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Abstract

Semantic segmentation suffers from the fact that
densely annotated masks are expensive to obtain.
To tackle this problem, we aim at learning to seg-
ment by only leveraging scribbles that are much
easier to collect for supervision. To fully explore
the limited pixel-level annotations from scribbles,
we present a novel Boundary Perception Guid-
ance (BPG) approach, which consists of two basic
components, i.e. prediction refinement and bound-
ary regression. Specifically, the prediction refine-
ment progressively makes a better segmentation by
adopting an iterative upsampling and a semantic
feature enhancement strategy. In the boundary re-
gression, we employ class-agnostic edge maps for
supervision to effectively guide the segmentation
network in localizing the boundaries between dif-
ferent semantic regions, leading to producing fine-
grained representation of feature maps for seman-
tic segmentation. Experimental results on the PAS-
CAL VOC 2012 demonstrate the proposed BPG
achieves mIoU of 73.2% without fully connected
Conditional Random Field (CRF) and 76.0% with
CREF, setting up the new state-of-the-art in litera-
ture.

1 Introduction

Deep learning, especially the deep Convolutional Neural Net-
works (CNN), greatly advances the state-of-the-art in arti-
ficial intelligence and computer vision researches in many
fields such as image classification [Krizhevsky er al., 2012;
Simonyan and Zisserman, 2015; Szegedy et al., 2015; He et
al., 2016; Chen er al., 2018b], object detection [Ren et al.,
2015; Liu et al., 2016; Redmon et al., 20161, and semantic
segmentation [Long er al., 2015; Chen et al., 2018a; Zhang
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Figure 1: Illustration of a segmentation example: (a) the input im-
age; (b) the corresponding per-pixel annotation; (c) the correspond-
ing scribble annotation; (d) the segmentation result with per-pixel
annotation and deeplab-v2 architecture; (e) the segmentation result
with scribble annotation and deeplab-v2 architecture; (f) the seg-
mentation result with scribble annotation and the proposed BPG ap-
proach.

et al., 2017; Zhang er al., 2019]. For the semantic segmenta-
tion task, Fully Convolutional Networks based (FCN-based)
architectures [Long et al., 2015; Ronneberger et al., 2015;
Chen et al., 2015; Chen et al., 2018a] have achieved com-
petitive segmentation performance with the per-pixel mask
labels. However, compared with image classification and
object detection, obtaining these pixel-level mask annota-
tions is time-consuming and expensive. In order to allevi-
ate the dependence on expensive high-cost pixel-level labels,
weakly-supervised semantic segmentation is much preferred
and studied in the literature.

Weak annotations for semantic segmentation can be
roughly divided into the following four categories: image-
level tags [Pinheiro and Collobert, 2015], clicks [Bearman et



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

al., 2016], bounding boxes [Dai er al., 2015] and scribbles
[Lin ef al., 2016]. For the image-level and click tags, the
extremely limited pixel-level information makes it challeng-
ing to train a high-accurate segmentation network. In con-
trast, scribbles and bounding boxes contain more valuable
information that can train the segmentation networks more
effectively. For bounding-box annotations, iterative training
strategy is often adopted by combining proposal masks (e.g.
MCG [Dai et al., 2015; Pont-Tuset et al., 2017]) to update
the corresponding segmentation masks. These methods im-
prove the precision of the semantic segmentation by using
graph algorithms and region proposal methods. However, in-
accurate intermediate proposal masks could mislead training
by applying the cross entropy loss to uncertain segmentation
in bounding boxes. In this paper, we instead choose scrib-
ble labels as the weak annotations to train the segmentation
network.

For scribble-based weakly-supervised methods, Scribble-
Sup [Lin et al., 2016] uses an iterative method to update the
segmentation mask via graph cuts. Tang et al. [Tang et al.,
2018a; Tang et al., 2018b] improve the segmentation perfor-
mance by designing several useful regularized losses. Never-
theless, these methods do not fully explore the characteristics
of the scribble annotations and do not take into account of
the network structure design to improve the segmentation per-
formance. We find that the scribble annotations can be used
as a kind of supervised information to train a model which
can segment different objects roughly. In the meanwhile, the
edges, which indicate the information of boundaries among
semantics, lead the network to grow/shrink the semantic re-
gions, so as to revise the segmentation boundaries. Motivated
by this observation, we design a novel network architecture to
take advantage of both the scribble annotations and the edges.

As illustrated in Figure 1, scribble annotations are simply
drawn in few strokes to tag a small part of the object or the
background. The model naively trained by scribbles only
produces coarse segmentation results (Figure 1-e). This is
mainly because scribbles only contain partial semantic infor-
mation and no fine-grained boundary is provided to guide the
model to accurately segment each object. To this end, we de-
sign a novel segmentation model, namely Boundary Percep-
tion Guidance (BPG), to effectively leverage weakly super-
vised segmentation in scribbles by incorporating edge struc-
tures from images. The experiments demonstrate that the re-
sulting architecture can produce more accurate segmentation
results with clearer boundaries in an unprecedented resolution
(Figure 1-f).

Our main contributions are summarized below.

e We propose a novel BPG model to address the scribble-
based weakly-supervised semantic segmentation task.
The BPG model includes two components: 1) The Pre-
diction Refinement Network (PRN), which combines
both the high semantic information and low edge/texture
information to produce the fine-grained feature maps by
an iterative upsampling strategy instead of a brute-force
8 upsampling operation directly; 2) The Boundary Re-
gression Network (BRN), which guides the network to
obtain clear boundaries between regions of different se-
mantics.

e We evaluate the proposed model on the PASCAL
VOC 2012 segmentation benchmark. The experiments
demonstrate that the refinement sub-network and the
boundary regression sub-network can improve 1.5%
and 2.5% mloU (in terms of mean Intersection-Over-
Union, i.e. mloU) respectively. The proposed compo-
nents combined successfully make 3.3% mloU improve-
ment and set up the new state-of-the-art for scribble-
based weakly-supervised semantic segmentation.

2 Related Work

Supervised semantic segmentation takes the cross-entropy
term of each spatial position on the CNN output feature
maps as the loss function and expensive mask-level anno-
tations should be provided. Under this circumstance, some
Weakly-Supervised Semantic Segmentation (WSSS) meth-
ods are proposed which only take some weak annotations
as inputs. Training with image-level tags [Pinheiro and Col-
lobert, 2015], clicks [Bearman et al., 2016], bounding boxes
[Dai et al., 2015] and scribbles [Lin et al., 2016], has attracted
many researchers.

2.1 Image-level and Click based WSSS

Pinheiro ef al. [Pinheiro and Collobert, 2015] propose a
CNN-based model which pays more attention to pixels that
are important for classifying during training. Saleh et al.
[Saleh er al., 2016] present a novel algorithm which can ex-
tract markedly more accurate masks from its own pre-trained
model instead of external objectness modules. Wei et al. [Wei
et al., 2017] propose a simple to complex learning method to
gradually enhance the segmentation network. In summary,
image-level annotations are an order of magnitude cheaper
but result in less accurate models. Bearman et al. [Bearman
et al., 2016] collect click annotation by asking the annotators
to click anywhere on a target and the click annotation gives
rough location information of each object which can improve
the segmentation accuracy to a certain extent.

2.2 Bounding-box based WSSS

Bounding-box annotations are often used as the labels of ob-
ject detection, compared to pixel-wise annotation task, the
workload of labeling object locations can be 15 times less
[Lin ef al., 2014]. Dai et al. [Dai et al., 2015] train the seg-
mentation network combined with region proposals and the
prediction masks iteratively, this method can produce com-
petitive segmentation results. Khoreva er al. [Khoreva et al.,
2017] propose a modified version of GrabCut (GrabCut+) to
produce some mask regions to train the segmentation model
iteratively with the bounding-box mask.

2.3 Scribble based WSSS

Scribble annotations can be easily drawn and a certain cate-
gory is given for each scribble. Lin et al. [Lin et al., 2016]
build the scribble dataset for PASCAL VOC 2012. Combined
with these scribble annotations and region proposals that are
generated via graph cuts, they train the segmentation network
iteratively. Tang et al. [Tang et al., 2018a] propose a novel
loss for segmentation which combines with partial cross en-
tropy term and the normalized cut.
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Figure 2: The segmentation architecture (BPG) proposed in this paper. The network backbone is based on deeplab-v2(ResNet-101); Two sub-
networks are added into the segmentation architecture: (1) PRN which can refine the segmentation result by fusing the high-level semantic
features and low-level features; (2) BRN which can guide the network to extract edge features. The “6” symbol means element-wise addition
operation between current feature maps and the corresponding feature maps of deeplab. “C:k” means current feature maps contain k channels.

3 Approach

As illustrated in Figure 2, the segmentation architecture pro-
posed in this paper is mainly divided into three parts. The first
is a feature encoding network using the deeplab-v2 structure
as its backbone. After that, instead of upsampling the feature
maps with a simple direct scaling-up operation, we design
two sub-network branches to improve the performance of
weakly-supervised semantic segmentation: they are the Pre-
diction Refinement Network (PRN) and Boundary Regres-
sion Network (BRN), which can greatly refine the segmen-
tation features by combining weakly-supervised semantics in
coarser scribbles with rough image edges yet in fine-grained
resolution.

3.1 Prediction Refinement Network

Because of the effectiveness of the deeplab architecture [Chen
et al., 2015; Chen et al., 2018al, many researchers take it
as their backbone network for the weakly-supervised seman-
tic segmentation task [Khoreva et al., 2017; Lin et al., 2016;
Tang et al., 2018a]. For a fair comparison with these meth-
ods, we use it as our backbone too. However, we find that
this network structure has two shortcomings: 1) The last con-
volutional feature only contains high-level information about
semantic segmentation, which is insufficient for segmenting
small hard regions with fine details; 2) It directly upsamples
the convolutional features by a factor of eight to predict the fi-
nal pixel labels, yielding quite coarse semantic region bound-
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aries. To address these problems, we design the PRN to pro-
duce clear boundaries for those hard regions.

As shown in the top of Figure 2, the PRN branch im-
plements three key ideas. First, we use a shallow network
to extract high-resolution convolutional features from an in-
put image and concatenate them with each individual seman-
tic channel to enhance features with more low-level details.
Since the low-level features contain high-resolution details,
the resulting representation combined with high-level seman-
tics can enable fine-grained segmentation of different seman-
tic regions in a high resolution. In addition, after upsam-
pling the high-level semantic features with low-level high-
resolution details, we refine the enhanced features by a series
of convolution operations to produce more boundary details.
Finally, we leverage the idea of residual networks in this sub-
network to accelerate the network convergence (See the “@®”
symbol in Figure 2).

Compared to some existing segmentation networks with
refinement structure such as U-Net [Ronneberger et al.,
2015], the proposed PRN has the following merits: Firstly,
we just need low-level features which pass through the given
image with 5 convolutional operations; Secondly, only single-
channel feature map is added to each confidence map (K + 1
in total). Thus, our PRN only imports small amount compu-
tations and GPU memories, which may benefit some future
semantic works.
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3.2 Boundary Regression Network

Per-pixel cross-entropy loss can train a satisfactory segmenta-
tion network with per-pixel annotations. However, for scrib-
ble annotation, only a few internal markers are drawn for each
object and no boundary information is provided explicitly.
In this setting, training a segmentation model with a stan-
dard segmentation network cannot yield sharp accurate ob-
ject boundaries. To the end, we design a branch of BRN
which can implicitly extract the important boundary infor-
mation from readily available rough edges (We choose the
HED method [Xie and Tu, 2015] as it has been used in other
weakly-supervised semantic segmentation methods [Khoreva
etal.,2017; Cai et al., 2018]).

Although the above idea is intuitive, designing an effective
boundary regression model is still challenging in a weakly
supervised fashion, since the edge labels produced by HED
are not the true boundaries of objects that often introduces
many noise edges actually belonging to the background (See
Figure 2-Rough Edge).

In fact, directly using conventional (K + 1)-channel struc-
ture (K is the category number of objects, “1” refers to the
background) to predict edges not only cannot enable the net-
work to obtain the boundary differentiation ability, but also
damage the segmentation results. The reasons are as follows
(experimental validations are also given in the section of ex-
periments). The (K + 1)-channel confidence map only con-
tains segmentation results with rough object boundaries under
the supervision of scribble-based weak annotations. In this
case, if precise boundaries of each object are given to guide
the boundary regression, the segmentation precision can be
easily improved. However, only rough edge labels are avail-
able, and they may break up the feature maps into several
false pieces to regress the noisy edges. Thus, to keep the se-
mantic structures intact, we design the BRN structure below
to eliminate the negative effect of noisy edges by dividing the
(K + 1)-channel feature maps into foreground/background
channels. Only the resultant foreground channel is regressed
to the noisy edges, thereby minimizing the chance of individ-
ual semantic channels being compromised with noisy edge
labels.

The general structure of the network is illustrated at the
bottom of Figure 2. Instead of directly using deeplab-v2
(K + 1)-channel features to predict the boundary, we divide
the features with predicted labels into foreground/background
channels first and then regress them to the edge predic-
tion map. As shown in Figure 3, when edge loss is back-
propagated from the class-agnostic object confidence maps
(Denote Myore, C : 1) to the semantic feature maps (C' : K),
at each location, only the element with the highest probability
needs to calculate the gradient (see Eq. 1) and update related
parameters. In other words, it means the other (K — 1) se-
mantic feature maps will not be affected by the noisy edge
loss.

douta Oi :max(C'l,Cg,...,C’K)
de, = (1
0, others,

where d¢;, denotes the gradient of the ¢-th semantic feature
map, d,,; refers to the gradient of foreground feature map.

d:‘% out

O —— oo
de Mfore (C1 )
Msem (CK)

Figure 3: Forward propagation and backward propagation illustra-
tion of max pooling operation between semantic feature maps and
foreground feature map: out = maxz{Ch, Ca,...,Ci}.

By updating a limited number of parameters, only the bound-
aries around the foreground objects are learned to fit those
true object boundaries in the given edge map and those noisy
ones rarely have the chance to damage the K -channel seman-
tic maps.

3.3 Loss Function

The feature decoding part of the proposed network consists
of the PRN and the BRN.
The loss function to train the PRN is

Lsemantic = Z PCE(Xrefﬁl (p); lscri (p))’ (2)
p

where p indexes pixels, X,¢r g, (p) is the predicted probabil-
ity of the PRN with parameters 61, l..;(p) is the scribble
mask label at pixel p, and PCE is the Partial Cross-Entropy
loss [Tang et al., 2018a] which only computes the loss on the
labeled region.

The loss function of the BRN is

Lboundary - Z MSE(XboundRegﬁg (p)7 ledge (p))v (3)

p

where XpoundReg.0, (p) is the predicted probability by the
BRN with parameters 02, l.qq.(p) is the edge label at pixel
p, and MSE is the per-pixel MSE.
We train the two sub-networks end-to-end, and the total
loss is
Ltotal = Lsemantic + )\Lboundarya (4)
where the hyper-parameter A\ balances between the two
losses.

4 Experiments

We evaluate the proposed architecture on the PASCAL VOC
2012 segmentation benchmark [Everingham er al., 2010],
which involves 20 foreground object categories and one back-
ground class. The original dataset contains 1,461 training im-
ages, as well as 1, 449 validation and 1, 456 testing examples,
respectively. Following the evaluation protocol in the litera-
ture [Chen et al., 2018a; Dai et al., 2015; Lin et al., 2016;
Tang et al., 2018al, we use the augmented dataset by the ex-
tra annotations provided by [Hariharan et al., 2011], totaling
10, 582 training images. The training data are scribbles from
[Lin er al., 2016] for the weak supervision task.
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bkg | plane | bike bird boat | bottle | bus car | cat chair cow
deeplab-v2 [F] 93.8 | 87.1 | 39.6 | 89.1 60.0 80.1 | 943 | 86.0 | 90.8 37.0 86.4
deeplab-v2+crf[F] | 94.0 | 88.0 | 38.6 | 90.1 60.0 80.5 | 944 | 86.1 | 91.9 37.2 87.2
deeplab-v2 [scri]* | 91.1 | 70.9 | 342 | 71.7 59.3 744 | 884 | 825 | 844 36.2 80.7
+PRNx* 92.7 | 724 | 348 | 749 60.6 743 | 90.8 | 83.8 | 864 36.9 80.7
+BRNx* 919 | 780 | 36.6 | 78.0 63.1 76.5 | 89.5 | 824 | 87.5 35.8 84.5
BPGx 923 | 80.3 | 37.6 | 799 62.1 75.7 | 89.6 | 84.0 | 87.2 37.5 84.0
BPG+CRF 934 | 848 | 384 | 84.6 65.5 78.8 | 914 | 859 | 89.5 41.0 87.3

table | dog | horse | mbike | person | plant | sheep | sofa | train | monitor | mean
deeplab-v2 [F] 478 | 87.1 | 87.7 84.0 85.8 65.8 | 83.3 | 46.2 | 87.6 73.3 75.8
deeplab-v2+crf[F] | 48.0 | 88.4 | 88.8 84.7 86.4 679 | 84.0 | 472 | 874 73.7 76.4
deeplab-v2 [scri]+ | 53.2 | 78.0 | 77.1 78.7 78.3 58.7 | 77.5 | 40.7 | 82.7 68.7 69.9
+PRNx* 588 | 81.2 | 79.0 | 793 79.8 59.8 | 77.5 | 43.6 | 83.7 70.1 71.4
+BRNx* 509 | 822 | 80.2 | 80.5 81.0 58.0 | 81.6 | 43.1 | 84.3 74.2 72.4
BPGx 56.7 | 81.4 | 814 | 81.1 80.4 61.5 | 84.2 | 435 | 85.0 71.8 73.2
BPG+CRF 583 | 84.1 | 85.2 83.7 83.6 64.9 | 88.3 | 46.0 | 86.3 73.9 76.0

Table 1: Comparison results of different network architectures on the PASCAL VOC 2012 validation set (IoU in %). * refers to scribble-based
method without CRF post-processing, the best mAP for each categories among them is marked in bold.

!

(e) +BRN

"\F
i

(a) Image f) BPG

(b) GT

(c) Deeplab-v2 (d) +PRN

Figure 4: Weakly-Supervised semantic segmentation example: (a)
the input image; (b) full mask annotation; (c) segmentation result
with deeplab-v2; (d) segmentation result with [deeplab-v2 + PRN]
(d) segmentation result with [deeplab-v2 + BRN]; (e) segmentation
result with BPG framework [deeplab-v2 + PRN + BRN].

Methods mAP edge loss
wo/ BRN 71.4 n/a
w/BRN (C =K +1) 708 0.026
w/ BRN (C' = 2) 73.2 0.051

Table 2: Comparison with different settings on the PASCAL VOC
2012 val set (mIoU in %).

4.1 Implementation Details

We re-train the ResNet101-based deeplab-v2 [He et al., 2016;
Chen et al., 2018a] by PyTorch and take it as our baseline.
The proposed weakly-supervised semantic segmentation net-
work is simply trained on a single scale of input images. Like
the setting in deeplab-v2, we employ the “poly” learning rate
policy for with a mini-batch of 10 images with an initial learn-
ing rate of 0.00025. We use a momentum of 0.9 and a weight
decay of 0.0005. The hyper-parameter A in Eq. 4 is set to
1.0. We run 25 training epochs on a single NVIDIA TitanX
1080ti GPU, which takes about 10 hours on the PASCAL
VOC dataset. In the testing stage, instead of using multi-
scale inputs with max voting, we use the average voting over
multi-scale left-right flipped inputs (i.e. [0.5,0.75, 1.0, 1.25]).
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Methods wo/ CRF  w/ CRF
Supervision: Scribbles

ScribbleSup [Lin ef al., 2016] n/a 63.1
NormalCut [Tang et al., 2018al 72.8 74.5
KernelCut  [Tang er al., 2018b] 73.0 75.0
BPG (Ours) 73.2 76.0
Supervision: Per-pixel Labels

deeplab-v2 75.8 76.4

Table 3: Comparison with state-of-the-art methods on the PASCAL
VOC 2012 val set (mIoU in %).

4.2 Ablation Study and Results

Ablation Study
We perform experiments on the PASCAL VOC 2012 se-
mantic segmentation dataset with different architectures. As
shown in Table 1, with deeplab-v2 architecture (ResNet101-
based) alone, the model can yield 69.9% in mIoU. Adding
the PRN can gain 1.5% improvement in mloU. Combining
the BRN into deeplab-v2 alone can bring 2.5% improve-
ment. The proposed BPG framework based on the deeplab-v2
backbone and both PRN and BRN can improve the weakly-
supervised segmentation performance to as high as 73.2%,
which sets up the new start-of-the-art mloU performance.
From the Table 1, we also find that the segmentation per-
formance has been improved (1.2% ~ 9.4%) on all seman-
tic categories, which demonstrates the effectiveness of the
proposed framework. Furthermore, by applying the CRF
post-processing, we can achieve 76.0% in mlIoU, as good as
the fully supervised semantic segmentation model using per-
pixel labels (76.4%) with the same CRF post-processing.
Figure 4 shows weakly-supervised segmentation examples
produced by different network structures. We can see that
the baseline result (deeplab-v2 only) has much coarse seg-
mentation results, where the boundaries are not well aligned
with the ground-truth counterparts. In comparison, the net-
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Figure 5: Segmentation predictions and edge predictions with different BRN settings: (1) Directly using K+1 feature maps following with
some convolutional operations; (2) Converting K+1 feature maps to class-agnostic fg/bg maps firstly and then with the same operations.
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Figure 6: Visualization results on the PASCAL VOC 2012 val set:
input images, ground-truths, segmentation results with deeplab-v2
(supervised/scribble-based) and segmentation results with our BPG
framework before/after CRF.

work with the PRN branch gains an improved segmentation,
and the segmentation result by the BRN achieves an even bet-
ter result. By combining both structures, the BPG can obtain
a considerable high-quality segmentation result as shown in
Figure 4(f).

Boundary Regression Network Design

To evaluate the effectiveness of the proposed BRN, we con-
duct additional experiments to compare different settings. As
shown in Table 2, when directly using (K + 1) — channel
feature maps to regress the object boundary, the edge loss of
the last iteration is only 0.026. However, the segmentation
mAP drops by 0.6%, which is clearly overfitting.

In contrast, when using the proposed BRN structure (con-
verting (K+1) semantic feature maps to fg/bg feature maps
firstly), the edge loss is more than twice of the previous
settings, but the segmentation precision is improved signifi-
cantly (73.2% vs 71.4%). The segmentation and edge pre-
diction results in Figure 5 give a more intuitive explanation
for that. We can see from this figure, when directly using
C = K + 1 structure, the edge predictions are close to the
edge labels, but in this setting, the segmentation does not per-
form very well: the segmentation result of samplel still has
rough boundary; the segmentation result of sample2 contains
some mistakes on semantic predictions. On the contrary, our

boundary regression network can produce clear object bound-
aries by eliminating the negative impact of those noise edges,
yielding good segmentation results with precise boundaries.

Comparisons with State-of-the-art Methods

To further analyze the segmentation performance of the pro-
posed method, we also compare with the current state-of-the-
art methods [Lin et al., 2016; Tang et al., 2018a]. From Ta-
ble 3, we can see that the proposed BPG model is far bet-
ter than the ScribbleSup baseline. NormalCut [Tang ef al.,
2018a] and KernelCut [Tang er al., 2018b] are the other two
best methods at present, which also take deeplab-v2 as their
network backbone. Compared with them, our model still
achieves competitive segmentation result with scribble labels.
ScribbleSup uses the graphical model for propagating infor-
mation from scribbles. NormalCut loss and KernelCut loss
are two regularized losses to train the segmentation network
with scribble labels. As shown in Figure 6, the proposed BPG
architecture can achieve good segmentation results with pre-
cise boundaries.

5 Conclusion

We propose the BPG model including two sub-networks to
improve the segmentation network training with weakly an-
notations. Specifically, we first propose the branch of the
PRN to refine the segmentation prediction by combining the
low-level high-resolution feature map with high-level low-
resolution feature maps through iterative upsampling layers.
Then we introduce the branch of BRN to train the network
to localize the sharp boundaries more effectively. The pro-
posed architecture can achieve considerable better segmenta-
tion performance without per-pixel annotations. These two
proposed sub-networks can be readily incorporated into any
segmentation networks in the weakly-supervised task when
incomplete per-pixel labels are provided.
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