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Abstract
In the analysis of machine learning models, it is of-
ten convenient to assume that the parameters are IID.
This assumption is not satisfied when the parame-
ters are updated through training processes such as
Stochastic Gradient Descent. A relaxation of the
IID condition is a probabilistic symmetry known
as exchangeability. We show the sense in which
the weights in MLPs are exchangeable. This yields
the result that in certain instances, the layer-wise
kernel of fully-connected layers remains approxi-
mately constant during training. Our results shed
light on such kernel properties throughout training
while limiting the use of unrealistic assumptions.

1 Introduction
Despite the widespread usage of deep learning in applications,

current theoretical understanding of deep networks continues
to lag behind the pursued engineering outcomes. Much recent
theory concerns networks in their randomized initial state,
or contains assumptions about the parameters or data during
training.

For example, Cho and Saul [2009], Daniely et al. [2016],
Bach [2017] and Tsuchida et al. [2018] analyze the kernels of
neural networks with random IID weights. Insightful analysis
connecting signal propagation in deep networks to chaos have
made similar assumptions [Poole et al., 2016; Raghu et al.,
2017]. Random matrix theory has recently been applied to
neural networks in an attempt to understand the empirical
spectral distribution (ESD) of the Hessian [Pennington and
Bahri, 2017] and the Gram matrix [Pennington and Worah,
2017], but these works have made strong assumptions on the
weight and data distributions.

The most widely used yet unrealistic assumption is that
weights remain IID throughout training. Relaxing such unre-
alistic assumptions makes obtaining meaningful results more
challenging. We take a step in this direction by investigating
the probabilistic symmetry known as exchangeability, which
is a generalization of the IID assumption. We uncover the
striking result that the layer-wise kernel of MLPs with ReLU
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activations, trained with many optimizers, remains constant
up to a scaling factor during training when the network inputs
satisfy certain conditions. Otherwise, we are able to bound the
absolute difference between layer-wise kernel and the kernel
of the network in its random IID state.

2 Background
2.1 Notation
Random variables, vectors and matrices will be denoted by
upper case, bold upper case, and bold upper case with overline
characters, respectively. Parenthesized superscripts index the
layer of the network to which an object belongs. The first
and second post-subscripts index the rows and columns of a
matrix, respectively. When the row of a matrix is extracted
through an index, it will be assumed to be transposed into a
column vector. Pre-subscripts will indicate the iteration of an
iterative optimizer. Expectation with respect to the distribution
of and random variable R is denoted ER .

Consider an MLP with an input layer andL non-input layers.
Denote the number of neurons in layer 0 ≤ l ≤ L by n(l).
Denote an input to the network by x. Denote the random
weight matrix connecting layer l−1 to layer l by W

(l)
.Denote

the `2 norm by ‖ · ‖. Denote the activation function by σ. We
consider ReLU activations throughout.

2.2 Exchangeability
An exchangeable sequence of random variables (Q1, Q2, ...)
has the property that the joint distribution of the sequence is
invariant to finite permutations. That is, a sequence (Qi)i≥1

is exchangeable if (Q1, Q2, ...)
d
= (Qπ(1), Qπ(2), ...) for all

finite permutations π. To aid in readability we will omit the
index set in the subscript, so that (Qi)i≥1 is the same as (Qi)i.

Infinite exchangeable sequences are characterized as mix-
tures of IID random variables through de Finetti’s theorem.

Theorem 1. [Aldous, 1981] An infinite sequence Q = (Qi)i
is exchangeable if and only if there exists a measurable func-
tion f such that (Qi)i

d
=
(
f(A,Bi)

)
i
, where A and B are

mutually IID random variables uniform on [0, 1].

Generalizations of Theorem 1 to multi-dimensional ar-
rays exist [Kallenberg, 2006]. A matrix Q is row and col-
umn exchangeable (RCE) if its joint distribution is invari-
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Figure 1: Relative strength of probabilistic symmetries.

ant to row and column permutations. That is, Q is RCE if
(Qji)ji

d
= (Qπ1(j)π2(i))ji for all finite permutations π1, π2.

Theorem 2. [Aldous, 1981] An infinite array Q = (Qji)ji is
RCE if and only if there exists a measurable function f such
that (Qji)ji

d
=
(
f(A,Bj , Ci, Dji)

)
ji
, whereA,B,C, and D

are mutually IID uniform on [0, 1].

Intuition concerning the strength of exchangeability in the
context of probabilistic symmetries may be aided by the im-
plication graph shown in Figure 1.

2.3 Kernels of Random MLPs
There is a well-studied connection between the feature maps
in MLPs (and other neural network architectures) and the
kernel of a reproducing kernel Hilbert space (RKHS) [MacKay,
1992; Neal, 1994; Cho and Saul, 2009; Daniely et al., 2016;
Bach, 2017; Bietti and Mairal, 2017]. Consider the angle θ(l)

between two random signals σ(W
(l)
x) and σ(W

(l)
y) in the

lth hidden layer of an MLP for inputs x and y. We have

cos θ(l) = (1)

n(l)∑
j=1

σ
(
W

(l)
j · x

)
σ
(
W

(l)
j · y

)
√
n(l)∑
j=1

σ
(
W

(l)
j · x

)
σ
(
W

(l)
j · x

) n(l)∑
j=1

σ
(
W

(l)
j · y

)
σ
(
W

(l)
j · y

)
where W

(l)
j is the jth row of W

(l)
. We divide the numer-

ator and denominator by n(l)‖x‖‖y‖ and use the absolute-
homogeneity property of the ReLU σ(|a|z) = |a|σ(z) to
consider the scaled numerator

1

n(l)

n(l)∑
j=1

σ
(
Wj · x/‖x‖

)
σ
(
Wj · y/‖y‖

)
. (2)

Let x̂ = x
‖x‖ . Suppose that each row W

(l)
j of W

(l)
is IID

with all other rows (we relax this requirement later) and is
defined on some probability space (Ω,Σ, µ). Asymptotically
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Figure 2: Normalized kernel for a hidden layer with ReLU activa-
tions. Samples from a network with 1000 inputs and hidden units are
obtained by generating an orthogonal matrix R from a QR decompo-
sition of a random matrix containing IID samples from U [0, 1], then
setting x = R(1, 0, ..., 0)T and y = R(cos θ, sin θ, 0, ..., 0)T .

in the number of neurons n(l), the strong law of large numbers
implies that (2) converges almost surely to

E
[
σ(W

(l)
j · x̂)σ(W

(l)
j · ŷ)

]
=

∫
Ω

σ(W
(l)
j · x̂)σ(W

(l)
j · ŷ) dµ, (3)

which corresponds to an inner-product in feature space. The
kernel is positive semi-definite and uniquely defines an RKHS.
When µ is the product measure corresponding to an IID Gaus-
sian with variance E

[
(W

(l)
11 )2

]
and 0 mean, the kernel has a

closed-form expression known as the arc-cosine kernel (of
degree 1) [Cho and Saul, 2009], given by

E
[
(W

(l)
11 )2

]
2π

(
sin θ(l−1) + (π − θ(l−1)) cos θ(l−1)

)
, (4)

where θ(l−1) is the angle between x and y. We will refer
to (3) as the layer-wise kernel in layer l, denoted k(l)(x,y).
When (3) is normalized in the same fashion as (1), we will
call the resulting quantity the layer-wise normalized kernel.

2.4 Layer-wise Kernel in IID MLPs
Our analysis draws upon and extends results concern-
ing the layer-wise normalized kernels of MLPs with IID
weights [Tsuchida et al., 2018], which, for completeness, we
briefly review here. Construct a sequence {x(m)}m≥2 such
that for all m, x(m) ∈ R∞ and coordinates m+ 1,m+ 2, ...
of x(m) are all 0. Define the sequence {y(m)}m≥2 in the same
way, and additionally require that the angle θ(l−1) between
x(m) and y(m) is constant in m. Denote the randomly ini-

tialized weight matrix by 0W
(l)
. We would like to evaluate

lim
m→∞

E
[
σ(0W

(l)
j · x̂(m))σ(0W

(l)
j · ŷ(m))

]
. (5)

Sufficient conditions for the central limit theorem (CLT) are
given below. Let x(m)i denote the ith coordinate of x(m).

Hypothesis 3. lim
m→∞

m(1/4) maxmi=1
|x(m)i|
‖x(m)‖

and

lim
m→∞

m(1/4) maxmi=1
|y(m)i|
‖y(m)‖

are both 0.
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This condition is easily satisfied since for data points with
many non-zero entries, ‖x(m)‖ will grow like

√
m when com-

pared to |x(m)i|. Provided E
[
0W

(l)
11

]
= 0 and E

∣∣
0W

(l)
11

∣∣3 <
∞, Tsuchida et al. [2018] show that under Hypothesis 3,

σ
(

0W
(l)
1 · x̂(m)

)
σ
(

0W
(l)
1 · ŷ(m)

)
d−→ σ(Zx)σ(Zy),

(Zx, Zy) ∼ N (0,Σ) with Σ =

[
1 cos θ(0)

cos θ(0) 1

]
.

Letting Zx(m) = 0W
(l)
j · x̂(m), Zy(m) = 0W

(l)
j · ŷ(m),

σ(Zx(m))σ(Zy(m)) ≤ |Zx(m)||Zy(m)| ≤ Z2
x(m) + Z2

y(m).

The integral of the RHS is 2E
[
(0W

(l)
11 )2

]
, so the limit may

be brought inside the integral in (5) by Theorem 19 of Roy-
den [2010]. The resulting expectation is (4).

Figure 2 shows the normalized kernels for random weights
with PDF

∏m
i=1

β
2αΓ(1/β)e

−|wi/α|β . This PDF generalizes
the isotropic Gaussian PDF (β = 2) and the Uniform PDF
(β → ∞). The CLT result says nothing about the kernel
of trained networks whose weights are not IID. In §4 we
extend the CLT result to trained networks. We do this by first
exploring exchangeability in MLPs.

3 Exchangeability in MLPs
Suppose that for every l, the matrix (0W

(l)
ji )ji is IID and then

the weights evolve according to SGD over t iterations. The in-
dex j (which corresponds to the jth row of the random weight
matrix, or the jth neuron in layer l) is an arbitrary labeling;
one may permute these indices along with the corresponding
connection in layer l + 1 without changing the output of the
network or the joint distribution of the weights.

We show this for L = 3; the generalization to any L ≥ 2
will be straightforward. To start our argument, it is clear that
there is full exchangeability of the weights when the network
has been randomly initialized with IID weights and has not
yet been trained. More restrictively, we have the following.

Observation 4. Let a ∈ Rn(0)

and b ∈ Rn(3)

be inputs and
targets of an MLP. Suppose that the initial weights in each
layer 0W

(l)
are IID, and temporarily drop the pre-subscript.

Then for any bijective permutations π1 and π2,(
a,
(
W

(1)
π1(i)h

)
ih
,
(
W

(2)
π2(j)π1(i)

)
ji
,
(
W

(3)
kπ2(j)

)
kj
,b
)

d
=
(
a,
(
W

(1)
ih

)
ih
,
(
W

(2)
ji

)
ji
,
(
W

(3)
kj

)
kj
,b
)
. (6)

This generalizes to any network with one or more hidden
layers (L ≥ 2) because the permutation does not affect the
non-exchangeable elements a and/or b. Define g(l)

qp to be the

function that takes a, b and realizations of
(

0W
(m))

m∈[L]

and calculates realizations of 1W
(l)
qp according to an online

(batch size of 1) backpropagation update rule. Let g(l) be a
matrix-valued function, whose qpth element is g(l)

qp . We have

g(l)
(
a,b,

(
w(r)

)
r∈[L]

)
= w(l) − α ∂E

∂w(l)
,

for some cost function E
(
a,b;

(
w(r)

)
r∈[L]

)
and step-size α.

Denote the LHS of (6) by U and the RHS of (6) by Uπ . Then
by examining the backpropagation equations,

∂E

∂w
(l)
ji

∣∣∣∣∣
Uπ

=
∂E

∂w
(l)
π2(j)π1(i)

∣∣∣∣∣
U

.

By the continuous mapping theorem, we may apply g(2) to
both sides of (6) if g(2) is almost everywhere (a.e.) continuous.
Temporarily dropping the 0 pre-subscripts on the weights,

g(2)
(
a,
(
W

(1)
ih

)
ih
,
(
W

(2)
ji

)
ji
,
(
W

(3)
kj

)
kj
,b
)
,

d
=g(2)

(
a,
(
W

(1)
π1(i)h

)
ih
,
(
W

(2)
π2(j)π1(i)

)
ji
,
(
W

(3)
kπ2(j)

)
kj
,b
)
,

=

(
g

(2)
π2(q)π1(p)

(
a,
(
W

(1)
ih

)
ih
,
(
W

(2)
ji

)
ji
,
(
W

(3)
kj

)
kj
,b
))

qp

,

=

(
1W

(2)
π2(q)π1(p)

)
qp

, (7)

and the first line is equal to
(

1W
(2)
qp

)
qp

. This shows that

1W
(2)

is RCE. tW
(1)

is row but not column-exchangeable
and tW

(L)
is column but not row-exchangeable.

When any batch size M is used, the inputs a and b may be
replaced by sets {ai}i≤M and {bi}i≤M and (7) still holds. If
M is the size of the entire finite dataset, this corresponds to
gradient descent. We may use any a.e. continuous g(l) whose
evaluation commutes with index permutations in the input
(such as SGD, Adam [Kingma and Ba, 2015] or RMSprop).
Call such an update rule index commuting. By redefining g(2)

to calculate the weights at the tth iteration of SGD, one can
show that tW

(2)
is RCE for all t.

Theorem 5. Let L ≥ 3. Suppose that the initial weights in
each layer 0W

(l)
are IID. Suppose the network is trained

using an index commuting update rule. Then for all 2 ≤ l ≤
L− 1 and all optimizer iterations t ≥ 0, the weight matrices

tW
(l)

are RCE. For L ≥ 2, tW
(1)

is row but not column
exchangeable and tW

(L)
is column but not row exchangeable.

4 Kernels of Trained MLPs
We now extend the results of §2.4 to trained networks using the
results of §3. For the remainder of the paper we will drop the
pre-subscript t denoting the training iteration on the weights.

4.1 Layer-wise Kernel in Trained MLPs
We examine the limit inm of the layer-wise kernel in layer l for
a network with infinitely many RCE weights. By Theorem 1,
there exists some measurable function f and some mutually
independent A and B each uniform on [0, 1] such that

lim
m→∞

E
[
σ
(
W

(l)
1 · x̂(m)

)
σ
(
W

(l)
1 · ŷ(m)

)]
= lim
m→∞

∫
[0,1]

kA(x(m),y(m)) dµA, (8)
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where µA is the uniform probability measure on [0, 1] with
kA(x(m),y(m)) given by∫

[0,1]m

σ
(
fA(B) · x̂(m)

)
σ
(
fA(B) · ŷ(m)

)
dµB,

where
(
fA(B)i

)
i

=
(
f(A,Bi)

)
i

and µB is the uniform prob-
ability measure. We prove the following in Appendix A.

Proposition 6. Suppose that 2 ≤ l ≤ L − 1, E
∣∣W (l)

11

∣∣3 <

∞, E
∣∣W (l)

11 W
(l)
12

∣∣ < ∞, Hypothesis 3 is satisfied and

lim
m→∞

m∑
i=1

x̂(m)i = lim
m→∞

m∑
i=1

ŷ(m)i = 0 or E
[
W

(l)
11 W

(l)
12

]
= 0.

Then (8) is given by
1

2π

(
E
[
(W

(l)
11 )2

]
− E

[
W

(l)
11 W

(l)
12

])
(

sin θ(l−1) + (π − θ(l−1)) cos θ(l−1)
)
. (9)

Note that (9) and (4) are the same up to a scaling factor,
which cancels out after normalizing.

4.2 The Ergodic Problem
Unfortunately, (8) is not necessarily the inner product in fea-
ture space of an infinitely wide network. By Theorem 2,

1

n

n∑
j=1

σ
(
W

(l)
j · x̂(m)

)
σ
(
W

(l)
j · ŷ(m)

)
d
=

1

n

n∑
j=1

σ
(
fAC(Bj ,Dj) · x̂(m)

)
σ
(
fAC(Bj ,Dj) · ŷ(m)

)
,

for some measurable fAC(B1,D1) = (f(A,Bj , Ci, Dji)i,
which converges almost surely to the random variable

EB1D1

[
σ
(
fAC(B1,D1) · x̂(m)

)
σ
(
fAC(B1,D1) · ŷ(m)

)]
(10)

depending on A and C by the Birkhoff-Khinchin ergodic
theorem (see Appendix E). For the purposes of experimenting,
we make the following simplifying assumption.
Hypothesis 7. The following holds:

1

n

n∑
j=1

σ
(
W

(l)
j · x̂(m)

)
σ
(
W

(l)
j · ŷ(m)

)
p−→ E

[
σ
(
W

(l)
1 · x̂(m)

)
σ
(
W

(l)
1 · ŷ(m)

)]
.

Hypothesis 7 says that taking averages over j of the products
of activations in one network is equivalent to taking averages
over one fixed neuron of the products of activations in an
ensemble of independent networks. A sufficient condition
is that the measure is ergodic with respect to the row-shift
transformation. This condition is stronger than necessary. In
statistical mechanics, an “approximate ergodicity” applied to
sum functions is used to compare time averages with phase
averages [Khinchin, 1949; Kurth, 2014]. The Ergodic Problem
features heavily in the history of statistical mechanics [Moore,
2015]. It is our hope that by introducing this assumption into
the analysis of MLPs, we make further progress towards efforts
in connecting neural networks to statistical mechanics [Martin
and Mahoney, 2017]. In §5 we demonstrate that Hypothesis 7
is not inconsistent with our empirical observations.

5 Experiments
We illustrate our results with selected figures. Other datasets
and optimizers are investigated in the supplemental material.

5.1 Verification of Proposition 6
Architecture. We train an autoencoder with 4 layers and
3072 neurons in each layer on CIFAR10 [Krizhevsky and
Hinton, 2009] with pixel values normalized to [0, 1] using an
`2 objective. Weights are initialized with a variance of 2

nl
[He

et al., 2015].
Method. In Figure 3 we plot the empirical layer-wise nor-
malized kernel in each layer. The color of the points moves
from blue to red as the training iteration t increases. Each
sample is generated using Procedure 1. The numerical steps
ensure that the desired angle θ(l−1) is obtained between x and
y. The alphabetical steps ensure that

∑
xi =

∑
yi = 0.

Procedure 1 Sample θ(l−1)

Inputs datapoint x, θ(l−1) Output y at angle θ(l−1) to x.
a Set the last two coordinates of x to 0.
1 Sample random vector p orthogonal to x: Set all co-

ordinates of p to zero where x is non-zero and sample
remaining coordinates of p from U [0, 1]. Set last two
coordinates to 0. Normalize p so that ‖x‖ = ‖p‖.

b Set the second last coordinate of x to the negative sum
of all coordinates of x.

c Set the last coordinate of p to the negative sum of all
coordinates of p.

2 Return y = cos θ(l−1)x + sin θ(l−1)p.

5.2 Inputs with Non-Zero Sums
Consider a modification of the method described in §5.1: the
alphabetical steps of Procedure 1 are not performed. This
means that the sums

∑
x̂i and

∑
ŷi are no longer 0. However,

if E
[
W

(l)
11 W

(l)
12

]
= 0, Proposition 6 still applies. Note that

E
[
W

(l)
11 W

(l)
12

]
=

∫
[0,1]3

f(A,B1)f(A,B2) dµB1B2A

=

∫
[0,1]

( ∫
[0,1]

f(A,B1) dµB1

)2

dµA

= 0 iff
∫

[0,1]

f(A,B1) dµB1
= 0.

Also, by the strong law of large numbers,

1

n

n∑
i=1

W
(l)
1i

a.s.−−→
∫

[0,1]

f(A,B1) dµB1 .

Therefore, for finite n(l) if (En
(l)

)2 :=

max
j

((
1
n(l)

n(l)∑
i=1

W
(l)
ji

)2
)

is “small”, E
[
W

(l)
11 W

(l)
12

]
will
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Figure 3: Layer-wise normalized kernels for a trained MLP at iteration t, indicated by color. Batch-size of 256 used. First 4 columns: layers 1
to 4. Fifth column: full network. Last column: sample reconstructions on test data, indicating whether or not training converged. First 3 rows:
adam using step size 0.001, β1 = 0.9, β2 = 0.999, ε = [10−16, 10−8, 1]. Last row: SGD with constant learning rate 0.5.

be “small”. We are interested in finding optimizer hyperpa-
rameters that result in (En

(l)

)2 6= 0, which in turn results in
deviations from (9). We make the following observations:
(1) When Adam, RMSProp or Nadam [Dozat, 2016] are
used, as the hyperparameter ε decreases there is a sharp change
in (En

(l)

)2 and the mean squared error (MSE) of the observed
normalized kernel to the normalized arc-cosine kernel of de-
gree one measured at iteration t = 19000. When (En

(l)

)2

is small the kernel is approximately described by (9). See
Figures 4 and 5 and Appendices F and G.
(2) SGD using step sizes α that result in stable training gener-
ally have smaller (En

(l)

)2 than Adam, and thus the normalized
kernel agrees more closely with Proposition 6. See Figures 4
and 5 and Appendices F and G.

6 Discussion and Conclusion
We identified that the weights in hidden layers of MLPs are
RCE. Using this symmetry, we analyzed the kernels of trained
networks. Specifically, we found that the normalized kernel
remains invariant when the inputs have sums over their co-
ordinates of 0. When the sums are not 0, a bound which
depends on E[W

(l)
11 W

(l)
12 ] applies to the residual of the normal-

ized kernel to the normalized arc-cosine kernel. We derived a
measure (E(n(l)

)2 which, when close to 0, indicates whether
E[W

(l)
11 W

(l)
12 ] is close to 0 and thus whether the normalized

kernel remains approximately invariant during training.
When empirically comparing optimizers, those which result

in small E[W
(l)
11 W

(l)
12 ] have kernels which follow the normal-

ized arc-cosine kernel during training. The parameter ε present
in Adam and other optimizers can increase E[W

(l)
11 W

(l)
12 ], lead-

ing to qualitatively different kernels to the normalized arc-
cosine kernel. Changes in other hyperparameters may change
E[W

(l)
11 W

(l)
12 ], although we had difficulty finding instances

where changing α in SGD resulted in a kernel that did not
roughly match the normalized arc-cosine kernel without also
resulting in unstable training.

In contrast with works that analyze weight distributions
through an approximation of SGD by a stochastic differential
equation [Seung et al., 1992; Watkin et al., 1993; Martin and
Mahoney, 2017; Chaudhari and Soatto, 2018], we incorporate
very little knowledge of the learning rule into our theory. The
result is that our theory is perhaps more general than required.
Interestingly, our results still hold if we perform (stochastic)
gradient ascent on the weights. We believe our analysis would
benefit from including more knowledge of the update rule.
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Figure 4: As in Figure 3, but for inputs with non-zero sums as outlined in §5.2.

Figure 5: ∆k: MSE of kernel to normalized arc-cosine kernel nor-
malized to between 0 and 1. ∆W : (En

(l)

)2 normalized to between
0 and 1. Top: Adam using step size 0.001, β1 = 0.9, β2 = 0.999
varying ε. Bottom: SGD varying α.

Jacot et al. [2018] analyse a continuous-time approximation
of (not stochastic) gradient descent. In this dynamic, it is
shown that MLPs in function space follow a linear differential
equation in an infinite width limit. A central object of their
study is a positive-definite kernel, the neural tangent kernel,
which is shown to stay approximately constant during train-

ing. Also utilizing a kernel and working in function space,
Du et al. [2019] bound distances between functions trained in
continuous and discrete time dynamics in special cases and
investigate the surprising fact that certain models can achieve
zero training loss. Chizat and Bach [2018] present a unified
framework of these and other works under a training regime
called lazy training. We remark that it is easy to find networks
trained with Adam that do not exhibit approximately constant
kernels (for example, see the first row of Figure 4). These net-
works seem to out-perform those that do have constant kernels
during training. This is consistent with the view expressed
by Chizat and Bach [2018], that “the most competitive neural
networks are not trained in this regime [lazy training].”

In future work, we would like to examine the ESD of weight
and Hessian matrices without normality assumptions as in
previous works [Pennington and Bahri, 2017; Pennington and
Worah, 2017], perhaps using results concerning the ESD of
exchangeable random matrices [Chatterjee, 2006; Adamczak
et al., 2016].
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