu and Tian, 2016] uses curriculum learning,
while Arnold [Lample and Chaplot, 2017] uses reward shap-
ing and Curiosity [Pathak et al., 2017] uses intrinsic rewards,
which introduce human-designed features and other signals to
accelerate the convergence of the network. To use more com-
pact representations of the 3D environment, [Alvernaz and
Togelius, 2017] learns an autoencoder to compress high di-
mensional 3D data into low dimensional implicit but effective
representation, [Yan er al., 2019] reformulates the decision
process in FPS games into a relational MDP problem which
enables a compact representation of MDP and accelerates the
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learning speed, and [Bhatti ez al., 2016] uses SLAM to incor-
porate the structures and objects encountered. To make better
temporal abstractions, [Kulkarni et al., 2016b] extracts sub-
goals periodically and learns a network to satisfy these goals.
There are other methods using different formulations of the
problem, e.g., [Dosovitskiy and Koltun, 2017] which uses a
supervised learning model, predicting the difference of the
future measurements and current measurements to learn the
action of the current step.

Hierarchical reinforcement learning has become an ac-
tive research area for introducing various abstractions into
problem-solving and planning. Inspired by the primarily
work of [Dayan and Hinton, 1993], feudal hierarchical model
[Vezhnevets et al., 2017] presents an end-to-end network in a
master-worker fashion which automatically recognizes goals
for decision and makes long-term credit assignment more
tractable; MaxQ architecture [Dietterich, 1998] decomposes
the whole tasks by decomposing the value function; [Sutton
et al., 1999] introduces “options”, a hyper action which the
architecture chooses to act until it terminates, where each op-
tion contains a policy which can be learned or prefixed by
a network; Following this work, [Bacon er al., 2017] pro-
poses a framework capable of learning policies of options
and termination conditions together without other rewards
and subgoals; Hierarchical controller learning [Van Hoorn et
al., 2009] applies hierarchical reinforcement learning archi-
tecture to FPS games such as Unreal Tournament 2004.

3 Methodology

In this section, we present a two-level hierarchical reinforce-
ment learning architecture for FPS games. We start with an
overview of this architecture, followed by the design of the
manager and workers; we then incorporate environmental
awareness and finally present the overall algorithm.

3.1 Overview

Considering the hierarchical nature of FPS games, we design
our architecture consisting of a manager in the center and
a few outer workers, which is a star-shaped network named
StarNet in this paper. Concretely, the manager decides ab-
stract sub-goals, or options [Sutton et al., 1999], at a coarse
temporal resolution for the workers. The workers in the outer
network then execute primitive actions to fulfill the sub-goals
received from the manager. Inspired by how humans play the
game, we divide the primitive action space to facilitate si-
multaneous options instead of the usual mutually-exclusive
ones. We further design intrinsic rewards for workers and in-
corporate environmental awareness, e.g., depth info to drive
exploration.

Formally, the decision process of an agent in FPS games
is formulated as a Semi-Markov decision process (Semi-
MDP) [Sutton et al., 19991 M, = (S,0,T, Rg,~) over sev-
eral basic MDPs M; = (S, A;,T;, R;,y), corresponding re-
spectively to the manager and workers. Here S denotes the
state space, A; is the action subspace of M;, T and T; are
respectively the transition probability of the Semi-MDP and
MDP M;. The manager maximizes the cumulative extrinsic
reward Rp (e.g., game score) w.r.t. its policy over options
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Figure 2: Our proposed StarNet architecture.

O with the discount factor . Oppositely, the workers maxi-
mize the cumulative reward of their own, R;, w.r.t. its desired
functionality, e.g., killing enemies, collecting resources, etc.
Different from the manager, the workers are additionally mo-
tivated by the intrinsic rewards specified by the manager.

In particular, the manager chooses options at a lower tem-
poral resolution, in which an option 0 =< 7,7, 8 > denotes
an extended behavior [Sutton er al., 1999]. An option com-
bines a policy 7 (s, a) with a termination condition /3(s) and
an initiation set Z C S. An option is available once s; € Z,
and executes according to its policy 7 until the termination
condition is satisfied. An option is selected conditioned on
the different states, and the corresponding intrinsic reward is
given to the workers to execute the option. The temporal ab-
straction of option largely alleviates the reward delay and the
long-term credit assignment issue.

Moreover, our model consists of a few workers to achieve
different subgoals specified by the manager. By considering
the different characteristics of the primitive actions for FPS
games, we mainly design a set of workers based on the or-
thogonality of the actions. In other words, different work-
ers can execute their actions simultaneously without affect-
ing each other. In this paper, we divide the action space into
four subspaces: action subspace for motion, attacking, tools,
and resources. The workers learn their policies at a higher
temporal resolution, acting according to options selected by
the manager. In this case, each worker maintains a policy on
a subspace of the whole action space given the state, which
largely reduces the action number for inference and acceler-
ates the exploration significantly.

To make a more comprehensive understanding of the en-
vironment, we use the recent network of Yolov3 [Redmon
and Farhadi, 2018] to detect the entities, including the en-
emies, resources, etc. We further use a regression model to
estimate the depth signal using the visual feature extracted
by the CNN network. All this environmental information fa-
cilitates the design of the intrinsic reward, yielding a more
reasonable and stable policy.
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Figure 2 concisely describes our proposed two-level hi-
erarchical reinforcement learning architecture. The high-
level manager, receiving extrinsic reward from environment,
chooses from the available combined options for some of
workers to execute and dispatches intrinsic rewards plus ex-
trinsic rewards to these workers; the low-level workers, se-
lected by the manager, act according to their learned policies
and update their strategies based on the received intrinsic and
extrinsic rewards.

3.2 Manager Design

In our two-level hierarchical network, the manager acts as a
high-level decision maker lying at the center of the StarNet. It
constructs a set of intermediate goals for workers to achieve
by maintaining a policy over options, which alleviates the re-
ward delay and long term credit assignment issues.

Notably, the decision process of the manager is formu-
lated as a Semi-MDP process over a fixed set of options.
Given state s;, the manager constructs available option set:
O;. With a network constructed over all the options, the man-
ager can obtain a probability over available options using the
current state as input. The manager samples an option accord-
ing to the probability calculated until the option terminates
and chooses a new option. Despite the function of choosing
options, every time choosing an option, the manager sends the
intrinsic rewards separately together with extrinsic rewards to
each chosen worker. For instance, when the option of com-
bining attacking and motion is selected, the intrinsic reward
for motion plus the extrinsic reward are given to the motion
worker, and the intrinsic reward for attacking plus the extrin-
sic reward is given to the attacking worker.

In this work, we adopt Advantage Actor Critic (A2C)
[Mnih et al., 2016; Dhariwal et al., 2017] to train the man-
ager, while in principle any off-the-shelf deep RL algorithm
is applicable. We parameterize the manager as a two-head
neural network with option output 7,,(0¢|s:), value output
Vin(st) and overall weights 6,,,. Its objective is defined as:

max Ay, (s, 0;) log T (0t|8t)— (Rt —Vin (st))?+aH (7,),
" (1)

where Rp; = $2°2,7 'rg,; is the cumulative extrinsic re-
ward g ; until episode termination, A,,(s;,0;) = Rg; —
Vin(st) is the advantage value scalar without gradient compu-
tation, and « is the coefficient for the entropy bonus H (7, ).

3.3 Worker Design

To reduce action number, we note that some of the actions
in the whole action space are conflicting, i.e., they cannot be
chosen simultaneously at a single step. So we design workers
to be an option whose policy is a probability on a subspace of
the whole action space given the state. Workers work on or-
thogonal subspaces. The design of workers naturally endows
a semantic disentanglement of utilities between workers. The
termination condition and initiation set of each option related
to the worker are designed according to the semantic utility
of the worker. To alleviate the sparse reward problem and ac-
celerate the training process, we design intrinsic rewards to
each worker according to the utility split.

3478

Similarly as the manager, we also adopt A2C for the work-
ers, with the notable difference that the neural nets have ac-
tion output 7, (a¢|s;) instead of option, and their objectives
incorporate both extrinsic and intrinsic rewards:

HelaXAwi( t>at> logﬂ-wi (at|st) - (RE,t + Ré,t - Vwi(st)>2

w;

+ aH (T, ), (2)

where R}, = X32,777"r} ; is the cumulative intrinsic re-
ward '} , of worker i and w; denotes each worker. We include
both rewards following [Vezhnevets et al., 2017].

Action Space Division and Combined Options

The action space for FPS games is quite large, with various
available actions to choose from. Directly learning policies
by modeling the probability over all possible actions is diffi-
cult when the action number is quite large. However, reduc-
tions in action number can be done because of the conflicts
existing between actions. To exploit this property, we divide
the action space into several subspaces, where each worker is
responsible for acting in one subspace. Formally, we divide
A=Ay x Ay x---x Ay, where A is the whole action space,
x denotes Cartesian product, A; donates the action subspace
for worker 4, where actions inside A; are mutually exclusive
and N donates the number of workers. Note that from our
definition on the Cartesian product, each A; is a split of the
original action vector with smaller dimensionality, but we still
call it subspace from now on in this paper. With the division
of the action space, the policy of the agent can be obtained
from a hierarchical perspective: First, we choose the option
o according to the manager’s policy 7,,(o|s). Then, we act
according to the policy according to o.

The general design of workers can vary from games to
games, tasks to tasks. Here we give some common workers
that are needed for most FPS games:

(1) Motion worker corresponds to the option of controlling
the movement of the player.

(2) Attacking worker corresponds to the option of enabling
the shooting of the player.

(3) Tool worker corresponds to the option of using tools in
the game, for example, using a key to open the door.

(4) Resource worker corresponds to the option of collecting
resources, for example, picking up guns on the ground.

These workers could be treated as options themselves if we
construct action vectors by filling the sub-vectors not speci-
fied the worker with no—op. Conventionally, options are cho-
sen mutually-exclusively by the manager. However, FPS game
experts usually play in a multi-task fashion with the simplest
example of turning around while shooting. Therefore, we pro-
pose to combine those workers:

Definition 3.1. [Combined Options] Let K C {1,--- ,N}
be a set of workers with action subspaces Ay, and options
o =< mp,2Ly,Br > respectively. The combined option,
0o =< e, Lo, Be >, formed from K is defined as:

Policy function: 7.(ac|s) = TI w1 (ak|s), 3)
keK

Initiation set: T, & N Iy, 4)
keK
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Termination condition: 3,(s) = max Br(s), )
€

where a. is constructed by filling ay, in corresponding ac-
tion sub-vectors and filling no—op in the other action sub-
vectors.

Action probabilities are naturally the product of all in-
cluded probability in K. Initiation sets are the intersection of
the chosen workers’ initiation sets since the option can only
start if all initiation conditions are satisfied. Termination con-
ditions are the max probability over the chosen workers’ ter-
mination conditions since if there exists a worker with a ter-
mination probability of 1, the combined option should also be
terminated. Combining N workers this way by enumerating
all possible subsets of {1,--- , N}, we get 2"V combined op-
tions for the manager to choose from. In practical FPS games,
N = 4, so the exponentiality is not an issue.

Intrinsic Reward

To alleviate the reward delay and sparse reward problem, we
combine the hierarchical structure with intrinsic rewards de-
signed with utilities of workers, which largely accelerates the
exploration efficiency of each worker. Taking the environ-
mental information into account, the intrinsic reward for each
worker is designed as follows:

Motion. Motion worker is responsible for the agent to walk
around the map and turn around. The intrinsic reward should
motivate the agent not only to explore sufficiently but also
assist the remaining workers, for instance, turning around
to shoot enemies accurately. So the intrinsic reward for mo-
tion also contains the following components: positive reward
for shooting correctly and negative reward for shooting to a
wrong direction in scenarios |En| > 0, where En denotes the
enemies in the image, a positive reward for walking through
resources or tools.

Collecting Resources. Positive reward for picking up re-
sources while moving through resources, where Re denotes

the resources in the image, a = 0 donates the action is not
selected, and ¢ = 1 donates the action is selected.

1, if|Re/>0anda=1

Rresources(a) = {_17 if [ Re] >0anda =0

Using Tools. Positive reward for using tools correctly, for
example, opening doors with keys.

Ruoos(a) = 1, if use tools correctly and a = 1
foolst® ™1 —1, if use tools incorrectly and a = 0

Attacking. Positive reward for shooting in scenarios
|En| > 0, Negative reward for shooting when |En| = 0.

1 if|[En| >0anda =1
Rattack (B ; = ’ .
ttack(En, @) {1, if|[En|=0anda =1

3.4 Environmental Awareness

To grasp a better understanding of the 3D environment, we
design an environmental block that can extract environmen-
tal information from raw pixel inputs. What environmental
information we need is related to each FPS games accord-
ing to human understanding of the game. Generally, we need
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Algorithm 1 StarNet Training

Input: Initial policy for manager and workers 7y, 7,,, and
initial value function for manager and workers V,,, V.,
Output: Learned policy 7, Ty,

for:=0,1,2,---
repeat
Manager constructs available option set O, given cur-
rent state s
Chooses an option o; using current policy
repeat
Act according to policy in o;, record state s;, ac-
tion a; and reward rg, from game engine and
r},t(intrinsic reward) from manager
until termination condition satisfied
Update the parameters of the workers w.r.t. Eqn. 2
until episode ends
Update the parameters of the manager w.r.t. Eqn. 1
end for

,maz_episode do

the following components for environmental information: en-
emy En, resource Re, depth De, etc.. In this paper, we use
Yolov3 [Redmon and Farhadi, 2018], a fast recognition net-
work, to detect enemies and resources, which enables the
agent to realize fast reaction.

Unlike tasks in the 2D scenario, navigation in a 3D sce-
nario focuses more on whether the scene has been seen be-
fore, which is much harder than it in the 2D scenario. Go-
ing straight forward may not gain any new information in 3D
scenarios, which can even bring the agent into the corner of
the room, making it hard to go out. So it is essential to ex-
tract depth information from the raw image inputs to guide
the agent. To address this issue, we trained a vision network
to classify if the agent is dashing towards a wall. For each
step taken by the agent, we get the observation of the current
frame and the depth estimation and use this network to check
if the agent is dashing towards the wall. If it is, we heuristi-
cally guide it to turn a random degree while also introducing
an intrinsic reward, which largely enhances exploration effi-
ciency and makes the agent less likely to dash towards the
wall when facing it.

3.5 Learning

The optimization of our architecture involves optimizing
workers at a lower level and optimizing the manager at a
higher level. The manager and workers are jointly optimized
with the workers optimized every time an option terminates
(so in practice the workers’ cumulative rewards are boot-
strapped from value heads) and the manager optimized every
time an episode ends, as summarized in Alg. 1.

4 Experiments

In this section, we first introduce the experimental setup and
analyze the training efficiency. We then investigate how each
part of StarNet influences the overall performance, and finally
demonstrate our results in the latest ViZDoom competition.
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Agent Level 1 Level 2 Level 3 Level 4 Level 5 Average
g PMAT AMAT PR PMAT AMAT PR PMAT AMAT PR PMAT AMAT PR PMAT AMAT PR PMAT AMAT PR
DoomNet 46.13 13498 65% | 40.44 105.33 75% | 8596 150.17 70% | 67.64 125.73 75% 136.84 69%

4925 4925 100%

43.57 43.57

100%| 50.72 50.72 100%| 42.69 56.06 95% | 48.14 50.76 99%

79.96 167.98 60% ‘ 63.53

StarNetNoRI ‘ 54.19 54.19 100%

FeUdal 70.86  254.17 20% | 114.37 262.87 20% | 88.56 22599 35% | 118.59 245.88 30% | 191.66 289.17 10% | 106.77 255.56 23%
StarNetNoDepth | 74.72 212.10 40% | 114.75 199.16 55% | 57.76 216.80 35% | 64.89 254.86 20% | 18.41 246.69 20% | 76.40 22592 34%
StarNetNoExit 103.96 103.96 100%| 74.63 120.15 80% | 73.83 108.66 85% | 81.46 9238 95% | 96.18 96.18 100%| 86.95 104.27 92%

StarNet 4150 41.50 100%| 3049 3049 100%| 31.33 31.33 100%| 34.59 34.59 100%| 27.43 2743 100%| 33.06 33.06 100%

Table 1: ViZDoom Single Player Task Result

All experiments are conducted on the ViZDoom plat-
form [Kempka et al., 2016] with PyOblige® map generator.
Video demos and further experimental details can be found at
https://github.com/Trinkle23897/ViZDoom?2018-Track].

4.1 Experiment Setting

We focus on the single-player game as Figure 1, where the
agent’s goal is to solve the maze to navigate to the exit
while keeping alive by killing hostile monsters and collecting
health, similar to the competition track we entered (Sec. 4.4).

Training Data

We use PyOblige to generate 100 maps at five different dif-
ficulty levels*, yielding 20 maps per level as our training set.
These maps have lots of resources together with scary mon-
sters, posing significant challenges for the agent to complete
the game. The higher the number of configuration, the harder
for the agent to finish the game.

Parameters

In each experiment, the learning rate for the manager net-
work is 10~2 with batch-size 32. The motion worker adopts
the SNAIL [Mishra et al., 2018] network architecture, with
learning rate 10~2 and batch size 32. All the other workers’
architectures are the same as the manager.

Metrics
We use the following metrics for evaluating:
e PMAT (Passed Maps’ Average Time) which denotes
the agent’s average time consuming on its passed maps.

e AMAT (All Maps’ Average Time) which denotes the
agent’s average time consuming on all of the maps.

o PR (Pass Rate) which denotes the probability of this
agent to finish this level’s game.

An agent is better if it completes maps at a higher rate (PR)
within a shorter time (PMAT and AMAT). If it fails to finish
a game, the time is recorded as the maximum limit 300s.

4.2 Efficiency of Training Process

For the stability of training, we first use the intrinsic reward to
train each worker separately at different scenarios as an ini-
tialization before the joint-training process to let them con-
verge to a more stable policy. The training procedure is ter-
minated after 600 epochs.

3https://github.com/mwydmuch/PyOblige/
“https://github.com/mwydmuch/PyOblige/blob/master/
pyoblige/wad_configs.py
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Figure 3: The StarNet training curve: we compare the mean extrinsic
reward 7 each epoch it receives during training. StarNet can learn
a reasonable behavior more effectively with intrinsic reward 7.

Figure 3 presents the training process. The extrinsic reward
is a large positive reward when the agent successfully fin-
ishes the game, and a small negative reward when the agent
dies or the game is timeout. From this figure, we can draw
the conclusion that with intrinsic reward r appropriately set,
our StarNet improves its performance quickly in the training
maps. We also investigate the policy of the manager and find
it tends to choose options related to its observation, like ac-
tivating the resource worker when noticing a weapon. There
are two interesting things we’d like to mention: (1) At the
beginning the average extrinsic reward it receives is posi-
tive, due to the pre-trained workers contribute to some of the
reasonable behaviors, regardless of the random policy of the
manager. (2) We early-stop the training process at about 600
epochs because its performance would drop down quickly af-
ter the peak.

4.3 Performance Evaluation

For evaluation, we generated another 100 maps using the
same difficulty configuration as mentioned above. Table 1
shows all the performance of the agents on these 100 maps,
where StarNet achieves the best score among these agents.
Compared with other agents, it can finish all of the unseen
games in the most efficient way. We present a detailed analy-
sis in terms of different aspects as follows.

Two-Level HRL vs Non-Hierarchy Structures

To find out how the hierarchical architecture contributes to the
overall system, we compare our agent with DoomNet [Kol-
ishchak, 2018] and StarNetNoRI with StarNet. DoomNet
is trained end-to-end by PPO [Schulman et al., 2017] and
won second place in ViZDoom 2018 Track(1). It has complex
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Team Ours DoomNet VIPLAB ddangelo
Total Time (min)  25.34 29.86 31.54 37.33
# of Best Record 8 4 3 4

Table 2: VDAIC 2018 Track(1) Competition Result

reward-shaping functions and takes a long time to converge.
StarNetNoRI is a version without intrinsic reward through
joint-training.

On one hand, even if DoomNet achieves an excellent re-
sult on these unseen maps with over 60% pass rate, it always
performs poorly and is soon killed when facing a large num-
ber of enemies as the difficulty level increases. In contrast,
our manager will cleverly bypass these enemies to avoid be-
ing attacked. Thus the two-level hierarchical architecture is
necessary for solving long-term decision-making problems.
On the other hand, without intrinsic reward, the StarNetNoRI
can achieve nearly 100% pass rate owing to the pre-trained
worker, but using intrinsic reward in the joint-training pro-
cess can shorten StarNet’s pass time without loss of pass rate,
which primarily enhances its performance as is illustrated in
Figure 3. Therefore, the intrinsic reward is crucial to alleviate
the sparse reward and reward delay problem.

Divided vs Whole Action Space

To investigate how action space division contributes to the
overall performance improvement, we compare our agent
with the most recent HRL framework of FeUdal [Vezhn-
evets et al., 2017]. The reward is the same as the sum of
StarNet’s intrinsic and extrinsic reward, and it receives the
StarNet’s environmental block’s information as part of the in-
put. However, it has a more extensive action space of size
27 = 128 from the combination of 7 orthogonal actions:
move left/right/forward, turn left/right, attack, and open the
door.

The vast action space brings FeUdal’s performance with
an unsatisfied result of ~20% pass rate. However, using our
action space division method, even the StarNetNoRI could
reach a satisfying result. Thus, the action space division make
great contributions to the overall performance significantly.

Aware vs Non-Aware of Environment

To analyze the function of environment-aware block, we
compare agent StarNetNoDepth and StarNetNoExit. Star-
NetNoDepth is a version without a depth perception network.
The motion worker cannot receive useful information about
the depth information. StarNetNoExit is a version without
“Exit Label” perception. This label will appear on the halfway
to the final goal.

Without exit label perception, the agent StarNetNoEXxit still
has more than 90% probability of finishing the game. How-
ever, the average pass time is nearly three times longer than
the StarNet’s. Besides, the performance of StarNet drops dra-
matically without depth perception. The results further prove
that the comprehension of environments largely contributes
to the overall performance.
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4.4 ViZDoom Competition

We took part in ViZDoom AI Competition 2018 Track(1)’
to evaluate our proposed StarNet performance. In this com-
petition, all of the participants submitted an agent to fin-
ish the game on ten unseen and more difficult maps. Our
method achieved first place in both public-rank and private-
rank leaderboards. Table 2 summarizes a part of the official
results, where our agent achieves the best total time among
these maps. Moreover, it gets 8 of 10 rounds of the best
record. These impressive results again prove the effectiveness
of our proposed method.

5 Conclusion

In this paper, we propose StarNet, an environment-aware hi-
erarchical reinforcement learning model to play FPS games.
The designed hierarchical structure with intrinsic rewards al-
leviates the sparse reward and reward delay problems. Fur-
ther, the action spaces division enhances the performance
through combined options together with a proper understand-
ing of the 3D environment. Experimental results show that
this architecture enables our agent to play significantly better
than other methods in FPS games.
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