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Abstract
Gradient Boosted Decision Trees (GBDT) is a
widely used machine learning algorithm, which
obtains state-of-the-art results on many machine
learning tasks. In this paper we introduce a
method for obtaining better results, by augment-
ing the features in the dataset between the itera-
tions of GBDT. We explore a number of augmenta-
tion methods: training an Artificial Neural Network
(ANN) and extracting features from it’s last hidden
layer (supervised), and rotating the feature-space
using unsupervised methods such as PCA or Ran-
dom Projection (RP). These variations on GBDT
were tested on 20 classification tasks, on which all
of them outperformed GBDT and previous related
work.

1 Introduction
Gradient Boosted Decision Trees (GBDT) [Friedman, 2001]
is a widely-used ensemble learning algorithm that provides
high predictive performance with relatively low computa-
tional costs. GBDT achieves state-of-the-art results in vari-
ous machine learning settings and applications, such as multi-
class classification [Li, 2012], click prediction [Richardson et
al., 2007], energy forecasting [Taieb and Hyndman, 2014],
and learning to rank [Burges, 2010].

GBDT is based on stage-wise additive expansions and
steepest-descent minimization: in each iteration, a new de-
cision tree (DT) is trained and added to an ensemble of DTs.
Each DT is trained using the original features, while the tar-
get variable is updated before each iteration to represent how
”mistaken” the ensemble is until the current iteration. Af-
ter the process is completed, the DTs are used as an ensem-
ble of base models: the predictions are calculated separately
for each tree, and the final predictions are calculated by a
weighted sum between the DTs’ outputs.

In the GBDT process, the features stay the same through-
out all of the iterations while the target is modified before
each iteration. This is contrary to decision forest algorithms
such as Rotation Forest [Rodriguez et al., 2006], Rotation
Forest with Random Projections (RP) or NDA [Kuncheva
and Rodrı́guez, 2007], Random Projection Ensemble Clas-
sifiers [Schclar and Rokach, 2009] and RotBoost [Zhang

and Zhang, 2008], which augment the features before cre-
ating each individual model of the ensemble, while the
target remains unchanged. The rationale of these meth-
ods is to contribute to the diversity of the individual mod-
els’ predictions, without sacrificing their accuracy. In the
methods based on decision forests [Rodriguez et al., 2006;
Kuncheva and Rodrı́guez, 2007; Schclar and Rokach, 2009;
Zhang and Zhang, 2008], diversity amongst the predictions is
obtained by increasing the diversity amongst the features that
the models are trained with.

In all of these cases, the features are augmented using un-
supervised methods. This is reasonable for training variations
on bagging algorithms such as Random Forest [Breiman,
2001], in which each DT is trained using the same target
function. In these cases, feature augmentations which rely on
the target may increase the statistical dependencies between
the predictions of the individual base models and therefore
damage the model’s results. However, this is not the case
for GBDT. Since in the training of GBDT individual DTs are
trained on different targets, it is natural to explore the aug-
mentation of the original features using supervised methods.

The research of using feature augmentation in ensemble
methods has focused mainly on bagging algorithms, although
there has been some work on boosting algorithms. In Rot-
Boost [Zhang and Zhang, 2008], an ensemble of AdaBoost
[Freund and Schapire, 1997] models is created, by rotating
the feature space with PCA before each model is trained.
Randomness is obtained by splitting the features into random
and disjoint subsets, and rotating each subset separately.

Augmentation of the features can be done in between iter-
ations of GBDT. This has been shown to obtain better pre-
dictive performance than the classic GBDT in the case where
RPs are used for feature augmentation ([Casale et al., 2011]
and [Joly, 2017]). We refer to this method as ’RPBoost’, and
we’ll later explore possible improvements to it as well as ex-
ploring other methods for feature augmentation.

Artificial Neural Networks (ANNs) have recently been
used to enrich the feature-set before the training of the GBDT.
Chen et al. [Chen et al., 2018] train an ANN on a subset of the
original features and the target. Features are then extracted
from the last hidden layer, and concatenated to the original
feature-set before it is used as the input to the classic GBDT.

Augmenting the features with ANNs, in between the itera-
tions of GBDT, seems like a promising method which hasn’t
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been explored. Furthermore, it seems that even unsupervised
methods of augmenting the features between the iterations of
GBDT (other than RP) haven’t been thoroughly researched.

Our contribution is as follows: first, we introduce
AugBoost-ANN, a novel machine-learning algorithm, which
combines the stage-wise additive expansions of GBDT, with
a stage-wise neural-network-based feature extraction method.
Second we introduce AugBoost-PCA and AugBoost-RP,
variations of AugBoost-ANN which augment the features us-
ing PCA or RP rather than ANN-embeddings. Finally, we
show that all versions of AugBoost significantly outperform
the classic GBDT, and that AugBoost-ANN and AugBoost-
PCA significantly outperform RPBoost, over a wide range of
classification tasks.

2 Methods
In this section, we present the formulation of GBDT, and
the methods in which we use ANNs, PCA and RPs for fea-
ture augmentation. We’ll begin with reviewing the necessary
background regarding GBDT, and then explain how the fea-
tures are augmented using each of the different methods.

2.1 GBDT and Stage-Wise Feature Augmentation
We’ll describe GBDT, and present two variations of it: one
for regression, and one for classification. This description is
based on the formulation in [Casale et al., 2011], with minor
adaptations.

Given a set of training samples S = {(Xi, ỹi)}Ni=1, we
look for a functionM(X) that mapsX to y such that, over the
joint distribution of all pairs of (X, y) ∈ S , some loss func-
tion L(M(X), y) is minimized. We will assume that M(X)
is of the form:

M(X;P ) =
T∑
t=0

βth(X; at) (1)

where P = {βt, at}Tt=0 is a set of parameters, and h(X; at)
is a base model, e.g. a decision tree. If we try to minimize
Ey[L(M(X), y)|X], the solution is of the type:

M(X) =
T∑
t=0

Mt(X) (2)

where M0(X) returns the constant which obtains the optimal
loss, and for every other value of t, Mt(X) is an incremental
function known as a ”boost”. Using gradient descent, we get:

Mt(X) = −ρtgt(X) (3)
where

gt(X) = Ey

[
∂L(M(X), y)

∂M(X)
|X
]
M(X)=Mt−1(X)

(4)

and

Mt−1(X) =
t−1∑
j=0

Mj(X) (5)

ρt is a coefficient which, together with gt(X) and the en-
semble up to the last iteration, optimizes the loss function
(detailed explanation will follow). Since the dataset is finite

and doesn’t accurately represent the distribution, gt(X) can-
not be evaluated accurately at each point in the dataset. More-
over, the large number of parameters in {βt, at}Tt=0 makes
the optimization for the general problem extremely difficult.
Therefore, GBDT arrives at an approximate solution using a
somewhat greedy solution. In each iteration we approximate
the optimal solution using a two-phase approach: in the first
phase we train a DT, and in the second phase we calculate a
corresponding coefficient.

In each iteration t, we update ỹ to assume the errors of the
ensemble up to the previous iteration, or formally:

{ỹi}Ni=1 = −
[
∂L(yi,M(Xi))

∂M(Xi)

]
M(X)=Mt−1(X)

(6)

Based on the features and the updated target, we calculate
at:

at = argmin
a,β

N∑
i=1

L (ỹi, β · h(Xi; a)) (7)

Note that β is only used for calculating at, and isn’t used
later on. After this, we calculate ρt assuming that at is fixed:

ρt = argmin
ρ

N∑
i=1

L(yi,Mt−1(Xi) + ρ · h(Xi; at)) (8)

When Mt−1(X) is the ensemble of the models created up
to the previous iteration. Before moving on to the next iter-
ation, we add these learned parameters to the ensemble, as
such:

Mt(X) =Mt−1(X) + ρt · h(X; at) (9)

Figure 1: This diagram describes one iteration in the training process
of AugBoost-ANN, during which one DT is added to the ensemble.
Note that the ANN from the preceding iteration is duplicated to this
iteration if necessary (i.e. if no ANN is trained in this iteration).

After T iterations are completed, the training process is
finished, and MT (X) should be used for inference. Note that
this description is more suitable for regression tasks. In clas-
sification tasks the output variable does not result in real val-
ues but rather in class labels that are not additive. Thus, we
can model any multi-class classification using one-hot encod-
ing and a softmax function.

Clearly, this GBDT process assumes that {Xi}Ni=1 doesn’t
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Figure 2: The inference of AugBoost-ANN on an entire dataset. The
neural networks, decision trees and weights of the ensemble models
have been trained or determined during the training phase.

change throughout the training process. Theoretically, the
features can be augmented between phases, and each indi-
vidual function h can be trained on a different variation of
these features. These augmentations will be represented by a
series of functions {ft}Tt=1, and the augmented features used
in each iteration will be annotated ft(X). In the next sections
we’ll describe a number of methods for building {ft}Tt=1:
embedding the features using an ANN (AugBoost-ANN),
and rotating the feature-space using PCA (AugBoost-PCA)
or RP (AugBoost-RP). First we’ll present diagrams which
describe the phases of AugBoost-ANN during one iteration
(AugBoost-PCA and AugBoost-RP can be described by sim-
ilar figures). Second, we’ll discuss the different methods for
augmenting the features during each iteration. Finally, we’ll
present the complete pseudo-code of the training process.

In Figure 1, we present one iteration of AugBoost-ANN’s
training. The original features (#2 in the figure) are fed to the
ANN (#3), which learns the updated target (#1), as presented
in Equation 6. Then, a new set of features (#4) are extracted
from the output of the ANN’s last hidden layer, and concate-
nated with the original features (#2). The concatenated fea-
tures are fed to a DT (#5), which learns the same updated
target (#1) which the ANN used. This ANN is appended to
the list of ANNs to be later used for inference (#7), and the
DT is added to the ensemble of DTs (#6), together with a cor-
responding weight, to be used during inference. Finally, the
loss of the updated ensemble is calculated, and this is used to
update the target.

In Figure 2, we present the inference process of AugBoost-
ANN. The original features (#1 in the figure), are fed to all of
the ANNs (#2) which were trained on the training set. We
then extract new features (#3) from the outputs of the last
hidden layers of these ANNs. The original features are con-
catenated with the newly extracted ones, and each set of con-
catenated features is fed to a DT (#4). The DT and the ANN
of each ”branch” in the diagram were trained in the same iter-
ation, during the training phase. We obtain predictions from
each DT (#5), and we calculate a weighted sum using the
weights learned during training.

2.2 Feature Extraction with ANNs
An ANN can be used to learn an embedding of the original
features, which extracts and emphasizes the most ”useful” in-
formation in the original features. The features are extracted
using the following method:

1. Train a neural network with the original features and
their corresponding target.

2. Select one of the hidden layers to extract the features
from (usually one of the last hidden layers).

3. Derive a ”partial” neural network from the trained ANN,
in which the layers following the selected hidden layer
are dumped.

4. To extract features for a new sample, use the standard
prediction procedure of the partial ANN.

This process follows one of the most practical approaches
for performing transfer learning in neural networks [Pan et
al., 2010]: the first number of layers from a trained ANN
are frozen, and then the rest of the layers are retrained on
new data. The number of layers which are replaced is usually
between 1-3, and depends on the amount of data for trans-
fer learning and the similarity between the new task and the
task of the original ANN. Instead of retraining the non-frozen
layers, they can be replaced by any model (e.g. a decision
tree). This suggests that the ANN embedding is effectively
a lossy representation of the original data. However, if the
complete ANN achieves good prediction performance, this
indicates that the relevant information for the given task is at
least somewhat preserved by the embedding. This potentially
facilitates the training of a subsequent model, i.e. of a model
that uses the embedded features as input, in comparison with
the training using the original features representation.

In transfer learning, we assume that since the new task is
similar to the original task, the embedding will be useful for
the new task as well. When both tasks are identical, this is
clearly the case, and therefore it is sensible to keep as many
layers as possible from the trained ANN. This suggests that
when the tasks are identical, we only dump the last layer of
the ANN. Therefore, we follow [Chen et al., 2018] and ex-
tract features from the last hidden layer.

In order to augment the features in between iterations of the
GBDT, we train an ANN until the loss ceases to improve, with
the original features and the updated target (as in Equation 8).
For each sample, the original features are fed as input to the
ANN, and then concatenated with the features extracted from
the last hidden layer. The next DT will be trained using this
concatenation of features, and the updated targets.
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2.3 Rotation of the Feature-Space with PCA or RP
Another approach towards augmenting the features in be-
tween iterations of GBDT, is by an unsupervised rotation of
the feature space. Given a set of features and their corre-
sponding targets {(Xi, yi)}Ni=1, we wish to rotate {Xi}Ni=1
without loss of information, and with some randomization to
generate diversity between the different rotations. We achieve
this using two different approaches: PCA and RP.

For the PCA approach, we use a procedure similar to Ro-
tation Forest [Rodriguez et al., 2006]: features are split into
a number of random subsets, and then PCA is applied sep-
arately on each subset without dimensionality reduction (all
of the PCA components are maintained). According to [Ro-
driguez et al., 2006], this rotation technique is meant as a
diversifying heuristic, and not for finding good discrimina-
tory directions. In addition to ensuring diversity among the
trees, rotated trees also relax the constraint of univariate trees
which are capable of splitting the input space only into hy-
perplanes that are parallel to the original feature axes. More-
over, another possible effect of this technique is a migration
of information to the first components of each PCA proce-
dure. PCA concentrates much of the variance in a few of the
components, and this may indicate that these few components
contain more information than we could expect from a subset
of the original features (of the same size). These features can
be exploited by some models, such as DTs, to obtain better re-
sults, for example by creating more compact trees which may
help avoid overfitting. This is due to the fact that more fea-
tures which are more informative may allow using less splits
to represent a given decision rule. Unlike in Rotation Forest,
we do not replace the original features with the new features,
and instead we concatenate the two sets of features.

For the RP approach, we use a method similar to RP-
Boost [Casale et al., 2011] with a number of changes. First,
we apply the projections separately on each of the randomly
selected feature subsets (as in AugBoost-PCA), rather than
projecting all of the features with the same RP. Second, we
concatenate the original features and the new features (as in
AugBoost-PCA), rather than only using the new features. Fi-
nally, we only re-augment the features once every number of
iterations (we will elaborate on this in Section 2.4).

AugBoost-PCA and AugBoost-RP can also be described
by Figures 1,2, except that the ANNs in the diagrams (#3
and #2 in Figures 1 and 2, respectively) are replaced by a
pipeline which includes splitting the features into subsets and
applying PCA or RP to each subset (ANN-embeddings can
also be created seperately for each feature subset). Unlike
an ANN, PCA and RP are unsupervised, and therefore don’t
receive the target as one of its’ inputs during training.

2.4 Implementation Specifics
In order to compare the results of AugBoost1 with the classic
GBDT, we added a number of modules to the implementa-
tion of GBDT by scikit-learn[Pedregosa et al., 2011]. All
comparisons were done with the default hyper-parameters of
the existing libraries, and all hyper-parameters in the modules
added by us were given a default value (which was used in all

1Code repository: https://github.com/ptannor/augboost

of the experiments). Since GBDT for classification consists
of regression DTs, all neural networks that we trained solved
regression problems (and used MSE as their loss function).
Similarly, for classification tasks we applied PCA or RP sep-
arately for each class.

The ANNs had a simplistic and generic architecture, which
was chosen using known best practices: three fully-connected
hidden layers of the same size. The number of neurons in
each of the hidden layers was defined to be the size of the in-
put. The hidden layers all had ReLU activation functions, the
output layer had a linear activation function. Batch size was
chosen to be the minimum between 300 samples and 1

15 of the
data. A random 15% of the training data was set aside for val-
idation during the training of each ANN, and early stopping
occurred if the validation loss didn’t improve for 10 epochs.
For all methods, the number of feature subsets is set by de-
fault to three (which are randomly chosen). PCA is applied
separately on each subset of features, and none of the compo-
nents of the PCA are dumped. Similarly, ANN-embeddings
and RP maintain the dimension size of each feature subset.
This practice is based on preliminary experiments, and for
RP also on results from previous work [Casale et al., 2011].

Features were normalized by quantile normalization before
applying any feature-augmentation method. The new features
were concatenated with the original features before being
used as the input for a DT (for training and inference). The
concatenation technique is meant to utilize the new features,
while also enabling the usage of the original features (which
are carefully handcrafted by human experts in some cases).
For practical reasons, the PCA-based transformation is typ-
ically calculated based only on the training set (this enables
inference on a new test set without re-training the model).

In all of these methods, the training of the model used for
feature augmentation isn’t necessarily done during every it-
eration. Every nBA iterations we retrain the model, starting
from the first iteration. In the rest of the iterations the model
from the preceding iteration is duplicated (BA stands for ’Be-
tween Augmentations’). This is meant to enable the boosting
process to exploit the information in each set of new features,
since each individual DT may only be able to utilize a fraction
of this information. Another advantage of this practice is that
when the feature augmentation technique has significant com-
putation costs, this is approximately nBA times faster than
augmenting the features during each iteration. For most of
our experiments, we used nBA = 10 and 150 iterations, i.e.
we trained 150 DTs, and augmented the features 15 times
throughout the process. In order to run experiments with RP-
Boost, we used our code for AugBoost-RP with a number of
changes: nBA was set to be 1, the number of feature subsets
was set to 1, and the original features weren’t given as input
to the decision trees (during both training and inference).

3 AugBoost Pseudo Code
In Algorithm 1 we present the training procedure, for all three
of the augmentation methods. The presented procedure deals
with the case of a regression task. In the case of a classifi-
cation task, this procedure is conducted for each one of the
classes, while the target is either 0 or 1 for each sample. To
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Algorithm 1 AugBoost Training

Input: a training set {Xi, yi}Ni=1

Output: a model MT (X), which is based on T decision trees with
their corresponding weights, and T augmentation functions

1: function TRAIN({Xi, yi}Ni=1)
2: Initialize M0(X) as argmin

ρ

∑N
i=1 L(yi, ρ) . L is the loss

3: Initialize {ỹi}Ni=1 as {yi}Ni=1

4: for t← 1 to T do
5: if t− 1 is divisible by nBA then
6: Split the features of {Xi}Ni=1 to K random subsets.

St,k
def
= func. that selects the features of subset k

7: For 1 ≤ k ≤ K, create a feature augmentation
function ft,k for St,k(Xi)

8: else
9: For 1 ≤ k ≤ K: ft,k ← ft−1,k, St,k ← St−1,k

10: Update the targets {ỹi}Ni=1 using the last gradient of L:

−
[
∂L(yi,M(Xi))

∂M(Xi)

]
M(X)=Mt−1(X)

11: Train a decision tree Dt, using
{
⋃K
k=1(ft,k(St,k(Xi))), ỹi}

N
i=1

12: Set ρt, the weight of the new model, to be
argmin

ρt

∑N
i=1 L(yi,

Mt−1(Xi) + ρt · Dt(
⋃K
k=1(ft,k(St,k(Xi)))))

13: Mt(X)←Mt−1(X) + ρt · Dt(ft(X)))

14: return MT (X)

obtain the final predictions, the scores are later combined by
weighted aggregation. The pseudo code is similar to GBDT,
and the only differences are in the augmentations of the fea-
tures marked ft. Initializations of the model ensemble and
the target take place in lines 2-3. Lines 5-9 determine the
augmentations to be used in the ensemble. Every nBA iter-
ations the split into subsets and the augmentation functions
are recalculated. For every other iteration, the augmentation
function is copied from the preceding iteration, i.e. the aug-
mentation function is only calculated once every nBA itera-
tions. Line 7 determines if the algorithm is AugBoost-ANN,
AugBoost-PCA or AugBoost-RP. If ft is the identity func-
tion, Algorithm 1 becomes the classic GBDT. Lines 10-14
are similar to the pseudo-code of the classic GBDT.

4 Experimental Results
We tested the classic GBDT (LightGBM implementation
[Ke et al., 2017]), RPBoost, and all three versions of Aug-
Boost on 20 classification datasets. The datasets [Dheeru
and Karra Taniskidou, 2017; Alcala-Fdez et al., 2011] are
from the UCI repository, Kaggle datasets, and the Keel
dataset repository. As indicated in Table 1, the datasets vary
across number of samples, number of features and number of
classes. We performed 10-fold cross-validation and reported
the mean cross-entropy.

All of the AugBoost methods typically had less steep learn-
ing curves than GBDT on the training data, although in many
cases they were better at generalizing (an example is pre-
sented in Figure 3).

In Table 1 we present comparisons between results of Aug-

Figure 3: The learning curve of AugBoost-ANN, AugBoost-PCA
and the classic GBDT process, on one fold of a specific classification
task (flare). It can be observed that the AugBoost methods have less
of a tendency to overfit: the learning curve on the training set is less
steep than GBDT, but it seems to generalize better.

Boost methods, and the results of the classic GBDT (Light-
GBM implementation), over a wide range of datasets.

In 11 out of 20 cases, all three of the AugBoost meth-
ods outperfomed LightGBM. RPBoost is outperformed by all
three versions of AugBoost on 15 out of 20 tasks. We used
the Friedman test for validating the statistical significance of
differences between the evaluated methods [Demšar, 2006].
The null-hypothesis that all five algorithms perform the same
and the observed differences are merely random was rejected
with FF (4, 76) = 17.88 and p < 0.01.

We proceeded with Nemenyi post-hoc tests, to conclude
the following: AugBoost-ANN and AugBoost-PCA signifi-
cantly outperform LightGBM with p < 0.05 and p < 0.1, re-
spectively. AugBoost-ANN and AugBoost-PCA significantly
outperform RPBoost with p < 0.05, and AugBoost-RP out-
performs RPBoost as well with p < 0.1 (and is better on 18
out of 20 tasks).

We also examined the results of a single ANN, and of
scikit-learn’s implementation for the classic GBDT (which
our code is based on), using the same hyperparameter set-
tings. These aren’t presented in table 1 since their perfor-
mances were significantly inferior: the ANN was the worst
performer for all of the tasks and scikit-learn’s GBDT was
inferior to LightGBM in 18 out of the 20 tasks (and the worst
performer in 16 of the tasks).

5 Discussion
It is evident in the results that for classification tasks, the
classic GBDT can be significantly improved by stage-wise
feature augmentation. RPBoost seems to perform similarly
to LightGBM, even though it is based on the code of scikit-
learn, and is therefore ”a step in the right direction”. However
the AugBoost methods which we proposed seem to outper-
form GBDT with higher statistical significance (while differ-
ences between versions of AugBoost have much lower sta-
tistical significance). This implies that although the choice of
the augmentation method does seem to impact the results, it is
not the only important component of our method. The main
other components that seem to contribute to the results are:
concatenating the augmented features with the original fea-
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dataset #
samples

#
features

#
classes loss (cross-entropy)

AugBoost-ANN AugBoost-PCA AugBoost-RP RPBoost LightGBM
cortex (mice protein) 1080 80 8 1.04E-3 ± 2.37E-4 5.79E-3 ± 8.57E-2 1.68E-2 ± 9.29E-3 9.71E-2±9.05E-3 1.75E-3 ± 4.34E-3
CRX (credit approval) 690 570 2 4.02E-1 ± 6.12E-2 3.23E-1 ± 4.76E-2 3.65E-1 ± 4.89E-2 3.73E-1±3.69E-2 4.83E-1 ± 1.45E-1
nursery 12960 8 5 8.07E-2 ± 1.49E-2 7.09E-2 ± 3.18E-2 2.21E-1 ± 1.56E-2 4.38E-1±1.17E-2 1.71E+0 ± 1.67E+0
heart disease 270 28 2 4.42E-1 ± 1.39E-1 5.55E-1 ± 2.42E-1 4.00E-1 ± 1.56E-1 3.95E-1±1.31E-1 5.54E-1 ± 2.18E-1
shuttle (statlog) 43500 9 7 8.06E-4 ± 6.80E-4 9.21E-4 ± 6.35E-4 7.44E-4 ± 5.28E-4 5.29E-2±3.42E-3 6.35E+0 ± 5.66E+0
wilt 4339 5 2 2.55E-2 ± 1.56E-2 2.73E-2 ± 1.61E-2 2.78E-2 ± 2.04E-2 3.25E-2±1.17E-2 3.40E-2 ± 2.41E-2
titanic 891 8 2 4.34E-1 ± 4.36E-2 4.56E-1 ± 5.18E-2 4.35E-1 ± 4.47E-2 4.45E-1±3.56E-2 6.50E-1 ± 7.55E-2
gender-by-voice 3168 20 2 6.29E-2 ± 2.32E-2 6.06E-2 ± 2.55E-2 6.26E-2 ± 2.37E-2 1.66E-1±2.30E-2 8.89E-2 ± 5.17E-2
adult 32560 14 2 2.97E-1 ± 5.39E-3 2.88E-1 ± 5.40E-3 3.06E-1 ± 7.21E-3 3.78E-1±5.70E-3 2.77E-1 ± 4.74E-3
frogs-MFCCs 7195 22 10 6.87E-2 ± 1.29E-2 6.65E-2 ± 1.46E-2 7.18E-2 ± 1.58E-2 1.37E-1±1.63E-2 6.25E-2 ± 2.17E-2
Wisconsin breast cancer 569 30 2 1.06E-1 ± 1.00E-1 1.23E-1 ± 1.10E-1 1.12E-1 ± 1.04E-1 9.17E-2±4.83E-2 1.37E-1± 1.65E-1
banknote authentication 1372 4 2 1.32E-2 ± 1.69E-2 1.37E-2 ± 1.43E-2 1.38E-2 ± 1.43E-2 5.69E-2±1.20E-2 1.31E-2 ± 2.76E-1
car evaluation 1727 6 4 1.41E+0 ± 1.45E-2 1.31E+0 ± 3.13E-2 1.38E+0 ± 1.55E-2 1.44E+0±1.71E-2 1.62E+0 ± 5.01E-2
CTG data (cardio) 2126 35 3 4.08E-2 ± 2.28E-2 5.20E-2 ± 2.99E-2 4.90E-2 ± 2.01E-2 9.37E-2±1.38E-2 7.86E-2 ± 4.66E-2
contraceptive method 1472 9 3 9.25E-1 ± 3.13E-2 9.38E-1 ± 3.28E-2 9.47E-1 ± 2.22E-2 9.55E-1±1.51E-2 1.08E+0 ± 5.84E-2
messidor (diabetes) 1151 19 2 5.68E-1 ± 2.26E-2 5.70E-1 ± 3.60E-2 5.82E-1 ± 1.54E-2 6.12E-1±2.36E-2 6.89E-1 ± 7.69E-2
parkinson 1040 27 2 2.98E-4 ± 5.00E-6 2.95E-4 ± 4.89E-7 2.98E-4 ± 8.00E-6 1.44E-1±1.80E-2 2.00E-6 ± 3.10E-9
pen digits 7494 16 10 4.39E-2 ± 1.05E-2 3.17E-2 ± 8.29E-3 5.32E-2 ± 5.68E-3 1.47E-1±1.39E-2 3.15E-2 ± 1.11E-2
phishing 1353 9 3 3.03E-1 ± 4.67E-2 2.46E-1 ± 4.46E-2 2.93E-1 ± 3.45E-2 3.55E-1±2.27E-2 3.08E-1 ± 9.51E-2
flare 1066 11 6 5.77E-1 ± 8.80E-2 6.67E-1 ± 1.12E-1 5.61E-1 ± 7.57E-2 5.83E-1±7.60E-2 7.03E-1 ± 1.48E-1

average ranking 2.25 2.5 2.65 3.9 3.7

Table 1: Comparing results of the different AugBoost methods with RPBoost and LightGBM (classic GBDT) on classification datasets. Score
is measured using cross-entropy, after training 150 consecutive DTs.

tures, applying the chosen transformation on disjoint subsets
of the features, and ”recycling” each new set of augmented
features for a number of iterations.
nBA is a crucial parameter, and it essentially determines

how many iterations follow each augmentation of the fea-
tures. If nBA = 1, runtime is fairly long (especially for
the case of AugBoost-ANN), and the boosting process may
not get a chance to exploit important information for the aug-
mented features. If nBA is too large, we could expect an en-
semble with lower diversity. Therefore, nBA should be cho-
sen carefully to assume a value which would balance these
two considerations.

Preliminary experiments demonstrated that dimensionality
reduction doesn’t improve the results, for any of the augmen-
tation methods. Increasing the dimensionality with a ANN
may enable an improvement in accuracy results, similarly to
good feature extraction. Utilizing more features in an effi-
cient manner may require more iterations, and possibly more
spacing between feature augmentations. This can be further
explored, although PCA cannot increase the dimensionality
by definition and from the results of Cascale et al. [Casale
et al., 2011], it seems that increasing the dimensionality with
RP may damage the accuracy results significantly. This may
be due to the fact that each individual feature doesn’t contain
enough information to facilitate meaningful splits in the DTs.

6 Conclusions and Future Work
In this paper, we presented different methods for enhancing
the performance of GBDT by augmenting the features in be-
tween iterations, and concatenating the new features with the
original ones before training each new DT. Even though these
methods they are fairly different one from another, they all
significantly outperform the classic GBDT (scikit-learn im-
plementation), and two of the tree methods significantly out-
perform LightGBM’s implementation as well. This implies
that further exploration of stage-wise feature augmentation

methods may lead to even better results.
The work presented in this paper may very well be im-

proved by further research. Primarily, the ANN architecture
and hyper-parameters can be chosen with meta-learning tech-
niques, and don’t have to be chosen in a ”one fits all” man-
ner. This is especially important due to AugBoost-ANN’s
high time-complexity, which makes it difficult to tune hyper-
parameters. This may also be true for selecting the stan-
dard hyper-parameters of GBDT (which are inherited by
AugBoost-ANN). Secondly, in each iteration we trained the
DTs using the concatenation of the newly obtained features
and original features. However, feature selection could be
applied to the concatenated features before training each DT.

Furthermore, if we only the DTs with just the newly ob-
tained features (rather than the concatenation of both sets of
features), we may be able to use AugBoost-ANN on more
complex data such as: images, text, audio, etc (while using
more complex ANN architectures). This could be useful for
tasks such as fine-grained classification.

We’ve presented a number of methods for feature augmen-
tation. Other methods could be explored as well, such as other
automatic methods for feature extraction (unsupervised), the
encoder from an auto-encoder ANN (unsupervised), TSNE
(unsupervised) and LDA (supervised). Once a wide variety
of techniques for this type of augmentation have been imple-
mented, one could experiment with combinations of a num-
ber of techniques (i.e. using different feature augmentation
methods in different iterations). The methods presented in
this paper are also applicable for regression tasks, although
obtaining good results on regression tasks may require some
changes in the implementation specifics.

From a coding point of view, we based the code on
scikit-learn’s GBDT since it was simple to modify, and not
because it performs best. Embedding AugBoost in other
GBDT libraries (such as XGBoost[Chen and Guestrin, 2016],
LightGBM[Ke et al., 2017] or CatBoost[Prokhorenkova et
al., 2017]) may improve the results.
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