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Abstract
Since the sure independence screening (SIS)
method by Fan and Lv [2008], many different
variable screening methods have been proposed
based on different measures under different mod-
els. However, most of these methods are designed
for specific models. In practice, we often have very
little information about the data generating process
and different methods can result in very different
sets of features. The heterogeneity presented here
motivates us to combine various screening meth-
ods simultaneously. In this paper, we introduce
a general ensemble-based framework to efficiently
combine results from multiple variable screening
methods. The consistency and sure screening
property of proposed framework has been estab-
lished. Extensive simulation studies confirm our in-
tuition that the proposed ensemble-based method is
more robust against model specification than using
single variable screening method. The proposed
ensemble-based method is used to predict attention
deficit hyperactivity disorder (ADHD) status using
brain function connectivity (FC).

1 Introduction
The evolution of data acquisition technologies and comput-
ing power has allowed researchers nowadays to collect and
store data with high dimensionality and complex structure
much more efficiently. Examples can be found in gene ex-
pression microarray data, single nucleotide polymorphism
(SNP) data, magnetic resonance imaging (MRI) data, high-
frequency financial data, and others. One common task
is to extract useful variables from a high dimensional fea-
ture space to explain or predict a response variable. Tra-
ditional variable selection methods such as forward selec-
tion, backward elimination and best subset selection become
computationally expensive or even infeasible at these con-
ditions. To address these problems, a family of penalized
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least squares based methods has been developed. Exam-
ples include Lasso and Adaptive Lasso ([Tibshirani, 1996;
Zou, 2006]), SCAD [Fan and Li, 2001], elastic net [Zou and
Hastie, 2005], and MCP [Zhang, 2010]. However, when the
dimensionality p is much larger than the sample size n or
even grows exponentially with n, the aforementioned penal-
ization methods can perform poorly or even become infeasi-
ble due to the simultaneous challenges of computational ex-
pediency, statistical accuracy and algorithm stability [Fan et
al., 2009]. For example, in MRI studies, images with dimen-
sion 1024×1024×200 can be acquired for each subject, and
due to the high cost of the MRI scanning, studies might only
contain less than 100 subjects. If we treat the signal from
each voxel as a feature, the dimension of feature space p is
much higher than the sample size n.

A natural idea to address these challenges is to reduce the
dimensionality p from a large scale to a relatively large scale
d using a fast screening algorithm, and then the ultrahigh-
dimensional problem can be greatly simplified into a mod-
erately high-dimensional one. Subsequently, standard penal-
ized variable selection methods can be applied to the remain-
ing variables. Fan and Lv [2008] first introduced the sure
independence screening (SIS) by ranking the marginal corre-
lation of each covariate and the response. The good numerical
performance and novel theoretical properties have made SIS
popular in ultrahigh dimensional reduction. As a result, SIS
and its extensions have been generalized to many important
settings including generalized linear model [Fan et al., 2010],
multi-index semi-parametric models [Zhu et al., 2011], non-
parametric regression [Fan et al., 2011], quantile regression
[He et al., 2013]. Other marginal screening methods based
on different measure of association between predictors and
response have also been studied, such as Kendall’s τ [Li et
al., 2012a], distance correlation [Li et al., 2012b]. We refer
to [Liu et al., 2015] for a more comprehensive list of refer-
ences.

Most feature screening methods are designed for specific
models, and they all enjoy good theoretical and numerical
performances under a set of conditions on the data generating
process. However, in practice, we rarely know the actual rela-
tionship between features and the response, and different co-
variates might have different relationships with the response.
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The heterogeneity presented here motivates us to consider
various screening methods simultaneously in practice, so the
natural question here is how to aggregate the results from
these screening methods to achieve more robust and accurate
performances. To the authors’ best knowledge, there is no ex-
isting work on addressing these problems. In this paper, we
propose an ensemble-based framework for combining results
from multiple variable screening methods.

It is well known that ensemble methods is usually more
accurate than a single learner, and they have already achieved
great success in many real-world tasks [Zhou, 2012]. In the
area of variable selection, the idea of ensemble has been
studied before ([Bach, 2008; Bolón-Canedo and Alonso-
Betanzos, 2019]). In section 2, we introduce the details of
ensemble-based variable screening. In section 3, we establish
the theoretical properties of proposed method. In section 4,
we conduct extensive simulation studies under different mod-
els. In section 5, we conduct a real data analysis using func-
tional magnetic resonance imaging (fMRI) data to predict at-
tention deficit hyperactivity disorder (ADHD) status. In sum-
mary, we have the following contributions and findings:

1. We propose an ensemble-based variable screening
framework to efficiently combine results from different
variable screening methods. The proposed framework is
very flexible, and can be paralleled.

2. We prove that the proposed ensemble-based variable
screening method inherits the nice theoretical properties
(e.g. consistency, sure screening property) of the base
candidates.

3. We conduct extensive simulation studies and real data
analysis to illustrate the numerical performance of
proposed framework. The proposed ensemble-based
method more robust again model specification than us-
ing single variable screening method, that is to say, even
though the proposed ensemble based screener may not
outperform all base screener in a specific model setting,
but it has the most consistent and robust performance
across different model settings.

2 Ensemble-based Variable Screening
2.1 A General Framework
We consider the problem of variable screening in ultrahigh-
dimensional feature space, where we observe response
variable Y and the associated covariate vector X =
(X1, . . . , Xp)T . Consider the conditional distribution func-
tion of Y given x, denoted by F (y|X) = P (Y < y|X).
Define two sets of variables:

A ={j : F (y|X) = P (Y < y|X)

functionally depends on Xj},
I ={j : F (y|X) = P (Y < y|X)

does not functionally depends on Xj}.
If j ∈ A, Xj is referred to as an active feature, otherwise
an inactive feature. The goal is to reduce dimensionality p
from a large scale to a moderate scale by a fast and efficient
method, while including all the variables in set A.

The key idea of the marginal screening procedure is to rank
all predictors by using a utility measure between the response

and each predictor and then to retain the top variables for fur-
ther investigation. It usually involves three steps:

1. Calculate the screening statistic vector F> =
[f1, . . . , fp]. For example, fj = cor(Xj , Y ) is used in
SIS.

2. Obtain the rank vector R> = [r1, . . . , rp] by ranking F
from largest to smallest (usually a large fj indicates a
stronger relationship between Xj and Y).

3. Choose the bγpc top ranked features as the active set Â,
and γ ∈ (0, 1) is predetermined. To be specific, the vote
vector V > = [v1, . . . , vp] with vj = I(rj ≤ bγpc).

Different screening methods usually result in different
ranking, and in the next section we introduce the concept of
variable screening ensembles to combine the results from dif-
ferent methods.

2.2 Constructing Variable Screening Ensembles
Generally, an ensemble is constructed in two steps: generat-
ing the base learners and combining them. To get a good en-
semble, it is generally believed that the base learners should
be as accurate as possible, and as diverse as possible. Con-
sider K base variable screening candidates, each one of them
returns screening utilities of all p variables. Now we intro-
duce the variable screening ensemble matrix:

W =


W>

1

W>
2

...
W>

K

 =


w11 w12 w13 . . . w1p

w21 w22 w23 . . . w2p

...
...

...
. . .

...
wK1 wK2 wK3 . . . wKp


where W>

i = [wi1, . . . , wip], i = 1, . . . ,K denotes the
screening utilities obtained using screening candidate i. Wi

can be the vector of the screening statistics vector Fi of all
p features, for example, the correlation between X and Y in
SIS.

If a single base variable screening candidate has been used
K times through bootstrapping or parameter tuning, we ob-
tain homogeneous ensembles. On the other hand, if multi-
ple screening candidates have been used, this leads to hetero-
geneous ensembles. Since the screening statistics produced
by different base candidates can have different scale and/or
range, Wi and Wj may not be comparable. In this case, we
can choose the rank of all p features Ri for Wi obtained us-
ing base candidate i. Another choice is to use the binary vote
Vi introduced in the last section. Intuitively, using the rank
R will be more robust compared to directly using screening
statistic F , and it will be more efficient compared to using bi-
nary vote V since V can be sensitive to the choice of threshold
parameter γ. In section 4, we further use numerical studies to
confirm this intuition. After obtaining the ensemble matrix,
we discuss how to efficiently combine the columns of the ma-
trix.

2.3 Aggregation Functions
After constructing the ensemble matrix, the next step would
be finding appropriate combination functions to aggregate
the results. A general combination function is a multivariate
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function that projects the j-th column of the ensemble matrix
to a real number, that is,

f(w1j , . . . , wKj)→ R.
There are many combination functions available in the lit-

erature [Zhou, 2012]. In our ensemble screening framework,
we consider two major types of combination functions.
Mean Combination: Taking means of prediction results is
a commonly adopted approach in machine learning litera-
ture [Nguyen et al., 2018]. In our approach, mean combina-
tion function combines the output of the screening algorithms
by taking the mean of each column in the ensemble matrix.
Provided the screening utilities associated with the j-th col-
umn as w1j , . . . , wKj , the mean ensemble function is defined
as

f(w1j , . . . , wKj) =
1

K

K∑
i=1

wij , j = 1, . . . , p.

Median Combination: Instead of choosing the mean of
w1j , . . . , wKj , we use the median, which is more robust when
those screening utilities are skewed or with outliers.

As an alternative to mean, median provides a more robust
result when the distribution of wij is skewed. For example,
we use the ranking vector R>i obtained from base candidate i
as each row of the ensemble matrix, W>

i . For active variable
Xj , if most base candidates return a small rank except for
one or two “outliers”, then the mean-aggregated result will
be largely influenced by these “outliers”, while the median-
aggregated result will still be robust. Formally we have

f(w1j , . . . , wKj) = Median {w1j , . . . , wKj} , j = 1, . . . , p.

2.4 Variables Selected
Denote the combined information of the ensemble ma-
trix by applying mean or median aggregation function as
{E1, . . . , Ep}. For any given threshold γ ∈ (0, 1), the bγpc
top ranked predictors are selected as the active set:

Â = {1 ≤ j ≤ p :|Ej |is among the first
bγpc largest of all}.

3 Technical Results
As variable screening only serves as the first step in high di-
mensional data analysis, the most important property as far
as practical application is concerned the sure screening prop-
erty [Fan and Lv, 2008]. That is, with probability approach-
ing 1, the screening algorithm keeps all of the true active vari-
ables.

P (A ⊆ Â)→ 1.

We require that the sure screening property holds for each
screening algorithms. For the quantile based variable screen-
ing algorithms, e.g. QaSIS , we require the sure screening
property holds at each quantile level τk which means the se-
lected variables contain the true active set Ak with a proba-
bility tending to one.

Regarding the screening utilities, we require all the screen-
ing algorithms in the ensemble have consistency of the
screening utilities, that is for 1 ≤ i ≤ K,

P ( max
1≤j≤p

|ŵij − wij | > δn)→ 0,

wherewij is the corresponding screening utility for screening
algorithm i and variable j, ŵij is an estimator for wij , and δn
is some threshold number that is usually related to n. This
requirement is reasonable as it is shown in most of the vari-
able screening literatures [Fan and Lv, 2008; Fan et al., 2011;
He et al., 2013; Zhu et al., 2011].

Lemma 3.1 (Consistency of aggregated screening utilities)
Given number of K screening algorithms which are based
on screening utilities wij , i = 1, . . . ,K and j = 1, . . . , p.
Denote f as the combination function. Assume the following:

P ( max
1≤j≤p

|ŵij − wij | > δn)→ 0

|f(ŵ1j , . . . , ŵKj)− f(w1j , . . . , wKj)| ≤ max
1≤i≤K

|ŵij −wij |,

in which δn is some threshold constant related to n. We have
the consistency of the aggregated screening utility which is:

P ( max
1≤j≤p

|f(ŵ1j , . . . , ŵKj)−f(w1j , . . . , wKj)| > δn)→ 0.

Theorem 3.2 (Sure screening property) Denote wj as the j-
th aggregated screening utility, and w∗j as the sample esti-
mate. Denote A as the active variable set. Assume min

j∈A
wj >

2δn and our screening method select the variables with w∗j >
δn. Given the assumptions of the previous lemma, we have
the sure screening property for our ensemble screening ap-
proach:

P (A ⊆ Â)→ 1,

in which δn is some threshold number related to n.

Remark: To guarantee the sure screening property holds for
our ensemble procedure, we just need δn to be the smallest
among all the thresholds we combined. As long as all of the
candidate methods show sure screening property, given the
assumptions in Lemma 3.1 hold, our ensemble approach also
enjoys sure screening property.

Lemma 3.3 (Lower bound for simultaneous screening prob-
ability) Denote T̂1 and T̂2 as two selected sets by applying two
different screening algorithms. Define T̂ simu = T̂1 ∩ T̂2 as
the variable set selected by both of the screening algorithms.
Define Π̂1

K , Π̂2
K , Π̂simu

K as the probabilities of selected sets
of screening algorithm 1, screening algorithm 2 and the si-
multaneous set containing a variable setK, K ⊆ {1, . . . , p}.
Then we have:

Π̂simu
K ≥ 2 min

{
Π̂1

K , Π̂
2
K

}
− 1.

Lemma 3.4 Let K ⊂ {1, . . . , p} be a set of variables and T̂i
be the set of selected variables by applying a variable screen-
ing algorithm i. If
max

{
P (K ⊆ T̂1), P (K ⊆ T̂2)

}
≤ ε, then

P (Π̂simu
K ≥ ξ) ≤ ε2/ξ.

Theorem 3.5 (Error control) Denote S = |T | and N = |F|
as the number of underlying true important and unimpor-
tant variables. Correspondingly, denote Ŝ = |T ∩ T̂ simu|
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and N̂ = |F ∩ F̂simu| as the number of estimated impor-
tant and unimportant variables. In addition denote V =

E(|F ∩ T̂ simu|) as the expected number of falsely selected
variables in T̂ simu. Assume exchangeability which is P (k ∈
T̂ ) = E(N̂)/N , where k ∈ (1, . . . , p). Also assume that
the candidate variable screening process is not worse than
random guessing. Given the screening threshold Tn and the
threshold of selection probability πthr, we have:

E(V ) ≤ 1

2πthr − 1

T 2
n

p
.

Remark: If a variable is important, the underlying true
ranking of the variable is higher than the other unimportant
variables. With a threshold Tn, the true important variables
are supposed to rank within Tn. If Tn is a relative small
number say 30, and the probability threshold πthr is decently
greater than 50%, given p = 1000 the expectation number
of falsely discovered variables could be controlled within a
small number. Intuitively, when each candidate screening
method is good enough and the threshold Tn is small, the
number of falsely selected variables could be controlled at a
very low level.

4 Numerical Studies
4.1 Simulation Settings
In this section, we demonstrate the numerical performance of
our proposed approach. For the base screening candidates,
we consider three popular methods, the SIS in [Fan and Lv,
2008], the sure independence ranking and screening (SIRS)
in [Zhu et al., 2011], and the quantile adaptive sure inde-
pendence screening (QaSIS) in [He et al., 2013]. The SIS is
based on linear model, and both SIRS and QaSIS are model
free. These three methods all have their advantages and dis-
advantages, and none of them uniformly performs better than
the others in all models. For QaSIS, different quantile lev-
els can be used for the screening, we first consider the en-
semble of QaSIS with different quantile levels, and there will
be a more homogeneous scenario. Secondly we consider a
more heterogeneous case by combining all these three differ-
ent methods.

We consider two evaluation metrics: the first one isR, that
is the smallest number of features that we need to include to
ensure that all the active variables are selected; the second
one (denoted by S) is the proportion of the active predictors
selected when the threshold Tn = bn/ log(n)c is adopted.
An effective variable screening procedure is expected to have
the value of R reasonably small comparing to the number
of active variables and the value of S close to one. All the
experiments have been repeated 100 times, and the median
and interquartile range (IQR) have been reported for both R
and S .

Depending on the choice of Wi in the ensemble matrix
and the aggregation function, different variable screening en-
sembles can be obtained. We use VSrE (Variable Screening
Ensemble), VSrE-R and VSrE-V to denote the ensembles ob-
tained by choosing W as the original screening statistic F ,
the rankR and the binary vote V respectively (defined in sec-
tion 2.1). For the aggregation function, mean and median
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Figure 1: Comparisons of different ensemble-based methods via
combining QaSIS with different quantile levels under Model 1. Each
line here represents different choices of quantile set with the num-
ber in the bracket represents the number of quantile levels used. For
each method under each model, median log(R) and its IQR (error
bar) are presented.

are used. For example, mean-based ensemble is denoted as
VSrE(mean). Note that the median aggregation function for
the vote based VSrE may not be a good choice since median
is not a good summary statistics for binary data.

4.2 Models Settings
We consider the following four models, from linear, non-
linear to heteroscedastic cases. The random error term ε fol-
lows a standard normal distribution in all four models and is
independent of X.

Model 1(n = 200, p = 2000) [Fan and Lv, 2008]: This
is a model of the form Y = Xβ + ε, in which all the
columns of X are generated from a standard normal distri-
bution. There are in total eight true active predictors which
are generated as follows: set a = 4 log(n)/n

1
2 and the coef-

ficients corresponding to the active predictors are derived by
(−1)u(a+ |z|), where u follows a Bernoulli distribution with
p = 0.4 and z is drawn from a standard normal distribution.

Model 2(n = 200, p = 2000) [Zhu et al., 2011]: The
random data is generated from Y = 2(X1 + 0.8X2 +
0.6X3 + 0.4X4 + 0.2X5) + exp(X20 + X21 + X22) · ε,
where X = (X1, X2, . . . , X2000) follows a multivariate nor-
mal distribution with mean 0 and covariance Σ = (σij)p×p
with σij = ρ|i−j|. We consider ρ = 0.8 here. The number of
active variables here is 8.

Model 3(n = 400, p = 1000) [Fan et al., 2011]:
First, define the following functions g1(x) = x;
g2(x) = (2x − 1)2; g3(x) = sin(2πx)/(2 − sin(2πx));
g4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin(2πx)2 +
0.4 cos(2πx)3 + 0.5 sin(2πx)3. The random data are gener-
ated from: Y = 5g1(X1)+3g2(X2)+4g3(X3)+6g4(X4)+√

1.74ε, where X = (X1, X2, . . . , X1000) has the similar
structure as in Model 2 with ρ = 0.4.

Model 4(n = 400, p = 5000) [He et al., 2013]: Y =
2(X2

1 + X2
2 ) + [10−1 exp(X1 + X2 + X18 + X19 + . . . +

X30)] · ε., where X = (X1, X2, . . . , X5000) has the similar
structure as Model 2 with ρ = 0.8. The number of active
variables here is 15.
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Figure 2: Boxplots of log(R) (upper) and S (lower) for ensemble-
based screening methods by combining QaSIS with different quan-
tile levels under Model 1. Quantile level set T2 with K = 10 is used
here.

4.3 Combining Quantile Levels
We first consider VSrE constructed by applying QaSIS sepa-
rately on different quantile levels. In order to show the ef-
fect of different choices of quantile sets, we show the re-
sults of applying four different quantile sets which have 5, 10,
19 and 37 equally spaced quantile levels respectively as fol-
lows: T1 = {0.1, 0.3, . . . , 0.9}, T2 = {0.05, 0.15, . . . , 0.95},
T3 = {0.05, 0.1, . . . , 0.95}, T4 = {0.05, 0.075, . . . , 0.95}.
As an illustration of the choice of VSrEs and combination
functions, all five types of methods are applied. Model 1 is
used for this simulation. The line chart in Figure 1 shows the
comparison of single screening method (QaSIS(0.5) and Qa-
SIS(0.75)) and the proposed ensemble-based methods using
4 different sets of quantile levels, while the boxplots in Figure
2 focus on the case when quantile level set T2 with K = 10
is used. From Figure 1 and Figure 2, we have the following
observations:

1. All proposed ensemble-based methods outperform the
single base screening method, with regard to bothR and
S .

2. The performance of ensemble-based method improves
with the increase of the number of base screening meth-
ods K. But the improvement becomes substantial as K
reaches a certain level, while the computation time in-
creases linearly with K.

3. When the screening statistic is comparable across en-
semble candidates, both mean- and median- based VSrE

Figure 3: Comparison of proposed ensemble-based methods (solid
lines) and single ensemble candidates (dash lines) under different
model settings. For each method under each model, median log(R)
and its IQR (error bar) are presented. Note that the ensemble-based
VSrE-R here is obtained by combining QaSIS(0.75), SIRS and SIS.
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Figure 4: Boxplots of log(R) (upper) and S (lower) for different
variable screening methods under Model 2. Note that the ensemble-
based VSrE-R here is obtained by combining QaSIS(0.75), SIRS
and SIS.

and VSrE-R provides reasonably good results.

4.4 Combining Different Variable Screening
Methods

Instead of constructing a VSrE by applying QaSIS on differ-
ent quantile levels, we could apply different screening meth-
ods to the sample and combine the results. In the follow-
ing, we show the power of simply combining three commonly
used variable screening methods which are SIS, SIRS and Qa-
SIS. Quantile level 0.75 is used for QaSIS. As the screening
utilities of different methods may have very different magni-
tudes, it is more appropriate to use VSrE-R in order to avoid
the situation that some screening methods with relative large
screening utilities might dominate the combined result.
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Figure 3 compares the ensemble-based VSrE-R(mean) and
VSrE-R(median) with the single screening candidates under
Model 1 to Model 4. Figure 4 provides more detailed results
on Model 2 about both R and S . Based on Figure 3 and
Figure 4, we have the following observations:

1. The proposed VSrE-R(median) has the most robust per-
formance across all four models.

2. Each ensemble candidate has its own advantage: SIS
performs the best under Model 1, SIRS under Model 3
and QaSIS under Model 4. The ensemble-based meth-
ods inherit the good performance of the base screening
candidates, while still robust to model misspecification
as long as some of the base learners perform reasonably
well.

3. For the aggregation function, median is a more robust
choice.

5 Real Data Analysis
Attention deficit hyperactivity disorder (ADHD) is a brain
disorder marked by an ongoing pattern of inattention and
hyperactivity-impulsivity that interferes with functioning or
development. Recent development of medical imaging such
as functional magnetic resonance imaging (fMRI) and diffu-
sion tensor imaging (DTI) shows promising potential in pre-
dicting patients outcomes and understanding the underlying
pathophysiology of diseases [Greicius et al., 2007].

We use the ADHD-200 Consortium data which is a pub-
licly available resting-state fMRI (rs-fMRI) data [Milham et
al., 2012] in this study. fMRI measures brain activity by de-
tecting changes associated with blood flow [Huettel et al.,
2004]. This data set contains 120 subjects (n = 120) from the
NYU site (New York University Child Study Center) of the
ADHD-200 Consortium, 42 are typically developing children
showing ADHD negative and 78 are diagnosed as ADHD.
The Anatomical Automatic Labeling (AAL) atlas [Tzourio-
Mazoyer et al., 2002] was used for the parcellation.

In this study, our goal is to find which brain connectivity
pair of ROIs (region of interest) is contributing to the ADHD
express levels hence each brain connectivity is considered to
be a variable. For each subject, there are 172 time points
and the AAL has 116 ROIs. We obtain the mean time se-
ries for each of the 116 regions by averaging the fMRI time
series over all voxels in the region, hence initially we have
p = (116 × 116 − 116)/2 = 6670 predictors. Because of
the large p small n scenario (n = 120, p = 6670), a variable
screening procedure is necessary to remove some noise brain
connectivities in order to apply lower dimensional variable
selection approaches. We apply VSrE-R(median) by com-
bining SIS, SIRS and QaSIS with quantile level 0.75 and use
QaSIS at quantile level 0.75 as a comparison. In the variable
selection step, we employ both LASSO and SCAD. The tun-
ing parameters of LASSO and SCAD are selected. In the
next step, we choose those ROI connectivities that are si-
multaneously selected by both LASSO and SCAD. For the
classification, we adopt the support vector machine classifier
(SVM) [Hearst et al., 1998] with linear kernel. All tuning
parameter are selected by 10 folds cross validation.

Unlike the simulation settings, we do not know the true ac-
tive variables, so we can not use metrics likeR and S . Instead
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(a) Results based on proposed ensemble-based VSrE
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(b) Results based on QaSIS

Figure 5: Prediction accuracy of ADHD status using single screen-
ing candidate (QaSIS (0.75)) and proposed ensemble-based method

we measure the usefulness of the selected features by their
predictive power. Figure 5 shows the prediction accuracy us-
ing 100 bootstrapped samples. The top panel is the histogram
of accuracy using ensemble-based method while the bottom
panel is the one using QaSIS with quantile level 0.75. We can
see a substantial improvement using the proposed method.

Also, some of the partial correlations screened out by the
proposed ensemble-based method include regions associated
with a network called the default-mode network, which is a
large and robustly replicable network of brain regions that is
associated with task-irrelevant mental processes and mind-
wandering. Similar findings are reported in [Uddin et al.,
2008; Tian et al., 2006].

6 Discussion
In this paper, we introduce a general ensemble-based frame-
work to combine results from different variable screening
methods. The simulation studies confirm our intuition that
the ensemble-based methods indeed inherit the good perfor-
mance of the candidates, that is to say, as long as some candi-
dates have decent performance, the ensemble-based method
will work reasonably well. This is very important in prac-
tice, since when we do not have much information about the
actual data generating process, the ensemble-based methods
will be a more robust and safer choice than relying on a sin-
gle method. Also, we find that the median rank-based ag-
gregation method has the most robust performance. It is also
worthy to point out that the proposed framework can be eas-
ily implemented in a parallel way so it will not add too much
computation burden.
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