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Abstract

The search for higher-order feature interactions that
are statistically significantly associated with a class
variable is of high relevance in fields such as Ge-
netics or Healthcare, but the combinatorial explo-
sion of the candidate space makes this problem ex-
tremely challenging in terms of computational ef-
ficiency and proper correction for multiple testing.
While recent progress has been made regarding this
challenge for binary features, we here present the
first solution for continuous features. We propose
an algorithm which overcomes the combinatorial
explosion of the search space of higher-order in-
teractions by deriving a lower bound on the p-value
for each interaction, which enables us to massively
prune interactions that can never reach significance
and to thereby gain more statistical power. In our
experiments, our approach efficiently detects all
significant interactions in a variety of synthetic and
real-world datasets.

1 Introduction

A big challenge in high-dimensional data analysis is the
search for features that are statistically significantly associ-
ated with the class variable, while accounting for the inherent
multiple testing problem. This problem is relevant in a broad
range of applications including natural language processing,
statistical genetics, and healthcare. To date, this problem of
feature selection [Guyon and Elisseeff, 2003] has been exten-
sively studied in statistics and machine learning, including the
recent advances in selective inference [Taylor and Tibshirani,
20151, a technique that can assess the statistical significance
of features selected by linear models such as the Lasso [Lee
etal., 2016].

However, current approaches have a crucial limitation:
They can find only single features or linear combinations of
features, but it is still an open problem to find patterns, that is,
multiplicative (potentially higher-order) interactions between
features. A relevant line of research towards this goal is sig-
nificant (discriminative) pattern mining [Terada et al., 2013a;
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Llinares-Lépez et al., 2015; Papaxanthos et al., 2016; Pel-
legrina and Vandin, 2018], which tries to find statistically as-
sociated feature interactions while controlling the family-wise
error rate (FWER), the probability to detect one or more false
positive patterns. However, all existing methods for signifi-
cant pattern mining only apply to combinations of binary or
discrete features, and none of methods can handle real-valued
data, although such data is common in many applications. If
we binarize data beforehand to use existing significant pattern
mining approaches, a binarization-based method may not be
able to distinguish (un)correlated features (see Figure 1).

To date, there is no method that can find all higher-order
interactions of continuous features that are significantly asso-
ciated with an output variable and that accounts for the inher-
ent multiple testing problem. To solve this problem, one has
to address the following three challenges:

1. How to assess the significance for a multiplicative inter-
action of continuous features?

2. How to perform multiple testing correction? In partic-
ular, how to control the FWER (family-wise error rate),
the probability to detect one or more false positives?

3. How to manage the combinatorial explosion of the can-
didate space, where the number of possible interactions
is 2¢ for d features?

The second problem and the third problem are related with
each other: If one can reduce the number of combinations by
pruning unnecessary ones, one can gain statistical power and
reduce false negative combinations while at the same time
controlling the FWER. Although there is an extensive body
of work in statistics on multiple testing correction including
the FDR [Hochberg, 1988; Benjamini and Hochberg, 1995]
and also several studies on approaches to interaction detec-
tion [Bogdan et al., 2015; Su and Candes, 2016], none of
these approaches addresses the problem of dealing with the
combinatorial explosion of the 2¢-dimensional search space
when trying to finding higher-order significant multiplicative
interactions.

Our goal in this paper is to present the first method, called
C-Tarone, that can find all higher-order interactions between
continuous features that are statistically significantly associ-
ated with the class variable, while controlling the FWER.

Our approach is to use the rank order statistics to directly
estimate the probability of joint occurrence of each feature
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Figure 1: Although there is a clear correlation between Features 1
and 2 in the left panel and none in the right panel, after median-based
binarization of Feature 1 and Feature 2, the estimated probability of
the occurrence of the feature combination (the number of points for
which Feature 1 = Feature 2 = 1, or the number of points in the
red box) will be exactly the same in both examples. Hence if the
left case is a significant interaction, the right uncorrelated case also
becomes a significant interaction in binarization-based methods.

combination from continuous data, which is known as cop-
ula support [Tatti, 2013], and apply a likelihood ratio test
to assess the significance of association between feature in-
teractions and the class label, which solves the problem 1.
We present the tight lower bound on p-values of association,
which enables us to prune unnecessary interactions that can
never be significant through the notion of testability proposed
by Tarone [1990], and can solve both problems 2 and 3.

This paper is organized as follows: We introduce our
method C-Tarone in Section 2. We introduce a likelihood ra-
tio test as a statistical association test for interactions in Sec-
tion 2.1, analyze multiple testing correction using the testa-
bility in Section 2.2, and present an algorithm in Section 2.3.
We experimentally validate our method in Section 3 and sum-
marize our findings in Section 4.

2 The Proposed Method: C-Tarone

Given a supervised dataset D = {(v1,v1), (v2,¥y2),
...,(vN,yn)}, where each data point is a pair of an d-
dimensional vector v; = (v},v2,...,v%) € R? and a binary
class label y; € {0,1}. We denote the set of features by V =
{1,2,...,d} and the power set of features by 2. For each
feature j € {1,2,...,d}, we write v/ = (v],v3,...,0%),
which is the /N-dimensional vector composed of the jth fea-
ture of the dataset D.

Our goal is to find every multiplicative feature interaction
that is associated with class labels. To tackle the problem,
first we measure the joint occurrence probability n(J) € R
of a feature combination .J € 2" in a dataset. For each com-
bination J € 2V, the size |J| corresponds to the order of
an interaction, and we find arbitrary-order interactions in the
form of combinations. If data is not real-valued but binary,
that is, v] € {0,1}, this problem is easily solved by mea-
suring the support used in frequent itemset mining [Agrawal
and Srikant, 1994; Aggarwal and Han, 2014] . Each feature
combination J € 2V is called an itemset, and the support of
J is defined as 1(J) = (1/N) Y, [];c, v/, which cor-
responds to joint probability of J. The support is always
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from O to 1, and we can introduce a binary random vari-
able X ; corresponding to the joint occurrence of .J, where
Xy = lif features in J jointly occurs and X ; = 0 otherwise,
n(J) corresponds to the empirical estimate of the probability
Pr(X; =1).

This approach can be generalized to continuous (real-
valued) data using the copula support, which is the prominent
result given by Tatti [2013] in the context of frequent pattern
mining from continuous data. The copula support allows us
to define the binary random variable X ; of joint occurrence
of J and estimate n(J) = Pr(X; = 1) from continuous
data. The key idea is to use the normalized ranking for each
feature j € V, which is defined as (v]) = (k —1)/(N — 1)

if vf is the kth smallest value among N values vJ, vJ, ...,
va. Then we convert a dataset D with respect to features in
a combination J € 2V into a single N-dimensional vector
Ty = (ale,ng,...,xJN) € [O,I}be

e | C) (1)

for each data point ¢ € {1,2,..., N}. Tatti [2013] showed
that the empirical estimate of the probability Pr(X; = 1) of
the joint occurrence of a combination J is obtained by the
copula support defined as

1 & 1 & :
n(J)zNZxﬁ:NZHW(Uf). ()
i=1

i=1j€J

Intuitively, joint occurrence of J means that rankings among
features in J match with each other. The definition in Equa-
tion (2) is analogous to the support for binary data, where the
only difference here is 7(v] ) instead of binary value v;.

The copula support always satisfies 7(J) < 0.5 by defini-
tion and has the monotonicity with respect to the inclusion re-
lationship of combinations: 7(.J) > n(JU{;}) forall J € 2V
and j € V' \ J. Note that, although Tatti [2013] considered
a statistical test for the copula support, it cannot be used in
our setting due to the following two reasons: (1) his setting
is unsupervised while ours is supervised; (2) multiple testing
correction was not considered for the test and the FWER was
not controlled.

2.1 Statistical Testing

Now we can formulate our problem of finding feature inter-
actions, or itemset mining on continuous features, that are
associated with class labels as follows: Let Y be an output
binary variable of which class labels are realizations. The
task is to find all feature combinations .J € 2" such that the
null hypothesis X ; Il Y, thatis, X; and Y are statistically
independent, is rejected by a statistical association test while
rigorously controlling the FWER, the probability of detect-
ing one or more false positive associations, under a predeter-
mined significance level a.

As a statistical test, we propose to use a likelihood ra-
tio test [Fisher, 1922], which is a generalized x2-test and
often called G-test [Woolf, 1957]. Although Fisher’s exact
test has been used as the standard statistical test in recent
studies [Llinares-Lépez erf al., 2015; Sugiyama et al., 2015;
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(a) Expected distribution.

XJ =1 XJ =0 Total
Y:1 771(J) Tlfﬁl(J) T1
Y=0 n(J) ro—mno(J) 70
Total n(J) 1—n(J) 1

(b) Observed distribution.

Table 1: Contingency tables.

Terada et al., 2013al, it can be applied to only discrete test
statistics and cannot be used in our setting.

Suppose that Pr(Y = [) = r; for each class [ € {0,1}.
From two binary variables X ; and Y, we obtain a 2 x 2 con-
tingency table, where each cell denotes the joint probability
Pr(X; =1,Y =1") with,I’ € {0,1} and can be described
as a four-dimensional probability vector p:

p= (Pr(XJ:LYzl),Pr(XJ —1,Y =0),

Pr(X;=0,Y = 1)7Pr(XJ:O,Y:0)).

Let pg be the probability vector under the null hypothe-
sis X; 1 Y and py be the empirical vector obtained
from N observations. The difference between two distribu-
tions po and pgp can be measured by the Kullback-Leibler
(KL) divergence Dx1,(po, Pr) = »_; Poi log(poi/pri), and
the independence X; 1l Y is translated into the condi-
tion Dkr,(po,Pg) = 0. In the G-test, which is a spe-
cial case of likelihood ratio test, the test statistic is given
as A = 2N Dk (po, pr ), which follows the y2-distribution
with the degree of freedom 1.

In our case, for each combination J € 2V, the probability
vector py, under the null is given as

P = (U(J)Tl, 77(J)7"0, 1 —77(J)7”17 To —U(J)To)7
where 7(.J) is the copula support of a feature combination J
and r; is the ratio of the label I € {0,1} in the dataset. In
contrast, the observed probability vector p is given as

po = (m(J), no(J), 11 —m(J), ro —no(J)),

where 11 () = (1/N)a -y and no(J) = (1/N)a; - (1-y)
with x ; defined in Equation (1). These two distributions are
shown in Table 1. While it is known that the statistic A does
not exactly follow the 2-distribution if one of components
of py, is too small, such situation does not usually occur since
n(J) is not too large as n(J) < 0.5 by definition and not too
small as such combinations are not testable, which will be
shown in Section 2.3.

In the following, we write the set of all possible probability
vectors by P = {p | p; > 0,>_p; = 1}, and its subset
given marginals ¢ and b as P(a,b) = {p € P | p1 +p2 =
a, p1+p3=">b}.

2.2 Multiple Testing Correction

Since we have 27 hypotheses as each feature combination
translated into a hypothesis, we need to perform multiple
testing correction to control the FWER (family-wise error
rate), otherwise we will find massive false positive combi-
nations. The most popular multiple testing correction method
is Bonferroni correction [Bonferroni, 1936]. In the method,

the predetermined significance level a (e.g. &« = 0.05) is
corrected as dpon, = a/m, where m is called a correction
factor and is the number of hypotheses m = 2¢ in our

case. Each hypothesis J is declared as significant only if
p-value(J) < dgon = a/2%. Then the resulting FWER < «
is guaranteed. However, it is well known that Bonferroni cor-
rection is too conservative. In particular in our case, the cor-
rection factor 2¢ is too massive due to the combinatorial effect
and it is almost impossible to find significant combinations,
which will generate massive false negatives.

Here we use the festability of hypotheses introduced by
Tarone [1990] and widely used in the literature of significant
pattern mining [Llinares-Lopez et al., 2015; Papaxanthos et
al., 2016; Sugiyama erf al., 2015; Terada et al., 2013a], which
allows us to prune unnecessary feature combinations that can
never be significant while controlling the FWER at the same
level. Hence Tarone’s testability always offers better results
than Bonferroni correction if it is applicable. The only re-
quirement of Tarone’s testability is the existence of the lower
bound of the p-value given the marginals of the contingency
table, which are 7(J) and rq (or r1) in our setting. In the
following, we prove that we can analytically obtain the tight
upper bound of the KL divergence, which immediately leads
to the tight lower bound of the p-value.

Theorem 1. (TIGHT UPPER BOUND OF THE KL DIVER-
GENCE) For a,b € [0,1] with a < b < 1/2 and a probability
vector pg, = (ab,a(1 —b),(1 —a)b, (1 —a)(1 — D)),

1 b—a
Dxw(p, pg) < alogg +(b—a) IOgm

1
+ (1 —b)log 1—a) 3)
forall p € P(a,b) and this is tight.

Here we formally introduce how to prune unnecessary
hypotheses by Tarone’s testability. Let ¢)(J) be the lower
bound of the p-value of J obtained from the upper bound
of the KL-divergence proved in Theorem 1. Suppose that
Ji,Ja, ..., Joa be the sorted sequence of all combinations
such that

Y(J1) < P(J2) <P(J3) < - < p(Jaa)
is satisfied. Let m be the threshold such that
m-Y(Jy) <a and (m+1)-Y(Jpt1) > 4)

Tarone [1990] showed that the FWER is controlled under «
with the correction factor m. The set T = {Jy, Ja,..., Jn}
is called testable combinations, and each J € T is significant
if p-value(J) < dray = a/m. On the other hand, combina-
tions Jp,41, ..., Joa are called untestable as they can never
be significant. Since m < 2¢ usually holds, we can expect to
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obtain higher statistical power in Tarone’s method compared
to Bonferroni method. Moreover, we present C-Tarone in the
next subsection, which can enumerate such testable combi-
nations without seeing untestable ones, hence we overcome
combinatorial explosion of the search space of combinations.

Let us denote by B(a,b) the upper bound provided in
Equation (3). We analyze the behavior of the bound B(a, b)
as a function of a with fixed b. This is a typical situation
in our setting as a corresponds to the copula support 1(.J),
which varied across combinations, while b corresponds to
the class ratio 71, which is fixed in each analysis. Assume
that b < 1/2. When a < b, we have 0B(a,b)/0a =
log(1 — a)/(b — a) > 0, hence it is monotonically increases
as a increases. When b < a < 1/2, we have dB(a,b)/0a =
log(a—0b)/a < 0, thereby it monotonically decreases as a in-
creases. We illustrate the bound B(a, b) with b = 0.3 and the
corresponding minimum achievable p-value with the sample
size N = 100 in Figure 4 in Appendix.

2.3 Algorithm

We present the algorithm of C-Tarone that efficiently finds
testable combinations Jy, Ja,..., Jp, such that ¢(J;) <
P(J2) < -+ < (J,,), where m satisfies the condition (4).
We summarize C-Tarone in Algorithm 1, which performs
depth-first search to find J1, Ja,. .., Jy, such that ¢(J;) <
P(J2) < -+ < (J,,), where m satisfies the condition (4).
Suppose that 7y < 1/2 < rg. Since the lower bound of
the p-value ¢(.J) takes the minimum value when n(J) = r;
(see Figure 5 in Appendix by letting a = n(.J) and b = rq)
and is monotonically decreasing as 7(J) decreases, for any
n(J) < r,C 2 TwithC ={J €2V | nlJ) > o}
and T = {J € 2V | ¢(J) < B(o,r)} is always guaran-
teed, where o is a threshold for copula supports. Thus if the
condition (4) is satisfied for some m < [T, the m smallest
combinations in 7 are the testable combinations.

Moreover, since 77(J) has the monotonicity with respect to
the inclusion relationship, that is, n(J) > n(J U {j}) for
all j € V' \ J, finding the set C is simply achieved by DFS
(depth-first search): Starting from the smallest combination ()
with assuming 1(@) = 1, if (J) > o for a combination J,
we update J by adding j € V' \ J and recursively check J.
Otherwise if (J) < o, we prune all combinations K D J as
n(K) < o holds.

Our algorithm dynamically updates the threshold o to enu-
merate testable combinations while pruning massive unnec-
essary combinations. First we set o = 0, which means that
all combinations are testable. Whenever we find a new com-
bination J, we update C and 7 and check the condition (4). If
|T|B(o,71) > a holds, o is too low and 7 will become too
large with the current o, hence we update o to min jec 1(J)
and remove the combination argmin ;. 7(.J). Finally, when
the algorithm stops, it is clear that the set 7 coincides with the
set of testable combinations, hence each combination J € T
is significant if the p-value of J is smaller than d1a = a/|T].

Since Algorithm 1 always outputs the set of testable combi-
nations 7, which directly follows from C O T and the mono-
tonicity of 7(.J), the SIGNIFICANCETESTING function finds
all significant combinations with the FWER < «a. Thus Algo-
rithm 1 always finds all significant feature combinations with

Algorithm 1: C-Tarone.

1 C-TARONE(D, «)

2 o+ 0; C<« 0

3 DFS(®, 0, C, D, «);
4 T+ {KeC|y(K)<B(o,rm)}

// The set of testable combinations
5 SIGNIFICANCETESTING(T, «);

6 DFS(J, jprev, C, D, @)
7 foreach j € {jprev +1,...,d} do

/I o is a global variable

8 J+— JU{j}

9 Compute 7(J) by Equation (2);

10 if n(J) > o then

1 Compute ¢(J); C + CU{J};

o T« A{KeC|y(K) < B(o,r)}
13 while | 7|B(o,r1) > o do

14 Jmin < argmin g con(K);

15 Jen(Jmin); C HC\{Jmin};
16 T%T\{Jmin};

17 DFS(J, j,C, D, o);

18 J—J\{j}

19 SIGNIFICANCETESTING(T, )
20 foreach J € T do
21 | if p-value(J) < o /|T| then output .J;

controlling the F'W E R under . Moreover, C-Tarone is in-
dependent of the feature ordering and the above completeness
with respect to the set of significant combinations is always
satisfied. The time complexity of C-Tarone is O(|T).

3 Experiments

We examine the effectiveness and the efficiency of C-Tarone
using synthetic and real-world datasets. We used Amazon
Linux AMI release 2017.09 and ran all experiments on a sin-
gle core of 2.3 GHz Intel Xeon CPU E7-8880 v3 and 2.0
TB of memory. All methods were implemented in C/C++
and compiled with gcc 4.8.5. The FWER level a = 0.05
throughout experiments.

There exists no existing method that can enumerate signif-
icant feature combinations from continuous data with mul-
tiple testing correction. Thus we compare C-Tarone to sig-
nificant itemset mining method with prior binarization of a
given dataset since significant itemset mining offers to enu-
merate all significant feature combinations while controlling
the FWER from binary data. We employ median-based bina-
rization as a preprocessing. For each feature j € V', we pick
up the median of v/ = (v],v3,...,v}), denoted by med(j),

] <med(j) >med(j)
’Ui )7

and binarize each value v as a pair (v;”

where v="°9) = 1 if v/ < med(j) and 0 otherwise, and
07 = 1 if o/ > med(j) and 0 otherwise. Thus a

given dataset is converted to the binarized dataset with 2d
features. We use the state-of-the-art significant itemset min-
ing algorithm LAMP ver.2 [Minato et al., 2014] and employ
implementation provided by [Llinares-Lépez et al., 2018],
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Figure 2: Results on synthetic data with the minor class ratio r; =
0.5. Regarding the scale of precision and F-measure, see comment
at the last paragraph just before Section 3. The number of features is
d = 20 in the left column and the sample size is N = 1,000 in the
right column. Both x- and y-axes are in logarithmic scale. C-Tarone
is shown in red circles, the binarization approach in blue triangles.

which incorporates the fastest frequent pattern mining algo-
rithm LCM [Uno et al., 2004] to enumerate testable feature
combinations from binary data. Note that, in terms of run-
time, comparison with the brute-force approach of testing all
the 2¢ combinations with the Bonferroni correction is not
valid as the resulting FWER is different between the brute-
force and the proposed method.

We also tried other binarization approaches, interordi-
nal scaling used in numerical pattern mining [Kaytoue et
al., 2011] and interval binarization in subgroup discov-
ery [Grosskreutz and Riiping, 2009] as a preprocessing of
significant itemset mining. However, both preprocessing gen-
erate too many binarized dense features, resulting in the lack
of scalability in the itemset mining step in the enumeration
of testable combinations. Hence we do not employ them as
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comparison partners. Details of these binarization techniques
are summarized in Section C in Appendix.

To evaluate the efficiency of methods, we measure the run-
ning time needed for enumerating all significant combina-
tions. In the binarization method, we exclude the time used
for binarization as this preprocessing step is efficient enough
and negligible compared to the pattern mining step.

To examine the quality of detected combinations, we com-
pute precision, recall, and the F-measure by comparing such
combinations with those obtained by the standard decision
tree method CART [Breiman et al., 1984], which obtains
multiplicative combinations of features in the form of binary
trees. We used the rpart function in R with its default pa-
rameter setting, where the Gini index is used for splitting and
the minimum number of data points that must exist in a node
is 20. We apply the decision tree to each dataset and retrieve
all the paths from the root to leaf nodes of the learned tree.
In each path, we use the collection of features used in the
path as a positive feature combination of the ground truth, that
is, a feature combination found by C-Tarone (or binarization
method) is deemed to be true positive if and only if it consti-
tutes one of full paths from the root to a leaf of the learned
decision tree. Note that the FWER is always controlled un-
der « in both of C-Tarone and binarization method, and our
aim is to empirically examine the quality of the feature com-
binations compared to those selected by a standard decision
tree. We used not forests but a single tree as the ground truth
depends on the number of trees if we use forests, resulting in
arbitrary results.

Please note that, due to the fact that there are up to 29 fea-
ture combinations and we only count an exact match between
a retrieved pattern and a true pattern as a hit, precision and
F-measure will be close to 0. Still, we compute them to allow
for a comparison of the relative performance of the different
approaches. Evaluation criteria that take overlaps between
retrieved patterns and true patterns (partial matches) into ac-
count would lead to higher levels of precision, but they are a
topic of ongoing research and not a focus of this work.

Results on Synthetic Data

First we evaluate C-Tarone on synthetic data with varying the
sample size N from 1,000 to 200, 000, the number d of fea-
tures from 20 to 100, and setting the class ratio to r; = 0.5
or r;1 = 0.2, i.e., the number N; of samples in the minor
class is N/2 or N/5. In each dataset, we generate 20% of
features that are associated with the class labels. More pre-
cisely, first we generate the entire dataset from the uniform
distribution from 0 to 1 and assign the class label 1 to the first
N, data point. Then, for the N; data points in the class 1,
we pick up one of the 20% of associated features and copy it
to every associated feature with adding Gaussian noise with
(p,02) = (0,0.1). Hence there is no correlation in the class
0 across all features and there are positive correlations among
such 20% of features in the class 1. The other 80% are unin-
formative features.

Results are plotted in Figure 2 for r; = 0.5 (classes are
balanced). See Figure 5 in Appendix for r; = 0.2 (classes
are imbalanced). In the figure, we plot results with varying N
while fixing d = 20 on the left column and those with varying
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Figure 3: Results on real data. Regarding the scale of precision and F-measure, see the comment at the last paragraph just before Section 3.
The y-axis is in logarithmic scale. C-Tarone is shown in red and the binarization approach is shown in blue. Higher (taller) is better in

precision, recall, and F-measure, while lower is better in running time.

d while fixing N = 1,000 on the right column.

In comparison with the median-based binarization method
(plotted in blue), C-Tarone (plotted in red) has a clear ad-
vantage regarding the precision, which is several orders of
magnitude higher than the binarization method in every case.
This is why binarization method cannot distinguish correlated
and uncorrelated combinations as we discussed in Introduc-
tion and illustrated in Figure 1, resulting in including uncor-
related features into significant combinations. Although re-
call is competitive across various N and d, in all cases, the
F-measure of C-Tarone are higher than those of the median-
based binarization method. In both methods, precision drops
when the sample size N becomes large: As we gain more
and more statistical power for larger N, many feature combi-
nations, even those with very small dependence to the class
labels and not used in the decision tree, tend to reach statisti-
cal significance.

Although the algorithm LCM (itemset mining) used in the
binarization approach is highly optimized with respect to the
efficiency, C-Tarone is competitive with it on all datasets, as
can be seen in Figure 2 (bottom row). To summarize, we
observe that C-Tarone improves over the competing binariza-
tion approach in terms of the F-measure in detecting higher
quality feature combinations in classification.

Results on Real Data

We also evaluate C-Tarone on real-world datasets shown in
Table 2 in Appendix, which are benchmark datasets for binary
classification from the UCI repository [Lichman, 2013]. To

clarify the exponentially large search space, we also show the
number 2¢ of candidate combinations for d features in the
table. All datasets are balanced to maximize the statistical
power for comparing detected significant combinations, i.e.
r1 = 0.5. If they are not balanced in the original dataset, we
randomly subsample data points from the larger class.

We summarize results in Figure 3. Again, C-Tarone shows
higher precision in all datasets than the binarization method
and better or competitive recall, resulting in higher F-measure
scores in all datasets. In addition, running time is competitive
with the binarization method, which means that C-Tarone can
successfully prune the massive candidate space for significant
feature combinations. These results demonstrate the effec-
tiveness of C-Tarone.

4 Conclusion

In this paper, we have proposed a solution to the open prob-
lem of finding all multiplicative interactions between contin-
uous features that are significantly associated with an out-
put variable after rigorously controlling for multiple testing.
While interaction detection with multiple testing has been
studied before, our approach, called C-Tarone, is the first to
overcome the problem of detecting all higher-order interac-
tions from the enormous search space 2¢ for d features.

Our work opens the door to many applications of search-
ing significant feature combinations, in which the data is
not adequately described by binary features, including large
fields such as data analysis for high-throughput technologies
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in biology and medicine. Our work here addresses the prob-
lem of finding continuous features. Finding significant com-
binations associated with continuous output variables is an
equally challenging and practically relevant problem, that we
will tackle in future work.
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A Proof of Theorem 1

Let f(z) = DkL(p, pg) withp = (z,a —2,b—z, (1 —b) —
(a—z))anda’ =1—a, b =1 — b. We have

x a—x
f(x):xlog%—i—(a—x)log o
b—x bV —a+x
+(b—x)logW + v —a+z)1ogT
The second derivative of f(z) is given as
?f 1 1 1 1

9r2 l1l—a—-b+x b—z a—x  a

which is always positive from the constraint 0 < z <
min{a,b} = a. Thus f(z) is maximized when z goes to
0 or a. The limit of f(x) is obtained as

) 1 1 , v —a
ilg%)f(x) = alogy —l—blog; + (b —a)log 5
. 1 b—a 1
;Ef(x) :alogg + (b—a)log s +(1-0) loga.

To check which is larger, let § be the difference
lim,q f(z) — lim, o f(x). Then it is obtained as § =
—blogb+b'logh’ + (b—a)log(b—a)— (' —a)log(t/ —a).
The partial derivative of J with respect to a is 96/da =
log(1 — a — b) — log(b — a), which is always positive as
(I—a—-0b)—(b—a) =1-2b > 0 with the condition
b < 1/2. Hence the difference ¢ takes the minimum value at
a = 0 and we obtain

§ > —blogh+ b logh + b’ logh’ — b logh’ = 0.
Thus f(x) is the tight upper bound when x — a. O

B Related Work

Since the only line of work that tries to find multiplicative
feature combinations while controlling the FWER is signifi-
cant pattern mining, we provide an overview of this field in
the following.

Significant pattern mining introduces statistical signifi-
cance into the task of contrast (or discriminative) pattern
mining [Dong and Bailey, 2013], where the objective is
to find discriminative patterns with respect to class parti-
tioning of a dataset. After early work on multiple testing
correction in association rule mining [Hédméldinen, 2012;
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Figure 4: The upper bound B(a, b) of the KL divergence (left) and
the corresponding p-value (right) with N = 100 with respect to
changes in a when b = 0.3.

Webb, 20071, [Terada et al., 2013a] were the first to achieve
control of the FWER in itemset mining, by successfully com-
bining a pattern mining algorithm and Tarone’s trick [Tarone,
1990]. The enumeration algorithm has been improved in
LAMP ver. 2 [Minato et al., 2014] and significant subgraph
mining [Sugiyama et al., 2015]. To date, significant pat-
tern mining has been extended to various types of tests and
data, including a Westfall-Young permutation test to treat in-
dependencies among patterns [Llinares-Lopez et al., 2015;
Terada er al., 2013b], logistic regression [Terada et al., 2016]
or a Cochran-Mantel-Haenszel (CMH) test [Llinares-Lépez
et al., 2017; Papaxanthos et al., 2016] for categorical covari-
ates, hypothesis streams [Webb and Petitjean, 2016], and top-
K significant patterns [Pellegrina and Vandin, 2018]. How-
ever, none of the above studies succeeded to directly perform
significant pattern mining on continuous variables without
prior binarization.

Although the field of subgroup discovery [Atzmueller,
2015; Novak et al., 2009; Herrera et al., 2011] also considers
measures of statistical dependence for finding multiplicative
feature combinations, e.g. [Grosskreutz and Riiping, 2009;
Mampaey et al., 2015; van Leeuwen and Ukkonen, 2016],
none of these methods accounts for multiple testing by con-
trolling the FWER.

C Additional Binarization Methods

In interordinal scaling, each binarized feature is in the form
of “< a” or “> a”, where endpoints a are from a dataset,
that is, a € {v],v],..., v} } for a feature j € {1,2,...,d}.
Thus, for an d-dimensional real-valued vector v; € D, each
element v/ is expanded as the 2N-dimensional binary vector
such that

<v? <ol S’Uj Zvj Zvj Z’Uj
(o707, oy o e R e ),
. . §1)i .
where each value for the binarized feature v; * = 1 if

vg < vfﬂ; and 0 otherwise. As a result, the dataset D is con-
verted into the binary dataset with 2dN features. In interval
binarization, each binarized feature is in the form of “(a, b]”,

where endpoints a, b are from data, and each element vg of an
d-dimensional vector v; is expanded as the (N(N — 1)/2)-
dimensional binary vector such that

(v(v{,v%] (v],0v3] (

(i vd] |, (v].0]) (why_y k]
i ,U; yee ey Uy U, see ey U )

3496



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1e-014 1e-01-
O- O\O\O
5 AN O —~0—,
S 1e-03- O 1e—-03- O
2 A \O‘O AN A
& 1e-05- AA O 1e—05- \A‘A~A
1e-07+ AA A Te=07-
T T T T T T T T T T T
1e+03  1e+04  1e+05 20 25 30 35 40
1e+00- 1e+00-
___________ A - - A
se-014 A DAOLL0 5e—o1—A/O/6\O/O
AQEENG! @)
— 2e-01- 2e-01-
S 1e-011 1e-01-
& 5e-024 5e—-02-
2e-024 O~ ngafP”‘? 2e-02 O~ ngarF’”?
1e_02_| IAI malrlza:tloln 1e_02_| IA Imarllzatloln
1e+03  1e+04  1e+05 20 25 30 35 40
Te—014 1e-01-0——0O
O‘O \O\
v A—A N O\O
3 1e-03{ . O le-03-A
o AN Oo., AL
€ 1e-051 A © e os- A
o A‘A A
1e-07- A /\ 1e—07-
T T T T T T T T T T T
1e+03  1e+04  1e+05 20 25 30 35 40
g 1e+0s- 45123 le+04- é§”£§?7
£ le+03 A’%'/é/ le+03 %/
> 1e+02- ,,é§13/ 1e+02—£§;;//
£ A/ @)
c N O
c 1e+01423/ Te+01]
2 o
[a s
1e+00-4 — — 1e+00—; . . . .
1e+03  1e+04  1e+05 20 25 30 35 40
Number of data points Number of features

Figure 5: Results on synthetic data with the minor class ratio r; =
0.2. The number of features is d = 20 in the left column and the
sample size is N = 3,000 in the right column. Both x- and y-
axes are in logarithmic scale. C-Tarone is shown in red circles, the
binarization approach in blue triangles. Missing points in (b) mean
that no significant combination is detected.

Thus a dataset D is converted into the binary dataset with
dN (N —1)/2 features. Both interordinal scaling and interval
binarization could finish their computation for a tiny dataset
with (N,d) = (50,5) in approximately 24 hours, but did
not finish after 48 hours for (N,d) = (100, 10), and they
exceeded the memory limit (2.0 TB) for larger datasets.

References

[Aggarwal and Han, 2014] C. C. Aggarwal and J. Han, edi-
tors. Frequent Pattern Mining. Springer, 2014.

[Agrawal and Srikant, 1994] R. Agrawal and R. Srikant.
Fast algorithms for mining association rules. In Proceed-
ings of the 20th International Conference on Very Large
Data Bases, pages 487-499, 1994.

3497

Data N d # candidate combinations

(search space)
ctg 942 22 4,194,304
faults 316 27 134,217,728
ijcnn 9,706 22 4,194,304
magic 13,376 10 1,024
segment 660 19 524,288
transfusion 356 4 16
waveform 3,314 21 2,097,152
wdbc 424 30 1,073,741,824
wine 3,198 11 2,048
yacht 308 6 64

Table 2: Statistics of real data.

[Atzmueller, 2015] M. Atzmueller. Subgroup discovery. Wi-
ley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 5(1):35-49, 2015.

[Benjamini and Hochberg, 1995] Y. Benjamini and
Y. Hochberg.  Controlling the false discovery rate:
a practical and powerful approach to multiple test-
ing. Journal of the Royal Statistical Society. Series B
(Methodological), 57(1):289-300, 1995.

[Bogdan et al., 2015] M. Bogdan, E. Van Den Berg,
C. Sabatti, W. Su, and E. J. Candes. SLOPE—adaptive
variable selection via convex optimization. The annals of
applied statistics, 9(3):1103-1140, 2015.

[Bonferroni, 1936] C. E. Bonferroni. Teoria statistica delle
classi e calcolo delle probabilita. Pubblicazioni del R Is-
tituto Superiore di Scienze Economiche e Commerciali di
Firenze, 8:3-62, 1936.

[Breiman et al., 1984] L. Breiman, J. Friedman, C. J. Stone,
and R. A. Olshen. Classification and Regression Trees.
CRC Press, 1984.

[Dong and Bailey, 2013] G. Dong and J. Bailey, editors.
Contrast Data Mining: Concepts, Algorithms, and Appli-
cations. CRC Press, 2013.

[Fisher, 1922] R. A. Fisher. On the mathematical founda-
tions of theoretical statistics. Philosophical Transactions
of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 222(594-604):309-368, 1922.

[Grosskreutz and Riiping, 2009] H. Grosskreutz and
S. Riiping. On subgroup discovery in numerical domains.
Data Mining and Knowledge Discovery, 19(2):210-226,
20009.

[Guyon and Elisseeff, 2003] 1. Guyon and A. Elisseeff. An
introduction to variable and feature selection. Journal of
Machine Learning Research, 3:1157-1182, 2003.

[Himiéldinen, 2012] W. Himiéldinen. Kingfisher: an effi-
cient algorithm for searching for both positive and neg-
ative dependency rules with statistical significance mea-
sures. Knowledge and Information Systems, 32(2):383—
414, 2012.

[Herrera et al., 2011] F. Herrera, C. J. Carmona, P. Gonzalez,
and M. J. del Jesus. An overview on subgroup discovery:



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

foundations and applications. Knowledge and Information
Systems, 29(3):495-525, 2011.

[Hochberg, 1988] Y. Hochberg. A sharper bonferroni pro-
cedure for multiple tests of significance. Biometrika,
75(4):800-802, 1988.

[Kaytoue et al., 2011] M. Kaytoue, S. O. Kuznetsov, and
A. Napoli. Revisiting numerical pattern mining with for-
mal concept analysis. In Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence, pages

1342-1347, 2011.

[Lee et al., 2016] J.D. Lee, D. L. Sun, Y. Sun, and J. E. Tay-
lor. Exact post-selection inference, with application to the
lasso. Annals of Statistics, 44(3):907-927, 06 2016.

[Lichman, 2013] M. Lichman. UCI machine learning repos-
itory, 2013.

[Llinares-Loépez er al., 2015] F. Llinares-Lépez,
M. Sugiyama, L. Papaxanthos, and K. M. Borgwardt.
Fast and memory-efficient significant pattern mining via
permutation testing. In Proceedings of the 21st ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 725-734, 2015.

[Llinares-Lépez et al., 2017] F. Llinares-Lépez, L. Papaxan-
thos, D. Bodenham, D. Roqueiro, COPDGene Investiga-
tors, and K. Borgwardt. Genome-wide genetic heterogene-
ity discovery with categorical covariates. Bioinformatics,
33(12):1820-1828, 2017.

[Llinares-Lépez et al., 2018] F. Llinares-Lépez, L. Papaxan-
thos, D. Roqueiro, D. Bodenham, and K. Borgwardt.
CASMAP: detection of statistically significant combina-
tions of SNPs in association mapping. Bioinformatics,
bty1020, 2018.

[Mampaey et al.,2015] M.  Mampaey, S.  Nijssen,
A. Feelders, R. Konijn, and A. Knobbe. Efficient
algorithms for finding optimal binary features in numeric
and nominal labeled data. Knowledge and Information
Systems, 42(2):465-492, 2015.

[Minato et al., 2014] S. Minato, T. Uno, K. Tsuda, A. Ter-
ada, and J. Sese. A fast method of statistical assessment for
combinatorial hypotheses based on frequent itemset enu-
meration. In Machine Learning and Knowledge Discov-
ery in Databases, volume 8725 of LNCS, pages 422-436.
Springer, 2014.

[Novak et al., 2009] P. K. Novak, N. Lavrac¢, and G. I. Webb.
Supervised descriptive rule discovery: A unifying survey
of contrast set, emerging pattern and subgroup mining.
The Journal of Machine Learning Research, 10:377-403,
2009.

[Papaxanthos et al., 2016] L. Papaxanthos, F. Llinares-
Lopez, D. Bodenham, and K. M. Borgwardt. Finding
significant combinations of features in the presence of
categorical covariates. In Advances in Neural Information
Processing Systems, volume 29, pages 2271-2279, 2016.

[Pellegrina and Vandin, 2018] L. Pellegrina and F. Vandin.
Efficient mining of the most significant patterns with
permutation testing. In Proceedings of the 24th ACM

3498

SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, pages 2070-2079, 2018.

[Su and Candes, 2016] W. Su and E. J. Candeés. SLOPE is
adaptive to unknown sparsity and asymptotically minimax.
The Annals of Statistics, 44(3):1038-1068, 2016.

[Sugiyama er al., 2015] M. Sugiyama, F. Llinares-Lépez,
N. Kasenburg, and K. M Borgwardt. Significant subgraph
mining with multiple testing correction. In Proceedings
of 2015 SIAM International Conference on Data Mining,
pages 37-45, 2015.

[Tarone, 1990] R. E. Tarone. A modified Bonferroni method
for discrete data. Biometrics, 46(2):515-522, 1990.

[Tatti, 2013] N. Tatti. Itemsets for real-valued datasets. In
2013 IEEE 13th International Conference on Data Min-
ing, pages 717-726, 2013.

[Taylor and Tibshirani, 2015] J. Taylor and R. J. Tibshirani.
Statistical learning and selective inference. Proceedings
of the National Academy of Sciences, 112(25):7629-7634,
2015.

[Terada et al., 2013a] A. Terada, M. Okada-Hatakeyama,
K. Tsuda, and J. Sese. Statistical significance of combina-
torial regulations. Proceedings of the National Academy
of Sciences, 110(32):12996-13001, 2013.

[Terada et al., 2013b] A. Terada, K. Tsuda, and J. Sese. Fast
Westfall-Young permutation procedure for combinatorial
regulation discovery. In 2013 IEEE International Confer-

ence on Bioinformatics and Biomedicine, pages 153-158,
2013.

[Terada et al., 2016] A. Terada, D. duVerle, and K. Tsuda.
Significant pattern mining with confounding variables.
In Advances in Knowledge Discovery and Data Mining
(PAKDD 2016), volume 9651 of LNCS, pages 277-289,
2016.

[Unoetal,2004] T. Uno, T. Asai, Y. Uchida, and
H. Arimura. An efficient algorithm for enumerating closed
patterns in transaction databases. In Discovery Science,
volume 3245 of LNCS, pages 16-31, 2004.

[van Leeuwen and Ukkonen, 2016] M. van Leeuwen and
A. Ukkonen. Expect the unexpected — on the signifi-
cance of subgroups. In Discovery Science, volume 9956
of LNCS, pages 51-66, 2016.

[Webb and Petitjean, 2016] G. I. Webb and F. Petitjean. A
multiple test correction for streams and cascades of statis-
tical hypothesis tests. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 1255-1264, 2016.

[Webb, 2007] G. I. Webb. Discovering significant patterns.
Machine Learning, 68(1):1-33, 2007.

[Woolf, 1957] B. Woolf. The log likelihood ratio test (the
G-test). Annals of human genetics, 21(4):397-409, 1957.



