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Abstract

In this paper, we investigate the structural similari-
ties within a finite Markov decision process (MDP).
We view a finite MDP as a heterogeneous directed
bipartite graph and propose novel measures for the
state and action similarities, in a mutually rein-
forced manner. We prove that the state similarity
is a metric and the action similarity is a pseudomet-
ric. We also establish the connection between the
proposed similarity measures and the optimal val-
ues of the MDP. Extensive experiments show that
the proposed measures are effective.

1 Introduction

The Markov decision process (MDP) is a useful mathemati-
cal model to support decision making, which has practical ap-
plications in many areas, such as intelligent control systems,
finance, energy management, online advertising, etc. [Cai et
al., 2017; Han et al., 2016] A finite MDP models the inter-
action between an agent and the outside environment. The
environment is described as a set of discrete states, where, on
each state, the agent has a set of available actions. By observ-
ing the current state and deciding which action to take, the
agent may change the state of the environment. Driven by a
properly designed reward scheme, the agent may thus develop
a good policy for making wise decisions in the environment.

In this paper, we investigate how to measure the state and
action similarities in a finite MDP. Such similarities are im-
portant as they may provide a principled way of designing
solutions in various other research areas, such as

e Transfer in reinforcement learning [Taylor and Stone,
2009], which aims to use past learning experiences to
accelerate a current learning process; and

e MDP abstraction [Abel, 2019], where the goal is to con-
struct an abstracted MDP with a smaller state-action
space, while still maintaining certain properties of the
original MDP.

The research most related to ours is the bisimulation met-
ric, proposed in [Ferns er al., 2004], which smoothly ex-
tends the notion of bisimulation [Givan et al., 2003]. Briefly,

*Part of this work was done when this author stayed at the State
Key Laboratory for Novel Software Technology, Nanjing University.
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bisimulation defines an equivalence relation between states
and thereby induces a partition of the state space into equiv-
alence classes. Whenever the same action is taken, bisimi-
lar states perform exactly the same (probabilistic) transition
into other equivalence classes, receiving exactly the same re-
ward. Based on the observation that two states are similar if
the same action has similar effects, [Ferns et al., 2004] de-
veloped the bisimulation metric between states to extend the
rigorous notion of bisimulation. Nonetheless, one problem
with the bisumlation metric is that it overlooks the role of
actions. Consider the MDP example in Fig. 1(a). The bisim-
ulation metric cannot capture the fact that taking action b on
state u is, to some extent, similar to taking action a on state v.
In this paper, we tackle this problem by explicitly considering
the similarity between different actions.
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(a) An example MDP M (b) MDP graph G s
Figure 1: An MDP example and its graph representation. Labels on
the edge are of the form “(action/)transition probability/reward”.

Another related notion is the MDP homomorphism [Ravin-
dran and Barto, 2003], which consists of two algebraic map-
pings, one between states and the other between actions. The
two mappings should exactly preserve the reward and tran-
sition probabilities. It has been pointed out that homomor-
phisms are often too strict and computationally difficult to be
practically useful [Taylor and Stone, 2011]. [Sorg and Singh,
2009] proposed soft homomorphism, allowing the state map-
ping to be probabilistic as long as it exactly preserves transi-
tion probabilities and rewards in expectation. We argue that
the soft homomorphism is still too rigorous in many practical
situations. For example, there is no nontrivial (soft) homo-
morphism in the example of Fig. 1(a), even though states u
and v are intuitively quite similar.

Instead of the algebraic view adopted by bisimulation and
homomorphism, in this paper, we take a graph-theoretical
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perspective to reveal the structural similarities within a finite
MDP. Our methodology originates in the studies on measur-
ing the structural-contextual similarities between nodes in a
general graph. [Jeh and Widom, 2002] developed SimRank,
of which the basic idea is that two nodes are similar if and
only if their neighbors are similar. Although SimRank is not
directly applicable to MDPs, as it is unaware of MDP-specific
characteristics, we are nevertheless able to tailor its idea to
develop similarity measures in MDPs. To sum up, the contri-
butions of this paper are the following.

1. We propose a heterogeneous bipartite graph representa-
tion for finite MDPs (Sec. 3). The graph contains state
and action nodes interconnected by decision and transi-
tion edges. With such a representation, the roles of states
and actions are properly captured.

2. We propose recursive definitions for the state and action
similarities (Sec. 4.1). The similarities can be efficiently
computed by an iterative algorithm (Sec. 4.2).

3. We prove that the induced distance measures have good
metric properties (Sec.4.3). We also show that the pro-
posed measures can be used to bound the difference be-
tween optimal values of the MDP (Sec. 4.4).

4. We show, via extensive experiments on randomly gener-
ated MDPs, that the proposed measures are effective in
capturing structural similarities (Sec. 5).

2 Related Work

2.1 Transfer in Reinforcement Learning

Transfer learning aims at using past learning experience to ac-
celerate the learning of a current task. Many transfer learning
techniques are based on the notion of task similarity. [Lazaric
et al., 2008] measured the similarity between two MDPs from
a sample-oriented perspective. [Ramamoorthy et al., 2013]
proposed a value-preserving Lipschitz metric between two
MDPs within the same state-action space, which was calcu-
lated as the maximum possible difference between the reward
and state transition functions. [Ammar et al., 2014] used a re-
stricted Boltzmann machine to measure the distance between
two batches of samples from two MDPs, which was later used
as the distance between the two MDPs. [Sinapov er al., 2015]
represented MDPs as feature vectors and trained a regression
model to evaluate the closeness of two MDPs. [Song et al.,
2016] recently employed several metrics to measure the dis-
tance between two MDPs within the same state-action space.
The above works mainly focus on inter-task similarities rather
than structural similarities within one single task.

2.2 MDP Abstraction

The research field of MDP abstraction is also relevant to
our work. [Li et al, 2006] proposed a unified theory of
state abstraction, covering bisimulation [Givan et al., 2003],
homomorphism [Ravindran and Barto, 2003], policy irrele-
vance [Jong and Stone, 2005], etc. The focus of the the-
ory was mainly on property preservation during the process
of state abstraction. Structural similarities (especially sim-
ilarities between actions) were not fully explored. On the
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other hand, there have been several research works on plan-
ning and learning with abstract MDPs [Abel et al., 2019;
Gopalan et al., 2017]. Their focus is different from ours.
However, our work may contribute to this area by introducing
a novel perspective towards MDP abstraction.

2.3 Structural Similarity in Graphs

Besides the SimRank measure [Jeh and Widom, 2002] in-
troduced in Sec. 1, node-to-node proximities in graphs have
been extensively studied in the literature. [Jeh and Widom,
2003] suggested using personalized PageRank, which is es-
sentially an asymmetric random walk distance. Since Sim-
Rank is counterintuitive and inflexible in certain cases, many
studies have been done to improve SimRank. [Xi ez al., 2005]
proposed SimFusion, based on a unified relationship matrix
representation of the graph. [Antonellis er al., 2008] revised
SimRank to Simrank++, by weighting the neighbors of graph
nodes. [Zhao et al., 2009] proposed P-Rank, extending Sim-
Rank to work for information networks. [Lin et al., 2012]
introduced maximum matching into the similarity measure
and thereby developed MatchSim. Recently, [Jin ef al., 2014]
proposed a metric, RoleSim, that complies with a set of ad-
missible properties. As with SimRank, the above-mentioned
measures are not directly applicable to our problem because
they are not tailored to finite MDPs.

3 Graph Representation of MDPs

In the literature, an MDP is typically described as a tuple
M = (S,A,T,R). S and A are the finite sets of states
and actions, respectively. In particular, for any s € S, we
denote by Ay, C A the set of available actions on state s.
T:SxAxS —[0,1]andR: S x AxS — [0,1] are
the state transition function and the reward function, respec-
tively;! so, T' (s, a, s') gives the probability of ending up on
state s’ after taking action a on state s, and R (s, a, s’) is the
reward for such a state transition. One problem with this alge-
braic representation of an MDP is that it does not distinguish
between actions that have the same name but are taken on dif-
ferent states. To tackle this problem, we instead consider the
following graph-theoretical representation of MDPs.

The MDP graph for an MDP M = (S, A, T, R) is defined
as Gy = (V,A,E, ¥, p,r), which is a heterogeneous di-
rected bipartite graph with two types of nodes, the state nodes
(V) and the action nodes (A). E is the set of decision edges
from state nodes to action nodes and ¥ contains all the tran-
sition edges from action nodes to state nodes. While the de-
cision edges are unweighted, each transition edge (o, v) € ¥
is weighted by a transition probability p(«,v) and a reward
r(a,v). The following procedure constructs the graph Gy,
from a given MDP M.

1. For each s € S, create a new node v, into V.

2. For each s € S and each a € A, create a new node o
into A and a new edge (vs, ) into F.

'In principle, the value of R may take arbitrary reals. Nonethe-
less, in most practical cases, it is reasonable to assume that R is both
lower and upper bounded and can thus be rescaled into [0, 1] without
sacrificing the representation power of the MDP model.
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3. For each (s,a,s’) € S x A x S such that T'(s,a,s’) >
0, create a new edge (g, vy ) into ¥; set p (g, vy ) =
T (s,a,s") and r (g, vs) = R (s,a,s").
It is clear that there is a one-to-one correspondence between
an MDP M and its graph Gjps. The graph Gy is always
bipartite, with [V| = |S| and [A] = |E| = Y  o|Asl
Fig. 1(b) shows the graph of the MDP in Fig. 1(a), which con-
tains 6 state nodes, 4 action nodes, 4 decision edges, and 9
transition edges. Note that the 4 action nodes distinguish the
two actions a, b € A on states u and v.

4 The Structural Similarities

For any node x € V U A in a given MDP graph Gj; =
(V,A,E,¥,p,r), let N, be the set of all the out-neighbors
of x. Note that G, is bipartite, thus the out-neighbors of a
state node are always action nodes, whereas those of an action
node are always state nodes (see Fig. 1(b)). We now define the
state similarity os and the action similarity o. The goal is to
make the induced distance measures

0s(u, v) &y os(u,v), Yu,v eV, D

5A(a55) déf 1- O—A(avﬂ)a vavﬂ € A7 (2)

have desirable properties.

4.1 The Recursive Similarity Measure

We adopt the basic idea of SimRank [Jeh and Widom, 2002]
to define o and oA ; namely, that two nodes are similar if and
only if their neighbors are similar. The idea is implemented
as a recursion.

The Base Cases
As the base cases, we define
ifu=wv,

0,
ds(u,v) &f { 1, if w or v, but not both, is absorbing,
dy,», if both v and v are absorbing.

Here, a state is absorbing if there is no out-neighbors, which
is typically a goal state in practice. A configuration of d,, ,, €
[0, 1] is thus an application-dependent description of the rela-
tionships among goal states. Two special cases are d,, , = 1
and d, , = 0, indicating that any two goal states should be
regarded completely different or identical, respectively.

The Recursion for State Similarity

For any two state nodes w,v € V, the similarity os(u, v)
is essentially the similarity between their out-neighbors N,
and N,, which are two sets of action nodes. The similarity
between N, and N, should in turn be based on the pairwise
similarity oa(c, ), forevery « € N, and 8 € N,,. Note that
simply averaging over all the pairwise similarities o4 (c, )
(as SimRank does) will prevent Jg from being a metric, since
the triangle inequality is compromised. Hence, we consider
using the Hausdorff distance [Delfour and Zolésio, 2011].2

2Other options do exist. For example, the minimum pairwise dis-
tance (mindist), mina, g 0a (o, B), is a metric. Yet, one problem is
that a single small d4(«, 3) dominates all the other pairwise dis-
tances even if they are all very large. This may be inconsistent with
the intuition that similar states should have similar decision options.
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Specifically, given an action node « and a set of action nodes
N, the distance between « and N, abusing the symbol Ja,

is da(a, N) &f mingen 0a(a, §). The Hausdorff distance,
given 64, is then the maximum of all element-to-set distances:

6Haus(Nu7Nv§5A) = (?é%’( {6A (Oé,Nv),(5A (BvNu)} )
BEN,

The Hausdorff distance dgays(Ny, Ny;da) = A provides
an upper bound on the pairwise distances between the actions
available on states u and v. Specifically, within a distance
A from any action in IV, (resp. N,), there is always another
action from N, (resp. N,,); thereby, A bounds the overall dis-
similarity between N,, and N,. Using dyay,s, We obtain

os(u,v) = Cs - (1 — Snaus(Nu, Nu; 04)) 4

where u, v € V are two distinct non-absorbing states and 0 <
Cs < 1is a constant discounting the impact of the neighbors
N, and Ng on the pair of state nodes (u,v).

The Recursion for Action Similarity

The state similarity o relies on a well-defined 4 (see Eq. 4).
As shown in Fig. 1(b), in an MDP graph, an action node itself
conveys limited information — what really matters is its conse-
quences or effects. An action node « is essentially both a dis-
tribution p, = p(a, x) over the state nodes (probabilistic tran-
sition) and a distribution r,, = r(c, *) over [0, 1] (stochastic
reward). The distance between rewards is relatively simple:

(srwd(a?ﬁ) = |]E[Ta] _E[TBH ) %)
i.e., it is the difference between their expectations. The rest of
the task involves measuring the distance between two proba-
bilistic distributions over state nodes. To that end, we employ
the earth mover’s distance (EMD) [Rubner et al., 1998]°:

OEMD (Pmpﬂ;(ss) = m}ln Z Z fu,v : 55(“70)

uENy ’UENﬁ
st. Yu,v eV f,, >0,

VuGV:qu,U =p(a,u),

veV

Yo eV Y fuw=p(Bv). (6)
ueV

EMD quantifies the effort for transforming one distribu-
tion into another by moving the “earth” (probabilities, in
our case) around. The value f,, in the matrix F' is the
“earth” moved from the state node u© € N,, to the state node
v € Ng. Such a movement of the “earth” incurs a cost of
ds(u, v). Semp(Pa,ps;ds) is thus the minimum possible ef-
fort for transforming the distribution p,, to the distribution pg.

The recursion for o4, based on dgmp, is designed to be

O'A(Oé,ﬁ) =1- (1 - CA) 6rwd<aaﬁ)
— Cademp (P, P33 0s) s @)

where 0 < Ca < 1 is the parameter to weight the importance
of the reward similarity and the transition similarity.

3There are other statistical distance measures (e.g., Kullback-
Leibler divergence, Hellinger distance, Jensen-Shannon divergence,
etc. [Venturini, 2015]). They are not applicable here as they require
a fixed matching between N, and N to get nontrivial evaluations.
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4.2 Computation

Algorithm 1 shows the iterative algorithm for computing og
and oy by simulating the recursion of Sec. 4.1. The algorithm

Algorithm 1 Structural similarities of an MDP graph

Input: MDP graph G = (V, A, E, ¥, p, 1)
Parameter: Discount factors Cs, Ca € (0,1)
Output: Solution (og, o 4) to the recursion of Sec. 4.1

> Initialization & base cases.
08— Livixvys A < Ljapxa
> Iterative computation.
. repeat
foralla € N, and 8 € N, (u,v € V,u # v) do
d < EMD (pa,pg; Gar, 1 — S)
Compute A, g using Eq.7 with Cp, d and S
for all u,v € V with N,, # @ and N,, # () do
Compute S, using Eq. 4 with Cs and A
: until S and A converge
: return (og,0) + (S, A)

Ju—

R AN A e

is mostly straightforward except for Line 4, where a subrou-
tine EMD is invoked to compute dgmp (P, pg; 0s). The com-
putation of the EMD can be seen as solving an instance of
the minimum-cost network flow (MCF) problem, which can
be done by using, for example, the successive shortest path
(SSP) algorithm [Jewell, 1962].

Space and time complexity. Given the graph G, =
(V,A,E, ¥ ,p,r) of the MDP M = (S, A, T, R), Algorithm
1 requires © (|V|? + |A]?) = O (|S|?|A|?) space to store S
and A. SSP takes O (Kgmx) working memory, where Kpax <
|[V| is the maximum out-degree of action nodes in G ;.
Given a predefined precision € (e.g., e = .001), SSP is guar-
anteed to terminate in O (& - (K2, + Kmax 108 Kmax)) =
0] (6% -Kr%ax) time, using Dijkstra’s algorithm with a Fi-
bonacci heap.* Each iteration of Algorithm 1 (Lines 3-7)
makes © (]A|?) calls to SSP. Computing the Hausdorff dis-

tances takes © (|[V|2L2,,) time, where Ly, < |A| is the
maximum out-degree of state nodes in GG;;. The overall time
cost is therefore O (N - |S|?|A]?K2,./€?), where N is the

number of iterations before convergence.

4.3 Mathematical Properties

We now prove that 0§ and o are well-defined by showing
that Algorithm 1 always terminates. Let S*) and A% be
versions of the matrices S and A after the k-th execution of
Lines 3-7 of Algorithm 1 (k = 1,2,---). In addition, let
S©) and A© be the contents of S and A right before the
algorithm enters the main loop. Let the symbol < denote the
pairwise-less-than-or-equal-to relationship between matrices.

Lemma 1 (Boundedness) Forall k> 0,0 < S®) <1 and
0=<A® <1

“It is known that such a worst-case analysis is too pessimistic.
[Brunsch et al., 2013] developed a smoothed analysis of SSP to bet-
ter explain its practical efficiency. The discussion is, however, out of
the scope of this paper as it does not affect how we use SSP.

Lemma 2 (Monotonicity) For all k > 0, S*) < §(k+1)
and AK®) < AG+D)

Sketch of Proof. Lemmata 1 & 2 can be proved by induc-
tion, using the boundedness of dy,,s and dgmp, as well as their
monotonicity with respect to d, and Jg, respectively. (]

Theorem 1 (Unique Existence & Nontrivialness)
Algorithm 1 terminates correctly with the unique solu-
tion (c§,0%) to the recursion of Sec.4.1. The solution is
nontrivial in the sense that 0§ # 1 and o # 1, even if there
is no absorbing state in the input MDP graph G y;.

Proof. 1t is a direct corollary of Lemmata 1 & 2 that
lim S =¥ € [0,1],

k— o0

lim A® =% € 0,1].

k—o0
To see the nontrivialness of (o, o), it suffices to verify that
os = 1 or oo = 1 cannot constitute the solution due to the

discount factor 0 < Cs < 1. O

def

Next, we consider the matrices D®*) = 1 — S§®*) and

L®) défl—A(k)forkz(),l,Q,"'-

Lemma 3 (Triangle Inequality) The triangle inequalities
DY) < D&, + DX, and LY, < LE) + L) hold for

= ; 7,
arbitrary state nodes u,v,w € V, arbitrary action nodes
a, B,y € Aand every k > 0, if the configuration of the
base cases, d,, ., observes the triangle inequality (i.e., if for

any absorbing states u, v and W, dy , < dy + dy o).

Sketch of Proof. This proof is also done by induction. Verify-
ing for L(®) = 1 and D) is trivial, given the initial config-
uration of d,, ,, values. The induction can then be completed
since Oaus (*, *; L(k)) and dgmp (*, *; D(k)) are metrics. [
Lemma 3 immediately leads to the following result.

Theorem 2 (Metric Properties) If (o¢,0}) is the solution
to the recursion of Sec. 4.1, formulated on the MDP graph
Gu = (V,A,E, ¥, p,r), then 6§ = 1 — 0§ is a metric on V
and 0y =1 — o is a pseudometric on A.

Proof. It is clear that both 6§ and ¢ are nonnegative and
symmetric. The triangle inequalities of ¢ and §; are obtained
by taking limits on both sides of the inequalities of Lemma 3.
Then, 6§ is a metric because § (u, v) = Oif and only if u = v.
Indeed, for any u # v, 0§ (u,v) < 1 due to the discount factor
Cs, even if dyays(u, v;9%) = 0 (see Eq.4). In contrast, it is
possible that 0% («, ) = 0 for two different actions o # 8 €
A, which happens when r, = rg and p,, = pg. O

4.4 Bounding Differences Between Optimal Values
Given an MDP graph Gy, = (V, A, E,¥,p,r) and an arbi-
trary initial state ug € V, following a probabilistic policy
7wV x A — [0,1], there will be a trajectory of state transi-
tions (of which the length could potentially be infinite):

ag = m(ug) ay = mw(ur)

Uug Uy U2
1 T2 3

as = m(usz)
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Given a discount factor p € (0, 1), the state value of u € V
under policy 7, written V7, is the expected total accumulative
return starting from the state node w, i.e.,

o def =
Vi = Ex Zpkrkﬂ Ug = U] . (8)
Lk=0
Similarly, the action value of oz € A under policy 7 is
[ oo
o def
QL= By | D prripa|an=a )
L k=0

Now, consider the optimal value functions V* and Q* un-
der the optimal policy 7*. The well-known Bellman equa-
tions [Sutton and Barto, 2018] state that

Vi = max Qa,
Q= > pla,u) (r(e,u) + pVy).
uENy

We show that the proposed distance measures, 6§ and ), can
be used to bound the difference between the optimal values.

Theorem 3 (Bounds on Differences of Optimal Values)
For any state nodes u,v € V and any action nodes o, 3 € A,
if we choose Cs = 1 and Cy = p, then we have®

1
VRl < T L%
IVu V'UI -1 —p 5S(U,’U),
* * 1 *
|Q; — Q3 < T, “ 0 (e, B).

Proof. Consider the sequences {V(k)} and {Q(k)} (k> 0):

V) = max QP

a€EN,
QP = 37 playw) (rleu) + pV D).
UEN,,

It suffices to first prove by induction that, for any k,

VP V9] < D ana [ - 0| < LY

and then take limits on both sides of the inequalities. After
verifying for k£ = 0, we see that

(k+1) _ H(k+1)
IQQ Q)|

S 6rwd(a7ﬂ) + 1Y Z (p(OL,U) 7p(ﬂau)) V?Sk) .

ueV
Due to the induction hypothesis IVﬁk) — ng)I < %pDIﬁII,

the second term is exactly the dual problem of Eq. 6 with cost
function lflpD(k). Hence,

QU+ _ Qgcﬂ)’

1
< Orwa(a, B) + pdemp (pmpﬁ; 1_pD(k)) (LH.)
1
=—L{Y (Line 5 of Algorithm 1)
1—p @

>The main purpose of Cy is to, theoretically, guarantee a nontriv-
ial (og,04); any Cs < 1 serves its purpose. Here, it is convenient
to choose a Cg very close to 1 such that it can be ignored in Eq. 7.
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Define d*) (o, 8) = IQIXk) — ng) I for £ > 0, and let
a* = argmax,ecy, 0¥+ and p* = argmaxgey, Qgcﬂ).
It can be shown that either o* finds 3* as the closest counter-
part, with respect to the distance measure d*+1), or the other
way around. Hence,

’V£k+1) _ V£k+1)’ — gD (0", g%

—-p
(Line 7 of Algorithm 1) O

1
S(SHaus (NuanId(k_I—l)) S 6Haus (NuaNUI 1L(k+1)>

_ 1 D+

- 1— p u,v

Note that, since the reward function r is bounded within
[0, 1], there is a trivial upper bound of 3, p* = 11 on
both V* and Q* (see Eq.8-9). Thm. 3 reveals a connection
between the proposed similarity/distance measure and the op-

timal values by tightening the trivial upper bound.

5 Experiments

We experimentally evaluate our proposed similarity measures
using a series of designed MDPs. The state space of each
MDP is an n x n grid of cells, as shown in Fig. 2(a), where
n is an odd integer. States are indexed with natural numbers

I I
6 7 8 P g
| §4 | i
| i |
3 5 n - T
g | 21 4 | |
i | {
0 1 2 1 <=
I I
-

n

(a) The state space (b) Available actions

Figure 2: Ann x n grid (n = 3) asan MDP M = (S, A, T, R).

in a left-to-right and bottom-to-top manner. There is a sole

goal state g € S, indexed ”22_ L at the center of the grid. The
action space consists of 4 actions intended towards 4 different
directions: left, up, right, and down. On any state, an action
is available as long as its intention is physically possible. If
action a € A, is taken on state s € S, then it has a 7,
probability of going along the intended direction and 1 — 75
probability of entering a random adjacent state. After enter-
ing a state s, the agent receives a random reward of 7, , o .
Wesetrg,q, = 1forany s € Sanda € A.

5.1 A Case Study

We first carry out a simple case study to show the ability of
our measures in capturing structural information for MDPs.
We use the 3 x 3 grid shown in Fig. 2, in which 75 , = 0.9 for
any s € Sanda € A, and ry 4+ = 0 whenever s’ # g. As
shown in Fig. 2(b), in this 9-state MDP there are 20 available
actions. Note that states 0, 2, 6, and 8, together with the eight
actions highlighted/in bold, are structurally symmetric. The
same is true for states 1, 3, 5, and 7.
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We compare our results on this 9-state MDP with those
of dpis, the bisimulation metric using EMD [Ferns et al.,
2004]. dy;s requires that every state has the same set of avail-
able actions. To meet this requirement, for any action of
which the intention is physically impossible, we define its
EMD for other actions to be 1. In all the experiments, we
set Cg = Cx = 0.95 for our solution and cg = 0.05 and
cr = 0.95 for dbis-

1.0 1.0

0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 3 0.1
2 4 6 8 0.0 0 2 4 0.0

(a) Our solution dg (b) Bisimulation metric dp;s

Figure 3: Visualization of state distance matrices.

Fig. 3 visualizes the resulting (upper-triangular) matrices
of the distances between the 9 states. As can be seen, our
results show a clear structural pattern in the distance matrix.
The smallest distances are 65(0,2) = 0§(0,6) = 0.27489
and 6§(1,3) = 65(1,5) = 0.27492, followed by 6§(1,7) =
0.28627 and 6§ (0,8) = 0.29873. In contrast, dy;s generates
very large distance values, with 0.95 being the minimum. In
particular, with dpis(1,7) = dpis(3,5) = 0.995, dy;s fails to
capture certain structural similarities in the MDP.

5.2 Distribution of Distance Values

We now analyze the distribution of the calculated distance
values. We generate a series of n x n grid MDPs {M,, } for
n = 11,13,---,33. In each MDP M,,, for every s € S
and a € A, we randomly draw the success probability 7,
from the Gaussian distribution A/(0.9,0.052) and the reward
Ts.q,s' from the uniform distribution 2/ (0, 0.01) when s’ # g.
The reward for entering the goal state remains 1. The size of
the state space of { M, } ranges from 121 to 1,089, which ad-
equately supports practical applications of finite MDPs. On
each MDP M,,, Algorithm 1 calculates two similarity matri-
ces, S, and A,,, with parameters Cs = Ca = 0.95, from
which we obtain two distance matrices, D = 1 — S,, and
D} =1—-A,. We also calculate a matrix Dy} for dy;s, using
parameters cg = 0.05 and ¢ = 0.95.

For each of D¢, Dy, and D}, we fit the values as a Beta
distribution. Fig.4 shows the fitted probability density func-
tions (PDFs). There are clearly three series of PDFs, fit-
ted from D¢, Dy (Fig.4(a)) and D} (Fig.4(b)), for n =
11,13, --- ,33. In each series, a darker line corresponds to a
larger state-action space. As can be seen, the Dg and Dy se-
ries have consistent trends. The Dy, series is heavily skewed
towards 1, while the Dg and Dy series are more flattened.
This indicates that our measures generate more reasonably
distributed distance values, whereas the bisimulation metric
constantly underestimates the structural similarities in { M, }.
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Figure 4: PDFs of the fitted Beta distributions.

5.3 Effect of Parameters

Our measures rely on two parameters, C's and C, so we per-
form experiments to investigate the impact of each. We ran-
domly generate a moderate-sized MDP, M5, using the same
metholodogy as in Sec.5.2. We first fix Cs = 0.95 and vary
C from 0.80 to 0.99 with a step-size of 0.01. Then, we swap
the roles of Cs and C. For each pair of (Cs, C), we run Al-
gorithm 1 to obtain the state similarity matrix S, from which
we calculate the mean distance value and the standard devia-
tion of the distance matrix D =1 — S.
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Figure 5: Effect of the parameters C'a and Cg on Ms.

Fig. 5 illustrates the impact of each parameter. As C in-
creases, the mean distance value also increases and the dis-
tribution becomes more concentrated. It is worth mentioning
that, as suggested by Thm. 3, the value of Cly is closely re-
lated to the discount factor p, which is determined by the ap-
plication and of which 0.95 is a common practice [Sutton and
Barto, 2018]. In contrast, C's shows the opposite impact. As
Cs increases, the mean distance decreases, though it remains
around 0.8, and the distribution becomes flattened. This is
consistent with the implication of Thm. 3 that Cs ~ 1.

6 Conclusion and Future Work

In this paper, we studied the structural similarities within a fi-
nite MDP. By representing MDPs as graphs, we described the
similarities between states and actions by measuring the prox-
imity between graph nodes. We proved the metric properties
of the proposed measures, based on which we also derived
upper bounds on the difference of optimal values. Extensive
experiments showed the advantages of our measures. In the
future, we plan to accelerate the computation of the proposed
measures via parallelism, which is commonly used to han-
dle large graphs. We are also interested in similarity search
queries on MDPs, which aim to efficiently identify the most
similar pairs of states/actions.
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