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Abstract
In multitask reinforcement learning, tasks often
have sub-tasks that share the same solution, even
though the overall tasks are different. If the shared-
portions could be effectively identified, then the
learning process could be improved since all the
samples between tasks in the shared space could
be used. In this paper, we propose a Sharing
Experience Framework (SEF) for simultaneously
training of multiple tasks. In SEF, a confidence
sharing agent uses task-specific rewards from the
environment to identify similar parts that should
be shared across tasks and defines those parts as
shared-regions between tasks. The shared-regions
are expected to guide task-policies sharing their
experience during the learning process. The ex-
periments highlight that our framework improves
the performance and the stability of learning task-
policies, and is possible to help task-policies avoid
local optimums.

1 Introduction
Reinforcement learning (RL) [Sutton and S, 1988; Watkins
and Dayan, 1992] has long been an interesting topic in
robotics and artificial intelligent (AI) domains. RL enables AI
agents to learn appropriate policies through interacting with
a given environment. In traditional RL approaches [Sutton
and Barto, 1998], such as Q-learning and SARSA, linear ap-
proximate functions are used to solve the generalization of
machine learning algorithms in infinite and dynamic scenar-
ios [Grounds and Kudenko, 2008; Konidaris et al., 2011].

Recently, deep learning (DL) approaches have obtained
significant success in various research areas, including vi-
sion and natural language processing applications [LeCun et
al., 2015]. The DL approaches use a huge number of auto-
learned parameters and a variety of network architectures,
such as convolutional neural networks (CNN) [Krizhevsky
et al., 2012], and long-short term memory (LSTM) [Graves
et al., 2013] networks. These deep neural networks (DNN)
are able to extract unprecedented features and increase gen-
eralization capability. In reinforcement learning framework,
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Deep reinforcement learning (DRL), a combination of RL
and DL, allows RL agents to converge in training with com-
plex tasks that require both feature and state representation
and improve overall performance significantly. Well-known
research using DRL includes [Mnih et al., 2015] and [Mnih
et al., 2016] in playing Atari and Go games respectively.

With different scenarios in the problem of decision making,
agents will definitely involve in different action spaces [Lil-
licrap et al., 2015; Mnih et al., 2016], and face with various
physical factors or surrounding views. When the environment
becomes more complex and infinite, the problem of decision
making in DRL approaches will also become more challeng-
ing. An open research question raised is that how to reuse
common behaviors in similar scenarios? If we are able to
transfer knowledge between similar environments, it will re-
duce the training time for agents, and then the difficulty in
applying RL methods for the dynamic and infinite environ-
ment can simply be solved.

One way to deal with multi-task problems is to use unique
policy and train with different tasks simultaneously [Yang et
al., 2017; Teh et al., 2017] or sequentially [Rusu et al., 2016]
to update both policy or/and value approximation functions.
However, those approaches do not allow capturing the differ-
ence and the similarity among the tasks.

In more complex problems, hierarchical reinforcement
learning methods [Andreas et al., 2016; Devin et al., 2017]
may solve simple sub-tasks then combine those sub-tasks to
solve the complex tasks. Transfer learning [Rusu et al., 2015;
Parisotto et al., 2015] is also used to train agent policies in
some tasks and then adjust to new ones in multi-task scenar-
ios. Learning skills in some new studies [Borsa et al., 2016;
Gupta et al., 2017; Hausman et al., 2018; Zhang et al., 2017]
may be a means to capture embedding feature spaces, then
those features are utilized to solve different tasks. However,
those approaches always have to consider how to define sub-
task that relates to the main tasks.

In this paper, we propose a new framework for the simul-
taneous RL problem of multiple tasks. Our proposed frame-
work enables agents to explore similar parts between tasks in
an environment to transfer experience across all tasks during
the training process. To our knowledge, there is no method
that has discovered shared parts to enhance policy update with
multiple tasks instead of updating the main policy and trans-
ferring to sub-tasks. Our main contribution can be summa-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3642



rized as follows:
1. Proposing a sharing confidence agent that uses data sam-

ples from task-policies to identifying shared portions among
tasks.

2. Proposing a sharing experience framework allow task-
policies sharing samples in shared portions to make the learn-
ing process more stable and robust.

3. We empirically evaluate the framework in different sce-
narios to show that it is possible to discover shared portions
among tasks as latent representations and use those latent rep-
resentations to reduce training time of the tasks.

2 Related Work
Usually, to learn different tasks, an agent can be trained di-
rectly with multiple tasks simultaneously to update policy
or/and value approximation functions. The authors in [Yang
et al., 2017] propose a multi-actor and single-critic architec-
ture to implicitly exploit the shared visual features to tackle
multi-task learning. Research in [Teh et al., 2017] uses dis-
tilled policy centroid of all task policies to obtain common
knowledge and transfer it among the training of policies for
different tasks by constraining the distance between distilled
policy and task-policies.

Another approach is continual learning where the agent
is trained on multiple tasks sequentially. A special network
architecture called Progressive Neural Network is proposed
in [Rusu et al., 2016], which explicitly distills the learned ex-
periences and representations of previous well-trained models
to a new one while also accounting the problem of forgetting.
However, this idea suffers from the quadratic growth of the
number of model parameters and the difficulty in choosing
the optimal inference order.

To solve complex tasks, agents can be trained to achieve
different sub-goals before completing a final task in some re-
searches. Hierarchical RL uses modularity to achieve trans-
fer learning for robotic tasks. [Devin et al., 2017] decom-
poses policy neural networks into task-specific or agent-
specific modules and then combine different components
across agents and tasks to pave the way for new training. The
authors in [Andreas et al., 2016] also decompose task-specific
policies into sub-policies, in which some are shared across
tasks using prior sketch annotations and jointly maximize
the expected discounted rewards overall policies. Curriculum
learning is also utilized to further facilitate training in com-
plex environments. A hierarchical Bayesian model [Wilson
et al., 2007] is used to estimate the distribution over differ-
ent environments and correspondingly induced MDPs, which
may be reused to accelerate the training process by the agent
jumping into environments that it has never encountered be-
fore.

Transfer learning and distillation are also of broad inter-
est in multi-task RL. Distillation approach combines multi-
ple expert policies into one by applying supervised regression
over the action distribution of distilled policy and expert poli-
cies [Rusu et al., 2015; Parisotto et al., 2015]. However, these
algorithms require expert policies not to present conflicting
actions.

Another strategy is to learn shared skills or features across

tasks, which can later transfer to new tasks. Studies in [Borsa
et al., 2016; Zhang et al., 2017] introduce the idea of integrat-
ing successor features induced from the neural encoder into
multi-task learning framework, in which a linear dependency
between representations across shared structure environments
is assumed to enable knowledge to transfer from trained pol-
icy networks. Invariant feature representations can also be
learned [Gupta et al., 2017] to transfer information about a
skill that could be shared even across different robot archi-
tectures. However, the approach relies on prior information
in proxy tasks to determine the invariant spaces. To explore
important skills, [Hausman et al., 2018] proposed reinforce-
ment learning method that uses an embedding space defined
by latent variables, entropy-regularized policy gradient and
variational inference to learn a minimum number of distinct
skills that are necessary to solve a given set of tasks. These
learned skills can be interpolated and/or sequenced in order to
solve more complex tasks. Naturally, these aforementioned
approaches are similar to transfer learning methods.

3 Sharing Experience Framework
In our proposed SEF, a confident-sharing-agent Zφ, which
starts without a preliminary knowledge of shared regions
across tasks, is co-trained with task-polices πθi in an iterative
process such that the sharing-agent provides shared regions
to the task-policies. Task-policies’ samples are shared in their
shared regions to improve the learning process. The new data
samples are generated from the updated task-policies. Then,
the sharing-agent observing task-specific rewards from the
environment which analyzed from task-policies’ new sam-
ples to refine the prediction of shared regions. In this way,
sharing-agent Zφ and task-policies πθi mutually reinforce by
providing the best response to the other.

3.1 Preliminaries
We define a discrete-time finite-horizon discounted
Markov decision process (MDP) by a tuple M =
{S,A, P, r, ρ0, γ, T}, in which S is a state set, A is an
action set, P : S × A × S → R+ is a transition probability
distribution, r : S × A → [−Rmax, Rmax] is a bounded
reward function, ρ0 : S → R+ is an initial state distribution,
γ ∈ [0, 1] is a discount factor, and T is the horizon. In policy
search methods, the stochastic policy πθ : S × A → R+ is
typically optimized by maximizing its expected discounted
return with respect to θ:

η (πθ) = Eτ

[
T∑
t=0

γtr (st, at)

]
(1)

where τ = (s0, a0, ...) denotes the whole trajectory, s0 ∼
ρ0 (s0), at ∼ πθ (at | st), and st ∼ P (st+1 | st, at). The
policy gradient methods maximize the expected total reward
by repeatedly rolling out trajectories τ = (s0, a0, ...) from
policy πθ that is equal to maximize the objective function:

J(θ) = E(st,at)∼pθ(st,at) [πθ (at|st) Ψ (st, at))] (2)

Where Ψt could be one of the followings: total reward of
trajectory

∑∞
t=0 rt, total reward following action

∑∞
t′=t rt′ ,
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state-action function Qπ(st, at), and advantage function
Aπ(st, at).

For this work, we consider a multi-task RL setting, where
there are N tasks; and that the action space A, the state
space S, and the transition dynamics pi (s′ | s, a) are the
same across all tasks i = 1, 2, . . . , N . Let ri (s, a) and πθi be
the task-specific reward function and the stochastic policy for
task i respectively.

3.2 Sharing Experience across Task-policies
This section describes a method that allows task-policies
share the experience when they know their shared regions.
We assume a existence of a probabilistic sharing agent Zφ
that takes (s, i, j) as input where s is state, i and j are task in-
dexes and outputs a probability of state s belonging to shared
regions of task i and j. A sharing action zs is sampled from
Zφ(·|s, i, j) and receives value of {1 : share, 0 : non-share}
presenting the decision of agent Zφ.

The sharing-experience objective function is constructed to
allow task-policies to share the experience in their shared re-
gions as follows:

JSEF (θi) ≈ E
[
min

{ πθi
Wi
∗Ψk,

clip(
πθi
Wi
, 1− ε, 1 + ε) ∗Ψk)

}]
(3)

with full notation of: E [...] is Ek:=1 7→N
(sk,t,ak,t)∼Pθk (sk,t,ak,t)

[...],
πθi is πθi(ak,t|sk,t), Wi is Wi(ak,t|sk,t), Ψk is Ψk(ak,t|sk,t)
and

Wi(a|s) =

∑n
k zsk,tπ

old
θk

(a|s)∑N
k zsk,t

(4)

where:
• The notation Ek:=1 7→N

(sk,t,ak,t)∼Pθk (sk,t,ak,t)
[...] indicates the

expected value of samples (sk,t, ak,t) generated from
distributions {Pθk |k := 1 7→ N} and satisfied the con-
straint that state sk,t must belong to shared regions of
task i and k:

[
zsk,t ∼ Zφ(·|sk,t, i, k)

]
= 1.

• zsk,t is sharing action which is sampled from probabilis-
tic function Zφ(·|sk,t, i, k). If a state s belongs to shared
regions, samples of task-policy πθj at the state s will
be aggregated to update policy πθi via important sam-
pling weight. We believe that combining samples of
task-policies in their shared regions in this way can en-
hance data-efficiency over task-policies.
In general, task-policies may learn similar behaviors in
shared regions to handle same the sub-task while over-
all policies still differing from each other due to other
parts of own their main tasks. Hence, it makes training
samples in shared regions become more diverse and pos-
sibly makes the learning process more stable and avoid
local optimum that may happen in standard reinforce-
ment learning methods because of insufficient samples
or exploration.
• Wi(a|s) is the important sampling weight which is the

mixed action-samples distributions of task-policies k
(including task-policy i) at state s where state s belongs
to shared regions of task-policies k and task-policy i.
πold indicates the task-policy before update.

• Surrogate Objectives ”clip”: As sharing samples of task-
policies in their shared regions helps task-policies solve
their shared sub-problem more efficiently, that leads to
the changes in state visitation density and action distri-
bution, which can be harmful to the policy with respect
to the main task. There are several works [Schulman
et al., 2015; Kakade and Langford, 2002] presenting
theoretical constraint on policy-update that guarantees
monotonic convergence. Later, Proximal Policy Opti-
mization (PPO) algorithm [Schulman et al., 2017] for-
malizes the constraint as a penalty in the objective func-
tion which gives the same or even better effect on policy
improvement while having simple implementation. In
this work, we borrow the concept of clipped objective
function from PPO as a soft constraint to prevent exces-
sively large policy update due to the difference between
current task policy and the other policies.

Note that, there are several choices for Ψ. However, to-
tal reward of trajectory

∑∞
t=0 rt, total reward following ac-

tion
∑∞
t′=t rt′ or state-action functionQπ(st, at) measure the

success of action from current state to goal. They all are
specific for a particular task while advantage function mea-
sures the success of current action compared to average at
current state. Hence, it will avoid the conflicts caused by dif-
ferent reward schemes between tasks. Therefore, we choose
advantage value function A (s, a) for Ψk (ak,t|sk,t), so
that Wi (ak,t|sk,t) Ψk (ak,t|sk,t)∇θi log πθi(ak,t|sk,t) will
increase πθi(ak,t|sk,t) when A (sk,t, ak,t) > 0 and vice
versa. The value function Vϑi used to estimate advantage
function is updated as follows:

minimizeϑi
N∑
t=1

∥∥∥Vϑi(st)− V̂t∥∥∥2 (5)

where V̂t =
∑∞
l=0 γ

lrt+l is the discounted sum of rewards,
and t indexes over all time steps in a batch of trajectories.
This is sometimes called the Monte Carlo or TD(1) approach
for estimating the value function [Sutton and Barto, 1998].

3.3 Learning Zφ : A Confident Sharing-regions
Feature-based Detection Agent

As introduced in the previous section, we want to learn
Zφ (s, i, j) agents that can detect the shared regions of two
task-policies i and j. We consider Zφ a neural agent param-
eterized by φ with input space Sz: (s, i, j) where s ∈ state
space S of N task-policies, i and j are task indexes and set of
labels Lz = {1 : share, 0 : non-share} tell if state s belongs
to shared regions of two tasks i and j or not.

Remind that in their shared regions, task-policies may learn
similar behaviors. Therefore, the task-specific reward sig-
nals (in advantage function value) should be similar when two
policies perform the same action at a state. From this obser-
vation, we can analyze these reward signals to decide whether
two policies should share the experience or not. Specifically,
if reward signals feedbacked from the environment to the
agent when two policies perform the same action at state s
are both positive or negative, state s tends to belong to shared
regions and vice versa.
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We generate the samples to learn Zφ (s, i, j) from samples
of task-specific policies as follows: weight and label gener-
ated from collected state-action pairs (s, a):

Wz (s, i, j) = ωweight

(
Est=s,at=a [Aϑi (st, at)] ,
Est=s,at=a

[
Aϑj (st, at)

]) (6)

Lz (s, i, j) = ωlabel

(
Est=s,at=a [Aϑi (st, at)] ,
Est=s,at=a

[
Aϑj (st, at)

]) (7)

where two functions:

ωweight (a, b) =

{
min (|a| , |b|) if a× b 6= 0

pz if a = 0 or b = 0
(8)

and

ωlabel (a, b) =

{
1 if a× b > 0
0 if a× b 6 0

(9)

There are states s which consistently appear in a task sample
and absent from other (a = 0 or b = 0). We consider these
states are specialized for a task and add a small penalty pz to
Wz to help Zφ detect these specialized states. The weights
of Zφ are updated collaboratively to minimize the total loss
Jz(φ) as follows:

Jz(φ) = Es,i,j

−Wz(·)
∑

c∈{0,1}

Lz(c|·)log(Zφ(c|·))

 (10)

In this work, we consider discrete environments and states
and actions are compared directly. For continuous or large
environments where experiences would be so sparse, it is po-
tential to apply a confident metric to measure the similarity of
states (acoss tasks) with respect to long-term behavior such as
bisimulation metric [Ferns et al., 2011].

3.4 Consistency between Sharing-experience
Scheme and Z Agent

As discussed in the sharing-experience framework, policies in
shared regions tend to be similar, which leads to the same ob-
servations and actions occurring when policies operate from a
start point to the targeted goal. In this section, we will discuss
the effect of Zφ (s, i, j) and the sharing-experience frame-
work to each other. Note that the sharing function Zφ (s, i, j)
is soft, so that agents can attempt to share learning informa-
tion, even though they are not entirely confident that they are
in a region that is shared. We divide sharing decisions of
zφ (s, i, j) into four cases (Positive: share, Negative: non-
share):
• True-Positive (TP): policies i and j can exploit the expe-

rience of others to improve the learning process. It also
results in observations and actions more likely to be sim-
ilar after update and also gets the same responses from
the environment. Then the confidence of Zφ’s prediction
is reinforced.
• False-Positive (FP): policies i and j may learn from the

wrong experiences. However, based on the constraint of
sharing weight Sk,i(a|s), we can prevent task-policies

Algorithm 1 Sharing-experience framework with Z agent

1: Initialize policies πθi , value functions Vϑi and Zφ
2: while not convergence do
3: for i = 1 to N do
4: Simulate policies πθi until L steps
5: Compute advantage estimates Âi,t at all time step t
6: end for
7: for i = 1 to N do
8: Optimize surrogate JSEF wrt θi as eq. (3)
9: Update value function parameters ϑi aseq. (5)

10: end for
11: for i = 1 to N do
12: for j = 1 to N do
13: if i 6= j then
14: Generate samples for Zφ(s, i, j) from samples

of task-policies as eqs. (6) and (7)
15: end if
16: end for
17: end for
18: Optimize Jz wrt φ as eq. (10)
19: end while
20: return solution

from large negative update. Besides, like TP case, it also
results in observations and actions more likely to be sim-
ilar the next time but gets different responses from the
environment. Then the confidence of Zφ’s prediction is
decreased.

• True-Negative (TN): No effect on the framework.

• False-Negative (FN): No effect on the framework.

It can be seen that sharing-experience framework and Zφ mu-
tually reinforce for TP and FP; meanwhile TN and FN can
make Zφ freeze because they have no effect on the frame-
work. However, without Zφ, task-policies still learn to have
similar behaviors in shared regions. Hence, the classification
of Zφ tends to be TP and FP rather than TN and FN, and
results in helping task-policies find their shared-regions and
making them learn faster. The details of sharing-experience
framework are presented in Algorithm. 1.

4 Experimental Evaluation

Figure 1: Experimental environments.

We focus our analysis on the scenario that agents perform
in an environment with multiple tasks, each agent works on
its own task. We subject our agents to three multi-task grid-
world environments with various task-locations depicted in
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Fig. 1 involving grid-world navigation where each agent is
put in a random place at the beginning and the task is to find a
way to the targeted position (the number presented task num-
ber). Agents receive a small negative reward for each step
and a positive reward after reaching their own goal to encour-
age them to find the shortest trajectories to goal. The actions
available to each agent are moving left, right, up, down, left-
up, left-down, right-up and right-down.

We consider our SEF in two settings Oracle and Z, and de-
termine the benefit of SEF, we compare it to one which learns
task-policies independently and one which jointly trains all
tasks simultaneously by a compound policy. We use basic
advantage-actor-critic with separate policy network and value
network as the base agent. Specifically, we compare these
settings together:
• Oracle-sharing: agents are provided information about

shared regions between tasks, this is the upper bound of
our algorithm. Zφ(s, i, j) only returns [0, 1] or [1, 0] in
this settings.
• Z-sharing: agents learn themselves where they

should share the experience by Zφ. For this setting,
we add a small sharing confident bound Zc to Zφ
to guarantee shared regions prediction: Zφ(s, i, j) =
[max(Zφ(1|s, i, j)− Zc, 0),min(Zφ(0|s, i, j) + Zc, 1)].
• Baseline-1 (B-1): training task-policies independently.
• Baseline-2 (B-2): training all tasks simultaneously with

a compound policy.
In the experiments, the agents’ hyper-parameters and net-

work structure are the same for all settings. The details of
hyper-parameters and network structures are presented in Ta-
ble 1 and Table 2.

Hyper-parameters Setting
State dimension one-hot representation
Action dimension 8
Discounted factor 0.99
Number of Iterations 1000
Number of rollouts each Inter. 8, 16, 24
Rollout length: L 50
Learning rate actor-critic 0.005
Learning rate Z 0.025
ε 0.2
Zc 0.1
pz 0.001
Optimizer RMSProp

Table 1: Hyper-parameter settings

4.1 Experimental Details and Discussion
Multiple Goals Well-Gated Grid-World
In this environment, the experience before the gating can be
shared, but the experience after the gating cannot. From that,
we can observe the ability to find shared regions of Zφ.

In the first experiment, there are two tasks with the goals
located either to the left or to the right at the top of the en-
vironment. The Zφ agent of SEF has to detect the shared

Network In F.C.1 F.C.2 Out
(B-1, SEF) Policy 324 256 256 8
(B-1, SEF) Value 324 256 256 1
(B-2) Policy 324+N 256 256 8
(B-2) Value 324+N 256 256 1
Z net 324 256 256 2
N task index in one-hot

Table 2: Network structures
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Figure 2: The average performance (redundant steps/million train-
ing step) across all the tasks and the performance of each task spe-
cific policy in scenario.1, respectively.

regions between two tasks and uses this information to make
task-policies share their experience with each other.
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Figure 3: The average performance (redundant steps/million train-
ing step) across all the tasks and the performance of each task spe-
cific policy in scenario.2, respectively.

For second experiment, we design the environment as a
house with five rooms and much more complicated than en-
vironment 1. There are four tasks, which are divided into two
groups located in two rooms, one at the top left and one at
the top right. For this scenario, the sharing context of task-
specific policies is different for agents’ locations. For exam-
ple, as shown in Fig. 1 of environment 2, when agents stay
in the circle point, the task-1 policy and task-2 policy should
share experience with each other but should not share with
task-3 and task-4 policies. On the contrary, when agents stay
in start point, all four task policies should mutually share with
each other.
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As discussed in Sec 3.2, our SEF enhance data-efficiency
and is able to handle local optimums caused by insufficient
samples or exploration of the standard method. To analyzing
this assumption, we conduct experiments with different num-
bers of rollouts each iteration and observe the learning curves
of SEF and two baselines.

Results of the learning performance of SEF and two base-
lines with different numbers of rollouts are shown in Fig. 2
and Fig. 3. Baseline-1 learns task-specific policies indepen-
dently, so this approach can not exploit experience between
tasks and take long time to convergence. Learning process of
the Baseline-2 may be more efficient through average updates
across related tasks. As illustrated in Fig. 2, when two tasks
have little conflict, Baseline-2 work very well. However, as
environment and tasks get complex, such policy may get bi-
ased towards a task due to the gradient updates from tasks
can negate each other, making the learning process unstable.
The result is some tasks stuck in local optimums (Fig. 3).
In contrast, SEF not only improves the convergence rate in
comparison to Baseline-1 setting but also helps agent avoid
local optimums in both oracle-sharing and z-sharing settings
in comparison to two baselines. Furthermore, the learning
curves of the agents in SEF are also more stable than those
of independent task-policies training framework’s agents, es-
pecially for SEF agents trained with a low number of rollouts
each epoch. However, the dominance of out SEF decreases
as the number of rollouts increases. The reason is that the
variance of MCMC can decrease when the number of sam-
ples increases. The performance of Baseline-2 is sometimes
better than SEF’s for some tasks, and it is because the up-
dated efficiency may be improved by transferring knowledge
across related task. However, gradients from different tasks
can interfere negatively, making some tasks stuck in local op-
timums. As illustrated in Fig. 2, when this environment is
quite simple and the task-polices are not too conflicted, the
performance of Baseline-2 almost reaches SEF’s oracle set-
tings’ performance. However, in Fig. 3, where the environ-
ment is more complex, there are some tasks stuck in local
optimums.

1-
2

Iteration 200
1

Iteration 400 Iteration 1000

0.0

0.2

0.4

0.6

0.8

1.02 1 2 1 2

Figure 4: Sharing confidence of Zφ between tasks 1-2 of sharing-
scheme in scenario.1, in 16 rollouts per iteration setting.

Besides, we also obverse that the learning curves of Z-
sharing almost reaches the performance of Oracle-sharing
setting. That means Zφ agent does detect the sharing-regions
between tasks well. This is also proved by the sharing confi-
dence between tasks of Zφ over iteration provided by Fig. 4
and Fig. 5. As shown in Fig. 5, the shared regions of task 1
and task 2 located at the same room are larger than those of
task 1 and task 4 located at different rooms.

1-
2

Iteration 200

2

Iteration 400 Iteration 1000

1-
4

0.0

0.2

0.4

0.6

0.8

1.0

1 4

3

2

1 4

3

2

1 4

3

2

1 4

3

2

1 4

3

2

1 4

3

2

1 4

3

2

1 4

3

2

1 4

3

Figure 5: Sharing confidence of Zφ between tasks 1-2 and tasks 1-4
of sharing-scheme in scenario.2, 16 rollouts per iteration setting.

Multiple Goals Grid-World without Wall
In this environment, there are fours goals located in corners of
a square grid-world without wall, so the explicit partitioning
for shared regions could be difficult, the true probability of
being in a shared region changes continuously. As the sharing
confident map illustrated in Fig.6, our framework can make
the appropriate trade-off between using shared information.
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Figure 6: Sharing confidence of Zφ between tasks 1-2 and tasks 2-3
in grid-world without wal, 16 rollouts per iteration setting.

5 Conclusion
Our work illustrates that latent variable representing shared
portions across various tasks enhance training agents in multi-
task scenarios. In the paper, we have proposed sharing experi-
ence reinforcement learning framework, a framework that:(1)
identifying shared portions among tasks through task-specific
rewards from the environment, (2) proposing a soft sharing
experience framework based on shared portions that enhance
data-efficiency over task-policies to make learn process more
stable and robust. Our experiment’s results show that shar-
ing experience reinforcement learning framework substan-
tially outperforms standard RL algorithm. For future work,
we focus on applying our approach on continuous space and,
as our shared regions can be explicitly represented in state
space, it is promising to extracted shared regions as based
skills to accomplish more complex tasks.
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