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Abstract

Multimodal sentiment analysis combines informa-
tion available from visual, textual, and acoustic
representations for sentiment prediction. The re-
cent multimodal fusion schemes combine multiple
modalities as a tensor and obtain either; the com-
mon information by utilizing neural networks, or
the unique information by modeling low-rank rep-
resentation of the tensor. However, both of these
information are essential as they render inter-modal
and intra-modal relationships of the data. In this
research, we first propose a novel deep architecture
to extract the common information from the multi-
mode representations. Furthermore, we propose
unique networks to obtain the modality-specific in-
formation that enhances the generalization perfor-
mance of our multimodal system. Finally, we in-
tegrate these two aspects of information via a fu-
sion layer and propose a novel multimodal data fu-
sion architecture, which we call DeepCU (Deep
network with both Common and Unique latent in-
formation). The proposed DeepCU consolidates
the two networks for joint utilization and discov-
ery of all-important latent information. Compre-
hensive experiments are conducted to demonstrate
the effectiveness of utilizing both common and
unique information discovered by DeepCU on mul-
tiple real-world datasets. The source code of pro-
posed DeepCU is available at https://github.com/
sverma88/DeepCU-1ICAI19.

1 Introduction

Recent developments in deep learning techniques has led
tremendous success in Sentiment Analysis and emotion
recognition. Despite of the recent multitude efforts utilizing
language for sentiment analysis, a core research challenge for
this domain is the efficient utilization of multimodal represen-
tations such as voice and visual gestures for sentiment pre-
diction [Lahat et al., 2015; Baltrusaitis et al., 2018]. There
is a growing trend of sharing opinion videos on social me-
dia platforms (Facebook, YouTube, etc.) which comprise of
language, visual-gestures, and acoustic as multimodal repre-
sentations. Combining the unimodal representation for senti-
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Figure 1: A typical Multimodal Sentiment Analysis System

ment analysis becomes crucial as the combined information
from multiple modalities promises better generalization ca-
pabilities over traditional text-based schemes [Baltrusaitis et
al., 2018]. Figure 1 illustrates a typical multimodal sentiment
analysis systems, where the utterance “That’s — that’s true” is
ambiguous and can be perceived as positive or neutral senti-
ment. However, on combining speaker’s visual gesture and
acoustic helps us in identifying the sentiment of the speaker.

Although the fusion of interacting modalities i.e. acoustic,
visual, and language often improves the generalization per-
formance, there are various scenarios with real-world datasets
which must be handled properly while performing fusion,
otherwise the joint representation might become futile. A
common scenario in this regard is the occurrence of missing
values in the unimodal representations [Lahat er al., 2015]
which leads to futile joint representations. For visual features
missing values can occur due to several reasons for example
poor lighting in the opinionated video, the speaker is wear-
ing accessories (hat, glasses etc.) or covers his face while
laughing. Similarly, for the auditory signal factors like voice-
echo, ambient noise can cause missing values in the feature
set. Figure 2, illustrates a motivating example presenting lim-
itations with the current state of the art fusion techniques i.e.
TFN [Zadeh et al., 2017] shown as A., LMF [Liu et al., 2018]
shown as B.; and superiority of our proposed DeepCU shown
as C. in Figure 2 when faced with missing values.

In Figure 2, to obtain the joint representation from acoustic
and language modalities the TFN and the LMF utilizes an
outer product on the augmented features. This results in both
the bi-modal and the unimodal features in joint representation
(as tensor). However, the joint representation in all cases is
much sparse (contains more missing values) than the acoustic
modality and the learning mechanisms of both the TFN and
LMF fail to efficiently extract information in this scenario.
Our proposed DeepCU can handle the missing value scenario
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Figure 2: Comparison of missing values (interrogation mark ‘?”) scenarios by State of the art A. Low-rank Multimodal Fusion (LMF),
B. Tensor Fusion Networks (TEFN), and C. our Proposed DeepCU.

due to the following:

1. The convolution kernels split the joint representation
into overlapping segments while performing feature ex-
traction which reduces the impact of missing values.

2. Factorization Machines (FMs) obtaining modality-
specific unique information are robust with sparse fea-
ture vectors which subsides the impact on DeepCU’s
performance and information discovery when the joint
representation is futile.

3. Learning unshared latent representation for common
and unique networks ensures that latent-embeddings of
the superior representations remain unaffected by in-
fluences of inferior representations (i.e. gradient from
futile representation). This restriction enforces latent-
embeddings to attain complementary information and
provides more expressiveness while performing fusion
in the higher layers.

Motivated by the above points, we propose a novel deep
common and unique feature extraction technique for mul-
timodal data fusion, which we call as DeepCU. Our pro-
posed DeepCU has two components 1) unique sub-network
which obtains information specific to individual modalities
and; 2) common sub-network which obtains combined infor-
mation from joint (multi-mode) representations by using pro-
posed deep-convolution tensor networks. Information from
the common and the unique sub-networks is integrated by a
fusion layer to obtain an integrated output.
The main contribution of this work are as follows:

I. We design a consolidated deep network for joint utiliza-
tion and discovery of both the common (multi-mode)
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and unique (mode-specific) properties of the multimodal
data for sentiment analysis.

II. Our proposed DeepCU is conceptually more expressive
than existing state of the art (TFN and LMF) as it cap-
tures non-linear multi-mode interactions exhibiting in
the tensorial representation within our common network
sub-network. Moreover, our unique sub-network obtains
both linear and factorized non-linear (quadratic) feature
relations which mitigates the missing value scenarios
and enhances the generalization capability of DeepCU.

III. We perform comprehensive experiments on multimodal
CMU-MOSI and POM datasets and demonstrate the ef-
fectiveness of utilizing both common and unique latent
information with comparisons to other techniques.

2 Related Work

We focus our review on recent neural based frameworks for
multimodal data fusion proposed in the literature. In [Lin er
al., 2015] a bilinear-CNN is proposed to obtain bi-modal in-
teractions among features obtained from two heterogeneous
CNNs. However, the bilinear layer required parameter es-
timation of a quadratic number of neurons and hence prone
to over-fitting. This limitation is alleviated in [Fukui et al.,
2016] which introduces an alternate formulation of the bilin-
ear layer and obtains its compact representation by utilizing
sophisticated neural based factorization schemes.

However, the above fusion schemes only express the bi-
modal (or tri-modal) interactions from unimodal represen-
tations either as: a) inter-modal (outer product) or b) intra-
model (simple concatenation) based representations. But, uti-
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lization of both the intra-modal and inter-modal representa-
tions are proven helpful in many machine learning tasks [Liu
etal.,2013; Verma et al., 2017; Verma et al., 2018]. In this re-
gard, Tensor Fusion Layer (TFL) is proposed in [Zadeh et al.,
2017] which leverages the expressiveness of both the inter-
model and the intra-model fusion schemes.

The TFL applies bilinear product by augmenting the uni-
modal representations with an additional feature of constant
values equal to 1. The outer product on the augmented uni-
modal representations now yields two sets of information: 1)
the bi-modal (or tri-modal) interactions in the form of 2D-
tensor (3D-tensor) and 2) the raw unimodal representations of
the modalities. Mathematically the TFL for bi-modal interac-
tions can be expressed as in Equation (1), where 1 € R™ and
x9 € R™ are feature vectors from two different modalities

TFL(x1,x2) =X = {ml] ® {902] _ {m QX2 X1

1 1 T2 1 )

‘®’ represents the outer product and X € R(*+1)x(m+1),
Tensor Fusion Networks (TFN) proposed in [Zadeh et
al., 2017] learns a weight tensor W € R(»+1)x(m+1)xk apq
a set of feed-forward layers to obtain the combined informa-
tion from X. The TFN outperformed all the previous fusion
schemes for multimodal sentiment analysis on CMU-MOSI
dataset as it leverages the expressiveness offered by both the
bi-modal and unimodal information exhibiting in the joint
representations obtained via TFL. However, the dimension-
ality of the weight tensor W increases exponentially by in-
creasing the number of unimodal representations for fusion
and hence the TFN is not scalable [Liu e al., 2018].
Low-rank Multimodal Fusion (LMF) [Liu et al., 2018]
alleviates the scalability issues with TFN by approximating
lower dimensional modality specific factors (commonly ref-
ereed as Rank-k tensors in CP decomposition [Liu ef al.,
2013]). The LMF, the weight tensor W is equivalently
expressed as W= (W1 ® W), where W € R("TDxk,

W, € Rim+1)xk, Extracting of information from X is
now reformulated as: (fcl X Wl) ® (1272 X Wg), where

&; = [z, 1]T; and ‘®’ is the element-wise product operator;
and ‘x;’ is the mode-i product between tensor and matrix.
Hence, explicitly learning higher dimension weight tensor W
with TEN is not required. The LMF is a current state of the art
on CMU-MOSI dataset without any contextual information.

Approaches like [Zadeh et al., 2018b; Poria et al., 2017,
Zadeh et al., 2018a] incorporates contextual information from
multimodal representations utilizes an attention mechanism
to incorporate the information available from all utterances
of the same speaker which enables them to model the com-
plex dynamics of inter-modality relationships efficiently. Al-
though these techniques are superior than the above schemes
but they requires additional information like the identity of
the speaker, the sequence of the utterance-sentiments while
modelling their fusion schemes. This additional information
might not be available in the general scenarios.

3 Proposed Methodology

Contrary to the existing fusion schemes we aim to utilize both
the common and the unique information for multimodal data
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Fusion Sch Deep & Inter  Modality C luti Unshared
uston schemes Shallow Modality ~Specific onvolution Embeddings
DeepFM | v X X X X
TEN | x v v X X
LMF | x v v X X
DeepCU (proposed) | v v v v

Table 1: Comparison of multimodal data fusion models

fusion. To this end, we first propose two sub-networks, i.e.,
1) unique network for obtaining modality-specific features
(described in Section 3.1) and; 2) common network which
consists of proposed deep-convolution tensor networks (de-
scribed in Section 3.2). The latent space for the unique infor-
mation and the common information is unshared (i.e. influ-
enced only by gradient of their respective sub-network) and
allows DeepCU to obtain complementary information with
both the sub-networks. Later, these two kinds of informa-
tion is integrated via a fusion layer (described in Section 3.3
which allows joint optimization and information discovery in
common and unique network’s) to ¢ as the final prediction
from DeepCU. The differences and similarities between ex-
isting multimodal data fusion techniques and the proposed
DeepCU are summarized in Section 3.

The raw feature vectors from a single utterance for acous-
tic and visual modalities are denoted as z, € R'*¥%« and z, €
R!**v respectively, where k, and k, represents the dimen-
sionality of the feature vectors. For language modality the
raw features are word-embeddings denoted as z; € RIxsixdi
where s; is the sequence length of the embeddings and k; is
the dimensionality of each sequence vector. The latent space
(or embeddings) obtained from these features for the com-
mon and unique sub-networks are unshared and influenced
only by their respective networks. This restriction allows both
networks to learn complementary feature representations at
lower layers which enhances their expressiveness in the fu-
sion layer. Besides, optimizing unshared latent space is em-
pirically shown beneficial in [He and Chua, 2017].

3.1 Unique Network

The modality-specific information is obtained by utilizing
Factorization Machines (FMs). There are two main motiva-
tions behind utilizing FMs instead of any other shallow learn-
ing technique (Logistic Regression, SVM or, a single fully-
connected layer etc.) for extracting the unique information
from individual modalities as:

1. FMs has linear time complexity and it models both first
and second-order factorized interactions from feature
vector which enhances its expressive capabilities over
other shallow techniques.

2. Real-world datasets often consist of missing values and
FMs are capable of dealing with sparsity as they model
feature interactions with factorized representations.

Prior to utilizing FMs, the feature vectors from unimodal-
ities are processed via sub-embeddings vectors denoted as
fra,, fru, and frag, to extract latent features from the z,,
(acoustic), z, (visual), and z; (language) respectively. The
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sub-embeddings network for acoustic and visual modalities
is a single feed-forward linear layer. Whereas, for language
modality the sub-embeddings network comprises of LSTM
[Hochreiter and Schmidhuber, 1997] followed by a single
feed-forward layer. FMs are then trained independently on
frm,, frm,. fra, to obtain yy, ya, and y;, as predicted
sentiment from their respective modalities. We briefly dis-
cuss the details of FMs before presenting the procedure of
unique information extraction.

Factorization Machine FMs were originally proposed for
recommendation systems [Rendle, 2010s]. They are widely
utilized for information extraction especially when dealing
with extremely sparse feature sets. Given a sparse real valued
feature x € R", FMs estimates the targeti.e. Yrar(z) € R by
modelling all interactions between each pair of features via
factorized interaction parameters as below:

n n n
YFM(z) = Wo + Z w;T; + Z Z UiTUj Ly (2)
i=1 i=1 j=i+1
where wy is the global bias, w € R™ models the interaction
of the i-th feature to the target. The v v; term denotes the
factorized interaction, where v; € R¥ denotes the latent vec-
tor of size k for feature i, and yr () is the predicted value.

Extracting Acoustic-Specific Unique Information
The latent embeddings denoted as fp,, € R'** are ob-
tained from the acoustic features z,, as below:

fFMa = U(za X Wrm, + bOFMa) 3)

where Wgyy, and by, are the sub-embedding network
hyper-parameters and o is the activation function. The
unique acoustic information is the obtained by utilizing
FM in Equation (2) on the latent embedding obtained as

ya = yFM(.fFMa)'

Extracting Visual-Specific Unique Information

The latent embeddings, f ), from z, are obtained analo-
gous to the acoustic sub-embedding network. The unique vi-
sual information is then obtained as yv = §p s ( Frary):

fru, = U((zv X WFIWU) + bOFMU) “4)

Extracting Language-Specific Unique Information
The latent embeddings denoted as f .y, € R'** are ob-
tained from the language features z; as below:

fFMl = U(LSTM(ZZ) X Wrnm, + boFMl) )

where Wy, and by, are the sub-embeddings networks
hyper-parameters. The unique language specific information
is then obtained as y;, = gFM(fFMl).

3.2 Common Network

To obtain the common information from multi-mode repre-
sentations we propose a deep convolution-tensor network. In
this regard, we first obtain joint representation as tensors from
modalities by performing outer product on their latent embed-
dings. These tensors are naturally multi-dimensional where
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each element of the tensor represents the interaction strength
between the elements of the fusion-modalities. Therefore
we applied convolution-kernels on these tensors as they are
non-linear feature extractors and generalize better than feed-
forward layers [Kim et al., 2016]. Utilizing convolutions on
the joint representations alleviates the need of factorization in
DeepCU and also makes it highly scalable.

Analogous to the unique network the unimodal represen-
tations are processed via sub-embeddings networks to obtain
latent embeddings. Then the outer product is utilized to cap-
ture joint representations as tensors from these embeddings.
Convolution kernels of appropriate dimensions are then ap-
plied to the tensors for feature extraction. To reduce the im-
pact of missing values in our common network we obtain
multiple sets of combined representation as below:

T4y bi-modal representation from acoustic & visual.

T4 1, bi-modal representation from acoustic & language.

Ty 1, bi-modal representation from visual & language.

T Ay 1 tri-modal representation from acoustic, visual, &
language.

The motivation to obtain multiple sets of tensor representa-
tion is that if assuming any one of the modalities (for example
acoustic) has missing values. Then, the tensorial representa-
tions obtained with the latent embeddings of this modality
(i.e. T'ayv,Tar, and T4y 1) are affected but not the other ten-
sor representations (i.e. Ty ). Moreover this information
loss is further subsided by the information obtained by the
corresponding unique network. Again, the latent embeddings
for each tensor pair in the common network are unshared
which enables DeepCU to obtain complementary information
within each tensorial representation.

Extracting Combined Information from the Bi-Modal
Interactions of Acoustic and Visual Modalities

The latent embeddings for the acoustic (f4y € R**¢) and
visual features (fir 4 € R'**v) are obtained as below:

fav = a(za X Waw + b(w)
fva= o(zv X Woya + bva) (6)
Tav = fav @ fva

where [Woy,bap] and [Woya, bye] represents the sub-
embeddings networks hyper-parameters. T4y € R¥v*¥t rep-
resents the bi-modal representation obtained by taking outer
product of the latent embeddings. Convolution filters are then
applied to capture the non-linear interactions in T4y as:

Gav = U(C’onv (TAV)) %

where G4y represents the output from convolution layer
which is then processed through fully-connected layer as:

hay = o(gAv X Way + bAv) ®)

Finally, the hidden representation h 4y, is processed through
feed-forward layer to obtain the final predicted value y 4y as:

yav = (hav x wav) +bo,, ©)
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Extracting Combined Information from the Bi-Modal
Interactions of Visual and Language Modalities

The latent embeddings for the visual (fy;, € R'**v) and lan-
guage features (fry € R'*F) are obtained as shown below:

fve = U(zu X Wy + bvl)
(10
fov = o (LSTM(21) x Wi + bu)

Ty € RFvXkic is then obtained by taking outer product
of the latent embeddings representing their bi-modal inter-
actions. Analogous to Equations (7) to (9) the bi-modal inter-
actions are processed to obtain yy 1, as the predicted output.

Extracting Combined Information from the Bi-Modal
Interactions of Acoustic and Language Modalities

Analogous to the above y 47, is obtained as the predicted out-
put from bi-modal acoustics and visual interactions.

Extracting Combined Information from the Tri-Modal
Interactions of Acoustic, Visual and Language Modalities

The tri-modal interactions are obtained by taking outer prod-
uct between latent embeddings of acoustic, visual and lan-
guage;ie. Tavy = (fave ® fvra ® fray) € Rbaxkexk
Convolution filters and fully connected layers are then ap-
plied on T4y 1, to obtain the predicted values y 4y 7, as below.

Save = U(COTW(TAVL))
havy = U(QAVL x Wavr + bAVL) (In

Yyave = (hAVL X ’wAVL) + bo,.,

3.3 Fusion Layer

The scalar outputs from the common and the unique
sub-networks are integrated by applying 7 = hT Z, where
the vector Z 1is obtained by concatenating the pre-
dicted scalar outputs from the unique and common sub-
networks as Z = [ya,Yv, YL, YAL,YVL,YAv,YavL], and
h=[ha,hy,hr,har,hvr, hav, havr] is a vector of ap-
propriate dimension consisting of fusion weights. For sim-
plicity, all the weights in i can be set to one i.e. h = J; 7
and are not optimized while training. We refer this model as
static fusion denoted as DeepCU gp. Otherwise, the weights
in h can be randomly initialized (simply a fully connected
layer with number of neurons equal to seven) and optimized
via the loss on the target function and the model is referred as
dynamic fusion denoted as DeepCUpp.

Our proposed DeepCU can be applied to a variety of tasks
such as for classification, ranking etc. However, for this work
we estimate the parameters of DeepCU via minimizing the
mean square error (MSE) loss in Equation (12).

1
L=— j(z) — 2
= > (i) — (=) (12)
Vxex
where x denotes the set of multimodal training data instances,

y(x) denotes the target of instance z, and §(x) denotes the
prediction obtained from DeepCU.
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3.4 Complexity Analysis

Theoretically, the paramount computational cost in DeepCU
is feature extraction from the multimodal tensor which is
O(N x K x 5% x M?) as described in [He and Sun, 2015])
where N and K are the number of input and output feature
maps respectively and; S represents the spatial size of the
filter and M represents the spatial size of the output feature
map. If we fix the dimensionality of the latent space for each
modality as 32 (as in LMF), then the number of parameters
in DeepCU are 1.06e6 whereas the number of parameters in
LMF and TFN is equal to 1.1e6 and 12.5e6 respectively.

4 Experimental Settings

Dataset. We perform experiments on the CMU-MOSI
[Zadeh et al., 2016] and POM [Park et al., 2014] datasets
consisting of YouTube videos for movie reviews. The CMU-
MOSI dataset consists of movie reviews videos from 93 dis-
tinct speakers. Each video consists of multiple opinion seg-
ments with a total of 2199 segments in the whole dataset,
annotated with the sentiment in the range [—3, 3]. The POM
dataset consists of 903 movie review videos where each video
is annotated 16 sentiments of the speaker. To evaluate the
generalization capability of models, the training, validation,
and testing splits of the dataset are speaker independent.

Baselines. We extensively evaluate the performance of both
neural based and non-neural based fusion schemes for multi-
modal sentiment analysis. Thus we trained our DeepCU as
well as other baselines with mse loss (i.e., Equation (12)) but
C-MKL which is trained for binary classification (due to the
objective function utilized in [Poria ef al., 2015]). For calcu-
lating the binary and multi-class accuracies, we followed the
protocol in [Liu ef al., 2018] and map the predicted output
(and the target values) to integer values.

4.1 Parameter Settings in DeepCU

We train our model by minimizing the MSE loss with RMS
optimizer with learning rate equal to 6 x 10~3 and batch-size
of 64. To avoid over-fitting we applied dropout [Srivastava
et al., 2014] in our model and tune the dropout probability
from [0.1, 0.9] with a step size of 0.05. The optimal dimen-
sions of latent spaced within each sub-embeddings network
was searched in [5,10,15,20,25,30], while the number of con-
volution filters was searched in [1, 2, 3, 4, 5]. We also varied
the size of convolution filter between 3 and 5. Moreover, to
reduce covariance shift and improve performance we applied
batch normalization [loffe and Szegedy, 2015] to all hidden
layers of DeepCU. For acoustic and visual modalities the sub-
embeddings network is a single feed-forward layer, while
for language we used LSTM [Hochreiter and Schmidhuber,
19971 (basic uni-directional LSTM cell) with 128 units.

4.2 Evaluation Metrics

We evaluate the performance of the baselines and DeepCU
for regression, binary and multi-class classification problems.
For regression, we report Mean Absolute Error (MAE) and
Pearson’s Correlation (Correlation). For binary classification,
we report accuracy and F1 score, where as for multi-class
classification we only report accuracy. For all metrics higher
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Figure 3: Performance comparison of DeepCU vs common (Com)
and unique (Unq) networks on the CMU-MOSI dataset.

value is better except for MAE. Similar to [Zadeh er al., 2017;
Liu et al., 2018] we employed early stopping strategy, where
we terminated training DeepCU and all baselines if the MAE
on validation-set did not improved in 5 consecutive epochs.

4.3 Results and Explainability Analysis

The key contribution of this work is utilization of both unique
and common information for multimodal data fusion. We per-
formed experiments to study the significance of our proposed
fusion scheme under the following research questions:

Q1: Does the integration of common and unique latent in-
formation actually beneficial or their integration deteriorates
the performance of DeepCU over individual sub-networks?

To evaluate this, we studied whether fusing the common
and unique information is actually beneficial or their integra-
tion deteriorates the performance of DeepCU over individual
sub-networks. To achieve so, we evaluate the performance of
common network on all the hyper-parameter settings as ex-
plained in Section 4.1. While the unique network were eval-
uated by varying the size of latent dimensions and dropout
probabilities and optimizers. We also applied both the dy-
namic and static fusion schemes to the common and unique
networks. We present the MAE of the optimized networks
with box-plot in Figure 3.

It is clearly visible that integrating both the common and
the unique information improves the performance of pro-
posed DeepCU. The common network exploits the informa-
tion from both bi-modal and tri-modal interactions by apply-
ing deep-convolution operations which drastically reduces its
MAE compared to unique networks. Besides, the plot sug-
gests that for all the networks the dynamic fusion performs
slightly better than static fusion. However the network with
dynamic fusion layer required more epochs for convergence.

Besides, the integration of common and unique informa-
tion further achieves reduction in MAE and is visible in the
box plots for both the fusion schemes in DeepCU. Moreover,
DeepCU with dynamic fusion scheme achieves the lowest
MAE and confirms that integration of common and unique
information is actually beneficial for multimodal data fusion.

Q2: Are convolutions able to efficiently capture the
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represents, X = number of convolution filters and y = filter size.

information from non-linear interactions exhibiting in the
multi-mode representation? Moreover, how does the hyper-
parameters affect the performance of DeepCU?

We now present a detailed study on how hyper-parameters
affects the performance of DeepCU. In this regard, we plot
the mean MAE obtained by varying hyper-parameters in Fig-
ure 4(b). The x-axis in plot represents the dimensionality of
latent-embeddings and the curves represents combinations on
a) the number of convolution filters, b) filter-size, and c¢) fu-
sion scheme. We also plot the performances of TFN and LMF
obtained on the same latent dimensions.

A clear trend can be seen in all the curves reflecting per-
formance of DeepCU, where the MAE tends to decrease with
increase in the latent dimensions. This is because the lower
dimensions tensor is equal to the size of convolution kernel
and hence the performance of DeepCU is not significantly
better than TFN and LMF. However, the marginal improve-
ment can be attributed to the unshared latent space and the
unique information. Besides, the performance gradually im-
proves with the increase in the latent dimensions which sup-
ports the learning requirement of convolution kernels.

Another trend can be noticed in the performance curves of
DeepCU where convolutions of filter-size 3 performs slightly
better that filter-size 5. This may be due to the increase in
overlapping regions between segments which might be better
for applying convolution on multi-mode representations.

Q3: Does DeepCU provide a better mulit-modal fusion
technique compared to state of the art such as TFN and LMF?

We compare the performance of multiple SOTA (and
other baselines) and DeepCU on the CMU-MOSI and POM
datasets for this requirement and the results are reported in
Sections 4.3 and 4.3.

On CMU-MOSI dataset we improve the state of the art by
4.68% for regression and 2.25% for correlation and on multi-
class the accuracy improvement is 9.63%. On POM dataset
we improve the correlation by 23.10% and for regression the
improvement is 2% compared to state of the art.

The above results confirms our hypothesis on the advan-
tages of DeepCU: a) utilizing both the common and unique
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]1)\/2[182; Regression Binary 7-class
MAE (lower is better) Correlation Accuracy F1 Accuracy
RF 1.4095 + 1.09% 10~ 4 0.2041 + 3.29x107% 5398 + 6.57x107! 5275 +£1.48 1827 £ 1.41
SVM 1.4259 4+ 1.43x1075  0.1288 & 3.36 x10~* 47.74 £ 5.78 36.59 4 4.37 13.98 + 4.12x 107"

DNN ;R [Pérez-Rosas et al., 2013]  1.1801 & 2.31x10~4
RF-MD 1.1993 + 1.63x 10~ 4
SVM-MD [Zadeh et al., 2016] 1.2749 £ 2.97x 10~ 4
C-MKL [Poria et al., 2015] — —
ELM [Poria et al., 2016] 1.1786 + 2.28 x10™%

DeepFM [Guo et al., 2017] 1.1038 £+ 1.81 x10~°

0.4973 +2.41x10™%
0.4636 + 2.41x107%
0.4950 + 1.71x10™%

0.4935 + 122 x10~4
0.5227 + 1.73 x10~*

68.67 + 2.27x 1071
66.16 + 6.02x1071 26.03 + 3.60x 1071
67.68 + 2.64x1071 1749 4+ 1.00x 107!
68.30 4 6.43x 1071 —

71.61 + 1.66 2442 4 1.68
69.10 + 7.3 x10~! 28.90 4+ 4.54 x10~1

68.59 + 2.27x107!
66.11 +5.81x1071
67.60 + 2.59x 10~ 1
66.85 + 4.65x1071
69.70 + 1.08
69.14 + 7.64 x10~1

2548 £ 3.75

11111 + 3.03 x10~*
1.0960 + 2.11 x10~4

TFN (SOTA 1) [Zadeh et al., 2017]
LMF (SOTA 2) [Liu et al., 2018]

0.5341 + 1.02 x10~*
0.5555 + 3.28 x10~°

68.48 +7.93 x 1071
7031 +1.98 x 1071

31.98 +1.13
30.76 + 3.39 x 1071

69.59 4+ 7.06 x 107!
7025 +2.05 x 1071

1.0595 + 7.08 x10~°
1.0442 + 1.71 x10~°

DeepCU s  (static fusion)
DeepCU p g (dynamic fusion)

0.5536 + 7.66 x10~°
0.5609 + 1.05 x10~°

33544 6.39 x 1071
34.04 +3.61 x 107!

71424+ 1.98 x 1071
73524+ 1.14 x 10~}

7149 +2.00 x 1071
73.54 4+ 1.10 x 10!

Table 2: Performance comparison of DeepCU vs other fusion techniques on CMU-MOSI dataset. The mean and variance for each baseline and
DeepCU are obtained by executing them for five times. This superiority of DeepCU is specifically visible in the case of 7-class classification.

POM Dataset MAE Correlation Multi-Class Accuracy
TFN (SOTA 1) 1.0481 £ 0.0030  0.0866 + 0.023 28.62 £ 0.127
LMF (SOTA2)  0.8739 £0.0051  0.2311 £ 0.024 33.61 £0.314

DeepCUp 0.8568 + 0.0045  0.2845 + 0.009 34.77 £+ 0.493

Table 3: Performance comparison on the POM dataset.

latent information obtained using unshared-embeddings; b)
the use of convolutions to capture utmost expressiveness of-
fered by multi-mode representation; and c) the use of factor-
ized representations in unique networks to reduced the impact
of missing values present in the individual modalities.

As expected the dynamic fusion schemes performs better
than the static fusion scheme in DeepCU. Conceptually, this
is because the weights in the static fusion layer were not op-
timal and optimizing these weights via back-propagation al-
lows the proposed DeepCU pr network to obtain better mix-
ing weights for integrating common and unique information.

4.4 Case Study with Missing Values from the
Acoustic Modality in the CMU-MOSI Dataset

As a qualitative analysis on the performance of the fusion
schemes, we perform an investigative study of TFN, LMF,
and DeepCU when facing missing values in the feature sets.
In this regard, we selected two examples with highest percent-
age of missing values from the actual dataset in the acous-
tic modality and reported their predicted sentiment obtained
from each of the fusion schemes in Section 4.4.

In the first example, the absolute error with the predic-
tion from TFN is 0.5118, from LMF is 0.3387; and from
DeepCU is 0.0154. The predicted sentiment value from
DeepCU achieves the lowest error when the corresponding
feature set contains a large fraction of missing values. In the
second example, the absolute error with the prediction from
TFN is 0.3475, from LMF is 0.4417; and from DeepCU is
0.1209. Again the predicted sentiment value from DeepCU
achieves the lowest error when the corresponding feature set
contains moderate fraction of missing values.

These examples confirms the effectiveness of utilizing both
common and unique information for multimodal data fusion.
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Missing values in ~ Ground-Truth

acoustic modality of Sentiment TEN LMF DeepCUp p
63.51 % 0.0 0.5118 -0.3387 -0.0154
21.62 % -1.0 -1.3475  -1.4417 -1.1209

Table 4: Affect of missing values on DeepCUpr, TFN, and LMF.
These feature vectors are taken from the actual CMU-MOSI dataset.

Moreover, they also exhibit the importance of handling miss-
ing values with real-world datasets, as their proper consider-
ation might boost the performance of multimodal systems.

5 Conclusions and Future Work

In this paper, we have introduced DeepCU which utilizes both
common and unique latent information for sentiment analy-
sis on multimodal data. The DeepCU consolidates two sub-
networks a) deep convolution-tensor networks for obtaining
common information from multi-model data; and b) unique
subnetwork to obtain information offered by the individual
modalities. Both the sub-networks are integrated via a fusion
layer, and the parameters are optimized by back-propagation
on the target loss function. The DeepCU outperformed state
of the art approaches as it leverages the expressiveness of
all-types of information by enforcing the two sub-networks
to learn complimentary information in the embeddings layer.
Comprehensive experiments demonstrate the effectiveness of
our proposed DeepCU for multimodal data fusion. In future,
we plan to introduce attention networks to integrate the infor-
mation obtained by the two sub-networks.
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