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Abstract
Sparse regression such as the Lasso has achieved
great success in handling high-dimensional data.
However, one of the biggest practical problems
is that high-dimensional data often contain large
amounts of missing values. Convex Conditioned
Lasso (CoCoLasso) has been proposed for deal-
ing with high-dimensional data with missing val-
ues, but it performs poorly when there are many
missing values, so that the high missing rate prob-
lem has not been resolved. In this paper, we
propose a novel Lasso-type regression method for
high-dimensional data with high missing rates. We
effectively incorporate mean imputed covariance,
overcoming its inherent estimation bias. The result
is an optimally weighted modification of CoCo-
Lasso according to missing ratios. We theoretically
and experimentally show that our proposed method
is highly effective even when there are many miss-
ing values.

1 Introduction
High-dimensional data appear in a wide range of fields,
including biology, economy, and industry. Over the past
several decades, sparse regression has achieved great suc-
cess in dealing with high-dimensional data, because it effi-
ciently performs both model estimation and variable selec-
tion simultaneously. Sparse regression methods include the
Lasso [Tibshirani, 1996], Elastic Net [Zou and Hastie, 2005],
SCAD [Fan and Li, 2001], and MCP [Zhang, 2010].

In practice, high-dimensional data often contain large
amounts of missing values. For example, educational and
psychological studies commonly have missing data ratios of
15–20% [Enders, 2003], while maintenance data for typical
industrial processes had over 75% missing values in over 50%
of variables [Lakshminarayan et al., 1999]. Up to 90% of
traffic data can be missing [Tan et al., 2013]. There is thus
demand for methods that can accommodate high-dimensional
data with a high missing rate.

Missing data analysis has a long history. Listwise dele-
tion (complete case analysis) and pairwise deletion are widely
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used because of their simplicity. Various methods have
been developed, including the expectation maximization
(EM) algorithm [Dempster et al., 1977], multiple imputation
(MI) [Rubin, 1987; Schafer, 1997; Buuren and Groothuis-
Oudshoorn, 2011], and full information maximum likelihood
(FIML) [Hartley and Hocking, 1971; Enders, 2001]. How-
ever, these methods focus on low-dimensional missing data
and are intractable for high-dimensional data due to their
computational cost.

To deal with high-dimensional missing data, a direct re-
gression method using a pairwise covariance matrix has been
proposed [Loh and Wainwright, 2012]. This method incurs
low computational costs, but heavily depends on some critical
unknown parameters that must be determined in advance due
to its nonconvexity. Convex Conditioned Lasso (CoCoLasso)
was proposed to avoid this problem [Datta and Zou, 2017].
Because of its convexity using a positive semidefinite approx-
imation of the pairwise covariance matrix, it does not suffer
from local optima or critical parameters. However, we found
that CoCoLasso can deteriorate at high missing rates. Indeed,
estimator accuracy may significantly worsen even when only
one variable has a high missing rate, so a high missing rate
remains problematic.

In this paper, we propose a novel regression method that
overcomes problems related to both high-dimensionality and
high missing rates. We use the mean imputed covariance ma-
trix, effectively incorporating it into Lasso despite its noted
tendency toward estimation bias for missing data. The result-
ing optimization problem can be seen as a weighted modifi-
cation of CoCoLasso using the missing ratio, and it is quite
effective for high-dimensional data with a high missing rate.
Our proposed method is free from local optima and critical
parameters due to convexity, and it is theoretically and exper-
imentally superior to CoCoLasso regarding estimation error.
Contributions of this study are as follows:

• We propose a novel regression method for handling
high-dimensional data with high missing rates.

• We analyze theoretical properties of our method, show-
ing that our formulation is superior to all other weighted
formulations with regards to estimation error.

• We demonstrate the effectiveness of our method through
both numerical simulations and real-world data exper-
iments. Our method outperforms other methods in al-
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most all cases, and particularly shows significant im-
provement for high-dimensional data with high missing
rates.

The remainder of this paper is organized as follows: We
first review existing methods and describe our proposed
method. We then show the advantages of our method through
theoretical analyses, numerical simulations, and real-world
data experiments.

1.1 Notations
Let v ∈ Rp. ‖v‖q (q > 0) is the `q norm, that is, ‖v‖q =

(|v1|q + · · ·+ |vp|q)1/q . Let M ∈ Rn×p. ‖M‖F is the
Frobenius norm, that is, ‖M‖F = (

∑
j,kM

2
jk)1/2. ‖M‖max

is the max norm, that is, ‖M‖max = maxj,k |Mjk|. Let
M1,M2 ∈ Rn×p. M1 � M2 is the element-wise product
(Hadamard product) ofM1 andM2. M1�M2 is the element-
wise division of M1 and M2. Let M ∈ Rp×p be a symmetric
matrix. M � 0 denotes that M is positive semidefinite, that
is, v>Mv ≥ 0 for any v ∈ Rp.

2 Methods
2.1 Problem Formulation
Consider a linear regression model y = Xβ + ε, where X ∈
Rn×p is a complete design matrix, y ∈ Rn is a response, β ∈
Rp is a regression coefficient, and ε ∈ Rn is a noise. Suppose
that y and each column of X are centered without loss of
generality. The ordinary problem is to estimate the regression
coefficient β given complete data X and y. In contrast, we
consider the situation where some elements of X are missing
in this paper.

If X does not contain missing values, Lasso is one of the
most promising methods for handling high-dimensional data.
It solves the problem [Tibshirani, 1996]

β̂ = argmin
β

1

2n
‖y −Xβ‖22 + λ‖β‖1, (1)

where λ > 0 is a regularization parameter. Since the ob-
jective function (1) is regularized by the `1 norm of β, the
solution is sparse and often has a small generalization error.
In the presence of missing values, however, it is impossible
to directly apply the Lasso.

2.2 Review of Existing Methods
Interestingly, to estimate the parameter β in the presence of
missing values does not require imputation in X , which is
computationally expensive for high-dimensional data. We
can directly estimate the parameter without imputation. The
Lasso objective function (1) can be reformulated as

β̂ = argmin
β

1

2
β>Sβ − ρ>β + λ‖β‖1, (2)

where S = 1
nX
>X (the sample covariance matrix of X)

and ρ = 1
nX
>y (the sample covariance vector of X and y).

Using (2), we can estimate β via S and ρ instead of X and
y. If data are missing completely at random, we can easily
construct unbiased estimators of the covariance matrix and

vector using the pairwise covariance, that is, Spair = (Spair
jk )

and ρpair = (ρpair
jk ) as

Spair
jk :=

1

njk

∑
i∈Ijk

XijXik, and ρpair
j :=

1

njj

∑
i∈Ijj

Xijyi,

where Ijk := {i : Xij and Xik are observed }, and njk is the
number of elements of Ijk. Thus, we can replace S and ρ by
Spair and ρpair in (2), respectively.

The major problem here is that Spair may not be posi-
tive semidefinite (PSD). In other words, it may have nega-
tive eigenvalues. This is a critical problem because negative
eigenvalues can cause the objective function to diverge to mi-
nus infinity, meaning the optimization failed. A regression
method with a nonconvex constrained formulation has been
proposed to avoid this problem [Loh and Wainwright, 2012].
However, this method’s nonconvexity causes some difficul-
ties in practice. Namely, different initial values result in mul-
tiple global or local minimizers that produce different output
solutions, and the solutions depend on unknown parameters
that must be determined in advance. To avoid the above dif-
ficulties, a convex optimization problem called CoCoLasso
has been proposed [Datta and Zou, 2017]. This problem is
formulated as

β̂ = argmin
β

1

2
β>Σ̌β − ρpair>β + λ‖β‖1, (3)

Σ̌ = argmin
Σ�0

‖Σ− Spair‖max. (4)

CoCoLasso obtains the PSD covariance matrix in (4) via the
alternating direction method of multipliers (ADMM) algo-
rithm, then optimizes the Lasso objective function (3). This
formulation overcomes the difficulties seen in [Loh and Wain-
wright, 2012] because the objective function (3) is convex
due to the PSD matrix Σ̌, meaning it has no local minimizers,
and because it uses no unknown parameters that must be de-
termined in advance. In addition, statistical non-asymptotic
properties were also derived. For these reasons, CoCoLasso
is practical and state-of-the-art.

However, a high missing rate can deteriorate estimations
of the covariance matrix in CoCoLasso. If some pairwise ob-
servation numbers njk are very small, then the corresponding
pairwise covariances Spair

jk are quite unreliable, possibly be-
coming very large or small. Since (4) is based on the max
norm, unreliable elements of Spair will greatly affect the es-
timator. As a result, other estimator elements can highly de-
viate from the corresponding elements in Spair, even if their
variables have few missing values. This indicates that Co-
CoLasso results can significantly worsen, even if only one
variable has a high missing rate. The problem is that CoCo-
Lasso does not account for the differences in reliability of the
pairwise covariance. The next subsection describes how we
overcome this problem.

We mention other approaches for regression with missing
data. A simple approach is listwise deletion. This method
is very fast but inappropriate when there are few complete
samples, as is common with high-dimensional data. Another
typical approach is to impute missing values, including the
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mean imputation, the EM algorithm [Dempster et al., 1977],
MI [Rubin, 1987; Schafer, 1997; Buuren and Groothuis-
Oudshoorn, 2011], FIML [Hartley and Hocking, 1971; En-
ders, 2001], and other non-parametric methods [Stekhoven
and Bühlmann, 2012]. These methods, however, typically
incur large computational costs or cause large bias in high-
dimensional problems, and it is hard to conduct theoretical
analysis with these methods. Other direct modeling meth-
ods use the Dantzig selector instead of the Lasso [Rosenbaum
and Tsybakov, 2010; Rosenbaum and Tsybakov, 2013]. An
advantage of the Lasso-type approach is that computation is
empirically much faster than with the Dantzig selector [Efron
et al., 2007].

2.3 Proposed Method: HMLasso
The mean imputation method is commonly used in practice.
LetZ be the mean imputed data ofX . BecauseX is centered,
Zjk = Xjk for observed elements and Zjk = 0 for missing
elements. The covariance matrix of the mean imputed data,
Simp = (Simp

jk ), is defined as

Simp
jk =

1

n

n∑
i=1

ZijZik =
njk
n

1

njk

∑
i∈Ijk

XijXik =
njk
n
Spair
jk .

(5)

We can equivalently express (5) as

Simp = R� Spair (6)

where R = (Rjk) with Rjk = njk/n. The mean imputed
covariance matrix Simp is biased but PSD, while the pairwise
covariance matrix Spair is unbiased but not PSD. To take the
best aspects of both, we optimize

Σ̃ = argmin
Σ�0

‖R� Σ− Simp‖2F (7)

to obtain a low-biased and PSD matrix. Direct use of mean
imputation for covariance matrix estimation is known to pro-
duce estimation bias. However, we can use the relation (6)
between Simp and Spair to effectively incorporate them into
the optimization problem (7).

The formulation (7) has a useful property, in that it is equiv-
alent to

Σ̃ = argmin
Σ�0

‖R� (Σ− Spair)‖2F. (8)

The formulation (8) can be seen as a weighted modifica-
tion of CoCoLasso (4) using the observed ratio matrix R,
where the max norm is replaced by the Frobenius norm. This
weighting is beneficial under high missing rates. When there
are missing observations, the objective function downweights
the corresponding term Σjk − Spair

jk by the observed ratio
Rjk = njk/n. In particular, the downweighting will be rea-
sonable when njk is small, because the pairwise covariance
Spair
jk is unreliable.
From the above, we extend the formulation and propose a

novel optimization problem to estimate the regression model

−1 0 1

−
1

0
1

σ2

σ
1

PSD region

−1 0 1

−
1

0
1

P

−1 0 1

−
1

0
1

A

−1 0 1

−
1

0
1

B

−1 0 1

−
1

0
1

C

−1 0 1

−
1

0
1

D

−1 0 1

−
1

0
1

E

−1 0 1

−
1

0
1

F

Figure 1: (Left) Two-dimensional covariance matrix space. (Right)
Two simple missing patterns. Black elements represent missing val-
ues.

as

β̂ = argmin
β

1

2
β>Σ̃β − ρpair>β + λ‖β‖1, (9)

Σ̃ = argmin
Σ�0

‖W � (Σ− Spair)‖2F, (10)

where W is a weight matrix whose (j, k)-th element is
Wjk = Rαjk with a constant α ≥ 0. We obtain a PSD matrix
by minimizing the weighted Frobenius norm in (10), then op-
timizes the Lasso problem (9). This Lasso-type formulation
allows us to efficiently deal with high missing rates, so we
call our method “HMLasso”.

Several α values can be considered. Setting α = 0 corre-
sponds to the non-weighted case, which is just a projection
of Spair onto the PSD region. This is the same as CoCo-
Lasso when the Frobenius norm in (10) is replaced by the max
norm. The case where α = 1 relates to mean imputation, as
described above. As shown below, non-asymptotic analyses
support that α = 1 is reasonable, and numerical experiments
show that this setting delivers the best performance. There-
fore, we recommend setting α = 1 in practice. The case
where α = 1/2 can be roughly viewed as the maximum like-
lihood method from an asymptotic perspective. We discuss
the case of setting α = 1/2 in the supplementary material1.
Note that in (10), we use the Frobenius norm instead of the
max norm, because the Frobenius norm delivered better per-
formance in numerical experiments.

2.4 Comparison Using a Simple Example
The following simple example shows that our weighted for-
mulation (10) is better than the non-weighted formulation.
Consider three-dimensional data X ∈ Rn×3. To derive sim-
ple analytical results, we suppose that the pairwise covariance
matrix and observation ratio matrix are

Spair =

[
1 s1 s2

s1 1 s2

s2 s2 1

]
and R =

1

n

[ · n1 n2

n1 · n2

n2 n2 ·

]
,

1The whole paper including the supplementary material is avail-
able at https://arxiv.org/abs/1811.00255.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3543



Algorithm 1 Covariance Estimation with ADMM

Input: Spair,W, µ
for k = 1, 2, . . . do

Ak+1 ← projection of Bk + Spair + µΛk onto PSD
Bk+1 ← (Ak+1 − Spair − µΛk)� (µW �W + 11>)
Λk+1 ← Λk − 1

µ

(
Ak+1 −Bk+1 − Spair

)
end for

Output: Ai+1

respectively. We restrict diagonal elements of the covari-
ance estimate to 1 for simplicity. From symmetry of the
problem, we can parameterize the covariance estimate as
Σ = [1, σ1, σ2;σ1, 1, σ2;σ2, σ2, 1]. Here, we can see Spair

and Σ in the same two-dimensional space as in Figure 1.
Simple calculation yields that the PSD condition of Spair is
2s2

2 − 1 ≤ s1 ≤ 1, shown in gray in Figure 1. Hereafter, to
show differences among the methods, without loss of gener-
ality we suppose s1 < 2s2

2 − 1 so that Spair is not PSD, and
also s2 ≥ 0. Point P in Figure 1 is an example of such an
Spair.

Consider the case where n1 is sufficiently small and n2 is
sufficiently large, which is realized by missing data pattern 1
in Figure 1. The CoCoLasso (non-weighted max norm) so-
lution is the tangent point of the gray region and an elliptic
contour with center point P, shown as point A in Figure 1.
The solution of the non-weighted Frobenius norm is the tan-
gent point of the gray region and a square contour with center
point P, shown as point B. The optimal point of HMLasso
(weighted norm) will be close to point C, because weights
R13 and R23 are much larger than R12, so the optimal solu-
tion must be close to the tangent point of the gray PSD re-
gion and line CD. On the other hand, the sample covariance
matrix S with complete observations satisfies σ2 ≈ s2 and
2σ2

2 − 1 ≤ σ1 ≤ 1, represented as line segment CD. Since
point C is closer to any point on line segment CD than are
A or B, the HMLasso estimate is always closer to the co-
variance matrix of the complete data than are estimates using
non-weighted norms.

Consider another case where n1 is sufficiently large and n2

is sufficiently small, which is realized by missing pattern 2 in
Figure 1. By reasoning similar to the case described above,
the solutions for the non-weighted max and Frobenius norm
are A and B, respectively, and the HMLasso optimal point
will be close to point E in Figure 1. The sample covariance
matrix S with complete observations satisfies σ1 ≈ s1 and
2σ2

2−1 ≤ σ1 ≤ 1, shown as line segment EF. Hence, the HM-
Lasso estimate is again superior to those of the non-weighted
norms.

2.5 Algorithms
The Lasso optimization problem using the covariance ma-
trix (9) can be solved by various algorithms for the Lasso,
such as the coordinate descent algorithm [Friedman et al.,
2010] and the least angle regression algorithm [Efron et al.,
2004]. Our implementation uses the coordinate descent al-
gorithm because it is efficient for high-dimensional data. The
algorithm details are described in the supplementary material.

We use the warm-start and safe screening techniques to speed
up the algorithm.

We use the ADMM algorithm [Boyd et al., 2011] to derive
the PSD covariance matrix optimization (10), which can be
rewritten as

(A,B) = argmin
A�0,B=A−Spair

‖W �B‖2F.

Therefore, the augmented Lagrangian function is

f(A,B,Λ) =
1

2
‖W �B‖2F − 〈Λ, A−B − Spair〉

+
1

2µ
‖A−B − Spair‖2F, (11)

where Λ is a Lagrangian matrix and µ is an augmented La-
grangian parameter. We iteratively update A, B, and Λ sub-
ject to A � 0 by minimizing (11) in terms of each variable.
The resulting algorithm is similar to the CoCoLasso algo-
rithm, except for the update rule for B due to weight ma-
trix W . To derive the B-step update equation, differentiating
f(A,B,Λ) with respect to B yields

∂Bf(A,B,Λ) = W �W �B + Λ− 1

µ

(
A−B − Spair

)
.

Solving ∂Bf(A,B,Λ) = 0, we obtain the update rule

B ← (A− Spair − µΛ)� (µW �W + 11>),

where 11> is a matrix of ones. The algorithm for solving (10)
is presented as Algorithm 1. The difference between the max
norm and the Frobenius norm is trivial when we use ADMM.
The supplementary material also describes the algorithm for
the weighted max norm.

3 Theoretical Properties
In this section, we investigate statistical properties of the pro-
posed estimator. We first obtain a refined non-asymptotic
property for the pairwise covariance matrix, which explic-
itly includes missing rate effects. We then derive a non-
asymptotic property of our estimate in (10). These results
show that α = 1 weighting is superior in terms of non-
asymptotic properties over other weighting (α 6= 1) includ-
ing non-weighted formulation (α = 0). Note that we focus
on the Frobenius norm formulation in (10), but we can see
that α = 1 weighting is superior as well for the max norm
formulation, though CoCoLasso uses the non-weighted norm
(α = 0). Complete proofs for propositions and theorems in
this section are given in the supplementary material.

3.1 Preliminaries
Let M = (Mij) ∈ Rn×p be the observation pattern matrix
whose elements are 1 when data are observed and 0 other-
wise, so that Z = M � X . We suppose a sub-Gaussian as-
sumption on M , which plays a key role in non-asymptotic
properties. This assumption often holds, as seen in the fol-
lowing proposition.
Definition 1. A random variable u ∈ R is said to be sub-
Gaussian with τ2 if E [exp(s(u− E[u]))] ≤ exp

(
τ2s2/2

)
for all s ∈ R. A random vector u ∈ Rp is said to be sub-
Gaussian with τ2 if v>u is a sub-Gaussian variable with τ2

for all v ∈ Rp satisfying ‖v‖2 = 1.
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Assumption 1. The rows of M are independent and identi-
cally distributed with mean µM , covariance ΣM , and sub-
Gaussian parameter τ2.
Proposition 1. Assume that Mij values are independent and
identically distributed as a Bernoulli distribution with mean
µj . Then, the rows of M are sub-Gaussian with τ2 =
maxj µj(1− µj) ≤ 1/4.

For the theoretical analysis in this section, we substitute
Σ̂ := 1

nZ
>Z � Π for Spair, where Π := (πjk) := ΣM +

µMµ
>
M . This is reasonable because Spair = 1

nZ
>Z � R

from (5), and the expectation for R is E[R] = E[ 1
nM

>M ] =
Π. We respectively call πjk and 1 − πjk the observed
and missing rate, since they are expectations for the ob-
served and missing ratios. We suppose that µM and ΣM
are known. This substitution and assumption were also used
in previous theoretical research [Loh and Wainwright, 2012;
Datta and Zou, 2017].

3.2 Statistical Properties
We first derive a refined non-asymptotic property of Σ̂.
Theorem 2. Under Assumption 1, we have, for all ε ≤
cτ2X2

max/πjk,

Pr
(∣∣∣Σ̂jk − Sjk∣∣∣ ≤ ε) ≥ 1− C exp

(
−cnε2π2

jkζ
−1
)
,

where ζ = τ2X4
max max

{
τ2, µ2

j , µ
2
k

}
, Xmax =

maxi,j |Xij |, and C and c are universal constants.

Sketch of Proof. We see that∣∣∣Σ̂jk − Sjk∣∣∣ ≤ 1

nπjk

∣∣∣∣∣
n∑
i=1

vijk(mij − µj)(mik − µk)

∣∣∣∣∣
+

µj
nπjk

∣∣∣∣∣
n∑
i=1

vijk(mik − µk)

∣∣∣∣∣+
µk
nπjk

∣∣∣∣∣
n∑
i=1

vijk(mij − µj)

∣∣∣∣∣ ,
with vijk := xijxik. The first term is bounded using Lemma
B.1 in [Datta and Zou, 2017], and the second and third terms
are bounded using Property (B.2) in [Datta and Zou, 2017].
Careful analyses considering πjk, µj , and µk yield the asser-
tion.

In Theorem 2, the missing rate appears explicitly and
the non-asymptotic property is stricter than Definition 1 and
Lemma 2 in [Datta and Zou, 2017]. To clearly see the missing
rate effect, we replace ε by ε/πjk. Then, for all ε ≤ cτ2X2

max
we have

Pr
(
πjk

∣∣∣Σ̂jk − Sjk∣∣∣ ≤ ε) ≥ 1− C exp
(
−cnε2ζ−1

)
.

Since the right side does not depend on πjk, we can see that
the concentration probability of πjk|Σ̂jk − Sjk| is equally
bounded regardless of the missing rate. This implies that our
weighted formulation balances uncertainty of each element
of Σ̂, while non-weighted formulations such as CoCoLasso
suffer from this imbalance.

Next, we derive a non-asymptotic property of our weighted
estimator Σ̃.

Theorem 3. Under Assumption 1, we have, for all ε ≤
cτ2X2

max(minj,kWjk/πjk)/Wmin,

Pr

(
1

p2

∥∥∥Σ̃− S
∥∥∥2

F
≤ ε2

)
≥ 1− p2C exp

(
−cnε2W 2

min

(
min
j,k

πjk
Wjk

)2

ζ−1

)
,

where ζ = τ2X4
max max

{
τ2, µ2

1, . . . , µ
2
p

}
, Wmin =

minj,kWjk, Xmax = maxi,j |Xij |, and C and c are uni-
versal constants.

Sketch of Proof. We have ‖W � (Σ̃ − S)‖F ≤ ‖W � (Σ̃ −
Σ̂)‖F+‖W�(Σ̂−S)‖F ≤ 2‖W�(Σ̂−S)‖F by the triangular
equation and the optimality of Σ̃. Using W 2

min‖Σ̃ − S‖2F ≤
‖W � (Σ̃− S)‖2F, Theorem 2 yields the assertion.

According to Theorem 3, we can see that the proposed
weight Wjk = njk is optimal in the population level as fol-
lows.

Theorem 4. Let Wjk = παjk. Then, the lower bound of the
concentration probability and the upper bound of ε in The-
orem 3 are minimized and maximized simultaneously when
α = 1.

Proof. Let πmin = minj,k πjk and πmax = maxj,k πjk. Sub-
stituting Wjk = παjk, we have the concentration probability

1− p2C exp

(
−cnε2π2α

min

(
min
j,k

π2−2α
jk

)
ζ−1

)
,

with the constraint ε ≤ cτ2X2
max(minj,k π

α−1
jk )/παmin. i) For

0 ≤ α ≤ 1, the concentration probability becomes 1 −
p2C exp

(
−cnε2π2

minζ
−1
)
, and the constraint of ε becomes

ε ≤ cτ2X2
max (πmax/πmin)

α
/πmax. Since πmax/πmin ≥

1, the constraint region of ε is maximized at α = 1.
ii) For α ≥ 1, the concentration probability becomes 1 −
p2C exp

(
−cnε2π2

max(πmin/πmax)2α
)

and the constraint of
ε becomes ε ≤ cτ2X2

max/πmin. Since πmin/πmax ≤ 1, the
concentration probability is maximized at α = 1.

4 Numerical Experiments
We conducted some experiments using both synthetic and
real-world data. More comprehensive simulation results un-
der various conditions were given in the supplementary ma-
terial due to space limitations.

4.1 Simulations with Various Norms
First, we investigated the effect of various weighted norms
in (10). We compared the max norm with α = 0, 1/2, 1, 2
and the Frobenius norm with α = 0, 1/2, 1, 2. The max norm
with α = 0 corresponds to CoCoLasso, and the Frobenius
norm with α = 0 corresponds to a simple projection onto the
PSD region.

Training data were X ∈ Rn×p with n = 10000 and p =
100 generated by N (0,Σ∗) with Σ∗jk = 0.5 for j 6= k and
Σ∗jk = 1 for j = k. Responses y were defined as y = Xβ+ε
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α = 0, 0.5, 1, 2.
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Figure 3: Simulation results with various missing rates, covariance
levels, sample sizes, and dimension numbers.

with β1 = 10, β11 = −9, β21 = 8, β31 = −7, . . . , β91 =
−1, and βj = 0 otherwise, and ε ∼ N (0, 1). We introduced
missing values completely at random, setting a missing rate
for each column sampled from a uniform distribution U(0, 1)
(0.5 on average). Test data were generated independently in
the same manner, except that we did not introduce missing
values for evaluation. The regularization parameter λ was
selected by five-fold corrected cross-validation as with [Datta
and Zou, 2017]. We iterated each experiment 30 times and
plotted averaged results with standard errors.

Figure 2 shows the results. The performance measures
were the `2 error for the regression coefficients, and the root
mean square error of prediction. The weighted norms with
α = 1 were effective for both the Frobenius and max norm
formulations, as suggested by the non-asymptotic theoreti-
cal analyses. In addition, the Frobenius norms outperformed
the max norms. Therefore, we use the Frobenius norm with
α = 1 as the proposed method, namely, HMLasso, in sub-
sequent experiments. In contrast, CoCoLasso (the max norm
with α = 0) was apparently inferior to HMLasso.

4.2 Simulations Under Various Conditions
We next compared the performance of HMLasso with other
methods under various conditions, examining the mean im-
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Figure 4: Analysis of residential building data with various patterns
and rates for missing data. The outcomes are sales prices (left) and
construction costs (right).

putation method, CoCoLasso (the max norm with α = 0),
and HMLasso (the Frobenius norm with α = 1). Follow-
ing the simulation setting in the previous subsection, we var-
ied the missing data rate, covariance level, sample size, and
number of variables. We set the average missing rates to
µ = 0.1, 0.5, 0.9, the covariance levels to r = 0.1, 0.5, 0.9,
the sample size to n = 103, 104, 105, and the number of vari-
ables to p = 50, 100, 150, 200. Note that we also examined
other missing imputation methods such as mice [Buuren and
Groothuis-Oudshoorn, 2011] and missForest [Stekhoven
and Bühlmann, 2012], but their computational costs were
over 100 times larger than those for the above methods, so
we excluded these methods in our experiments.

Figure 3 shows the results. HMLasso outperformed other
methods under almost all conditions, especially for data with
high missing rates and high covariance levels. In addition,
high dimensionality did not adversely affect HMLasso, while
the other methods showed gradually worse performance.

4.3 Residential Building Dataset
We evaluated the performance using a real-world residen-
tial building dataset [Rafiei and Adeli, 2016] from the UCI
datasets repository2. The dataset included construction costs,
sale prices, project variables, and economic variables corre-
sponding to single-family residential apartments in Tehran.
The objective was to predict sale prices and construction costs
from physical, financial, and economic variables. The data
consisted of n = 372 samples and p = 105 variables, in-
cluding two output variables. We introduced missing values
at missing rates µ = 0, 0.2, 0.4, 0.6, 0.8 on average. We eval-
uated performance in terms of prediction error from complete
samples. We randomly split data into 300 samples for train-
ing, 36 for validation, and 36 for testing, and iterated the ex-
periments 30 times.

Figure 4 shows the results. HMLasso outperformed the
other methods under nearly all cases. The advantage of HM-
Lasso was clear especially for high missing rates.

5 Conclusion
We proposed a novel regression method for high-dimensional
data with high missing rates, and demonstrated the advan-
tages of our method through theoretical analyses and numer-
ical experiments.

2https://archive.ics.uci.edu/ml/datasets/Residential+Building+
Data+Set
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