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Abstract
In partial multi-label learning (PML), each instance
is associated with a candidate label set that con-
tains multiple relevant labels and other false posi-
tive labels. The most challenging issue for the PM-
L problem is that the training procedure is prone
to be affected by the labeling noise. We observe
that state-of-the-art PML methods are either pow-
erless to disambiguate the correct labels from the
candidate labels or incapable of extracting the la-
bel correlations sufficiently. To fill this gap, a two-
stage DiscRiminative and correlAtive partial Multi-
label leArning (DRAMA) algorithm is presented in
this work. In the first stage, a confidence value is
learned for each label by utilizing the feature man-
ifold, which indicates how likely a label is correct.
In the second stage, a gradient boosting model is
induced to fit the label confidences. Specifically, to
explore the label correlations, we augment the fea-
ture space by the previously elicited labels on each
boosting round. Extensive experiments on various
real-world datasets clearly validate the superiority
of our proposed method.

1 Introduction
In multi-label learning (MLL) tasks, an object can be asso-
ciated with multiple labels simultaneously. A lot of recent
works have witnessed the rapid development of MLL in many
research areas, e.g. text categorization [Lin et al., 2018],
image/video annotation [Yang et al., 2018], music emotion
recognition [Trohidis et al., 2008], and gene function predic-
tion [Fodeh and Tiwari, 2018].

A common assumption in traditional MLL tasks is that
the training instances are precisely annotated. Unfortunate-
ly, in many real-world applications, it is difficult to obtain
noisy-free labels but alternatively, a set of candidate labels
are accessible. This scenario is referred as to partial multi-
label (PML) learning which is formalized by [Xie and Huang,
2018]. Formally, let X = Rp be the d-dimensional feature
space and Y = {y1, y2, ...yq} be the q-dimensional label s-
pace. Given a PML training dataset D = {(xi, Yi)|1 ≤ i ≤
∗Corresponding Author.

n} where xi ∈ X is the instance vector and Yi ⊆ Y is the
candidate label set, the goal of PML is to learn a multi-label
predictor f : X 7→ Y from D. PML makes a basic assump-
tion that the ground-truth label set Ŷi of an instance xi is con-
cealed in its candidate label set, i.e. Ŷi ⊆ Yi, and is invisible
to the predictor.

The most intuitive way is to regard all the candidate labels
as valid ones. Then the PML problem can be solved by any
off-the-shelf multi-label learning algorithms, e.g. Binary Rel-
evance (BR) [Zhang and Zhou, 2014], Classifier Chains [Liu
et al., 2017], CPLST [Chen and Lin, 2012] and so on. How-
ever, such a strategy neglects the false positive labels in the
candidate label set, which may lead to insufficient label cor-
relation extraction and in turn the performance degenerates.

In order to tackle this problem, a few PML techniques are
proposed. Some methods focus on disambiguation by assign-
ing a confidence value for each candidate label to estimate
how likely it is a correct label. For example, Xie and Huang
[2018] propose two effective approaches PML-lc and PML-
fp where the confidence scores are calculated by minimiz-
ing a confidence-weighted ranking loss. Nonetheless, when
the proportion of false positive labels is high, the algorithm-
s are error-prone due to the alternative optimization strate-
gy. PARTICLE [Fang and Zhang, 2019] utilizes the nearest
neighbors in the feature space to identify the credible label-
s with high labeling confidences through an iterative label
propagation procedure. Then it applies the pair-wise label
ranking technique to induce a multi-label predictor. Howev-
er, it only extracts second-order label correlations and hence
may achieve degenerated performance on complex datasets.
fPML [Yu et al., 2018] is another popular PML approach that
concentrates on exploring label correlations. It follows the
classic label embedding paradigm and can only handle those
datasets whose label spaces are highly sparse. We observe
that existing PML methods pay attention to either candidate
label set disambiguation or label correlation extraction. As a
result, their predictive performance is limited.

To bridge this gap, we propose a novel two-stage PML ap-
proach named DiscRiminative and correlAtive partial Multi-
label leArning (DRAMA). In the first stage, we generate a
real-valued label confidence matrix under the guidance of fea-
ture manifold and the candidate label set. To achieve the goal
of disambiguation, we make the smoothness assumption [Zhu
et al., 2005] that the examples close to each other in the fea-
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ture space are prone to share the same labels. Based on the
our assumption, the feature and label spaces share a similar
local topological structure which could be captured by the s-
parse reconstruction relationships among each instance and
its nearest neighbors. In the second stage, based on the la-
bel confidences, we present a gradient boosting algorithm for
our proposed multi-output regression problem. In each boost-
ing round, the learned labels are used to augment the feature
space, and thus the label correlations can be effectively ex-
tracted to improve the generalization performance. Extensive
experimental results demonstrate that our proposed method
outperforms other state-of-the-art partial multi-label learning
algorithms.

The rest of the paper is organized as follows. The next
section briefly discusses some related works on partial multi-
label learning. The technical details of the proposed DRAMA
are presented in the Section 3. Section 4 reports our exper-
imental results on various real-world datasets. Finally, con-
cluding remarks are provided in the last section.

2 Related Work
The goal of partial multi-label learning is to deal with the
imprecise tagging problem in multi-label learning. Hence,
PML integrates two popular learning framework: multi-label
learning and partial label learning.

Partial label learning (PLL) is a weak-supervised multi-
class learning framework where each instance is tagged by a
set of candidate labels. Note that the relevant label is guaran-
teed to be contained in the candidate label set and the remain-
ing labels are termed as false positive labels or distractor la-
bels. To learn from these ambiguous examples, one intuitive
strategy is to aggregate the output to optimize the objective
such as margin [Nguyen and Caruana, 2008] or likelihood
[Jin and Ghahramani, 2002; Cour et al., 2011] over training
examples. Problem transformation is another popular strate-
gy and is adopted by many algorithms. For instance, [Zhang
et al., 2017; Wu and Zhang, 2018] construct multiple binary
label datasets from the original partial label dataset, and then
the PLL task is decomposed to a set of binary learning tasks.
Other data transformation methods learn label structure from
feature space [Zhang and Yu, 2015] to obtain a new numerical
dataset whose labels are confidence vectors.

In multi-label learning (MLL), an object can be associ-
ated with multiple labels. It has attracted huge attention
of researchers from different domains [Yang et al., 2018;
Fodeh and Tiwari, 2018]. Binary Relevance [Zhang and
Zhou, 2014] is one of the most straightforward solutions for
MLL, which aims to decompose the MLL task to a series of
independent single label classification problems. Despite it-
s computational efficiency, BR ignores the correlations be-
tween labels and thus generally underperforms. To tack-
le this problem, many MLL algorithms are proposed, such
as tree-based [Liu and Tsang, 2017] methods, embedding-
based [Yeh et al., 2017; Chen and Lin, 2012] approaches, and
augmentation-based [Liu et al., 2017] algorithms.

Obviously, the biggest challenging issue for partial multi-
label learning is how to simultaneously disambiguate the cor-
rect labels and exploit the label correlations. To address

this issue, we propose an effective PML algorithm DRAMA,
which marries the concepts of problem transformation in PLL
and feature augmentation in MLL.

3 The Proposed Method
In this section, we present the details of DRAMA.

3.1 Candidate Label Set Disambiguation
To explore the underlying structure of feature space, we first
build a weighted graph G = (V,E,W ) from the given train-
ing dataset D. Here V = {xi|1 ≤ i ≤ n} denotes the vertex
set and E = {(xi,xj)|i 6= j,xj ∈ kNN(xi)} denotes the
edge set where kNN(xi) is the set of xi’s k-nearest neigh-
bors. W = [wij ]n×n is a non-negative weight matrix where
wij = 0 if (xi,xj) 6= E. For each example xi, we assume
that it can be linearly reconstructed from its nearest neigh-
bors and the sparse reconstruction error can be expressed as
follows,

E(W ) =

n∑
i=1

||xi −
∑
j 6=i

wijxj ||22 + ||W ||1 (1)

It is noteworthy that the l1-regularization can actually be
regarded as n constraints 1>wj = 1 (1 ≤ j ≤ n). Moreover,
since columns in W are independent to one another, we can
obtain a series of standard constrained least square program-
ming problems to minimize E(W ),

minw>j G
jwj

s. t. 1>wj = 1, 1 ≤ j ≤ n,
Wij ≥ 0 (∀(xi,xj) ∈ E),

Wij = 0 (∀(xi,xj) /∈ E)

(2)

where wj is the j-th column vector of W . Here Gj is the
local Gram matrix for xj with Gjab = (xj − xa)

>(xj −
xb). By solving Eq. (2), the local topological information is
embodied in the graph, which can be utilized to disambiguate
the partially labeled data. Note that W is usually asymmetric
because the importance of xi in reconstructing xj is generally
different from the inverse case.

According to the smoothness assumption, the feature and
label spaces are prone to share the same topological structure.
Hence, the feature manifold can be transferred to a numerical
label space. Formally, we can reconstruct the labels through
the following minimization problem,

min
U

n∑
i=1

||ui −
∑
j 6=i

wijuj ||22

s. t.

q∑
j=1

max{uij , 0} ≥ 1 (∀1 ≤ i ≤ n),

uij ≥ −δ1 (∀1 ≤ i ≤ n, yj ∈ Yi),
uij ≤ −δ2 (∀1 ≤ i ≤ n, yj /∈ Yi)

(3)

where U = [u1,u2, ...,un] = [uij ]n×n is the transformed
label matrix, i.e. the confidence matrix. Here δ1 and δ2 are
positive constants.
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Figure 1: An example of a confidence distribution with 4 negative
labels, 3 false positive labels (in red), and 3 positive labels. Here
δ1, δ2 are set as 0.1, 0.5. Two of the false positive labels obtain a
correct confidence because our constraints give those labels with low
confidences a chance to be negative. Only one distractor label has a
wrong sign of confidence, but the magnitude is relatively small.

It is worth pointing out that Eq. (3) is meticulously de-
signed. The first constraint comes from the multi-label set-
ting, i.e. there might be multiple relevant labels. Then, the o-
riginal label information is preserved through the subsequent
constraints. The sign of each element in U indicates whether
the corresponding label is relevant or irrelevant and the mag-
nitude reflects the relative confidence of the relevance. The
threshold parameters also play an important role in our algo-
rithm. As illustrated in Figure 1, with a small δ1, the ground-
truth labels can obtain relatively high positive confidences
and the false positive labels generally get low or even neg-
ative confidences. Moreover, with a relative bigger δ2, the
confidences of irrelevant labels are forced to be negative e-
nough.

Remark that we do not aim to perform dimension reduc-
tion [Gao et al., 2018; 2019] in the feature space. The in-
stance matrix and the confidence matrix have different se-
mantic information and are in two independent spaces that
merely share the same local topological structure. Further-
more, our disambiguation strategy has three main advantages:
1) all the optimization problems are standard quadratic pro-
gramming (QP) problems and can be efficiently solved; 2) the
logical labels are extended to numerical labels, which helps
enrich the original label space; 3) the labels are treated in an
unequal manner which prevents the ground-truth labels being
overwhelmed by distractor labels.

3.2 Correlative Multi-Label Predictor Inducing
In the second stage, we begin with transforming the training
dataset to its disambiguated counterpart D̃0 = {(xi,ui)|1 ≤
i ≤ n}. Since our new labels are numerical, we have to treat
the learning problem as a multi-output regression problem
now. There are a number of effective algorithms proposed,
such as multi-regression support vector machines [Chung et

al., 2015], metric learning based regressor [Liu et al., 2019]
and so on. Nevertheless, most of existing multi-output re-
gressors ignore the correlations among the labels and hence
achieve degenerated performance. Consequently, we intro-
duce a novel gradient boosting based model that manipulates
the feature space in each boosting round.

We first induce a simple BR regression model f0 : X 7→ Ŷ
from D̃0 where Ŷ denotes the numerical label space. Any off-
the-shelf base regressor can be utilized, such as classification
and regression tree (CART) [Liaw et al., 2002], support vec-
tor regressor (SVR) [Chung et al., 2015] and many others.
Then we can obtain a predicted label matrix Û0 = f0(X)
where X is the instance matrix. Note that such a simple BR
model usually underperforms for two reasons: 1) the general-
ization performance of BR is restricted to the base classifiers;
2) the label correlations are neglected. Thus, we boost it by
incorporating a set of correlation aware regressors.

Formally, our goal is to induce a regressor F that mini-
mizes the following loss function,

L(F (X),U) =
1

2
||F (X)−U ||2F (4)

where || · ||F is the Frobenius norm. In order to find the op-
timal solution, we adopt an ensemble model by adding weak
learners to the BR model using a gradient descent like proce-
dure. Specifically, in t-th boosting round, a weak regressor ft
is trained to fit the negative gradient of L at Ft−1(X),

Rt = −∂L(F (X),U)

∂F (X)

∣∣∣∣
F=Ft−1

= U − Ft−1(X) (5)

where Rt = [rt1, r
t
2, ..., r

t
n]. To exploit the label correla-

tions, we further augment the original feature space using
previously learned labels Û t−1 = [ût−11 , ût−12 , ..., ût−1n ] =

Ft−1(X). In other words, each weak regressor ft(X, Û t−1)
is induced from the following training dataset,

D̃t = {(x̃ti, rti)|1 ≤ i ≤ n}, x̃ti = [xi, û
t−1
i ] (6)

Finally, we can sum up all the weak learners to obtain a
robust model,

FT (X) = f0(X) +
T−1∑
t=1

λtft(X, Û t−1) (7)

where T is the number of iterations. Here λt is the learning
rate and can be calculated by,

λt = argmin
λ

1

2
||U t−1 + λft(X, Û t−1)−U ||2F (8)

In this work, we choose CART as our boosting weak learn-
ers. Since CART is a non-linear model, even complex label
correlations can be explored. When an unseen instance x∗ is
given, we can feed it in to F and then take the sign of the
real-valued outputs to get logical labels.

It is worth noting that our model has two main superiori-
ties: 1) the learned weak regressors can help improve the gen-
eralization ability of our simple BR model; 2) the boosting
procedure is in a coarse-to-fine prediction manner and thus
the label correlations can be effectively exploited as the iter-
ations proceed.
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Datasets #Examples #Features #Labels #avg.CLs† #avg.GLs‡ Domain
Cal500 500 68 174 27,30,60,90 26.04 music

Emotions 593 72 6 2,3,4 1.87 music
Image 2,000 294 5 2,3,4 1.24 image
Scene 2,407 294 6 2,3,4 1.07 image

Slashdot 3,782 1,079 22 2,3,4 1.18 text
† Average number of candidate labels. Each number corresponds to a synthesized PML dataset.
‡ Average number of ground-truth labels.

Table 1: Characteristics of the experimental datasets.

4 Experiments
4.1 Settings
Datasets
Since PML is a newly proposed framework and there are no
public partial multi-label learning datasets available yet, we
synthesized a number of PML datasets from 5 multi-label
datasets. These datasets are collected from various real-world
tasks: Image [Fang and Zhang, 2019] and Scene [Boutell et
al., 2004] for image annotation, Slashdot [Read et al., 2011]
for text categorization, Cal500 [Turnbull et al., 2008] and E-
motions [Trohidis et al., 2008] for music classification. For
each example, we randomly select some irrelevant labels and
aggregate them with ground-truth labels to obtain a candidate
label set. Finally, a total of 16 datasets are synthesized whose
characteristics are reported in Table 1. All the datasets are
randomly partitioned to 80% for training and the rest for test-
ing. We conduct all the experiments for 5 times and the mean
metric values with standard deviations are reported.

Comparison Approaches
We compare our proposed method with two well-established
multi-label classifiers and three partial multi-label methods:
• Binary Relevance (BR) [Zhang and Zhou, 2014]: BR

is a classical one-vs-all MLL approach that breaks the
original problem into binary classification tasks.
• CPLST [Chen and Lin, 2012]: it is a typical label em-

bedding approach in MLL, which integrates the concept-
s of principal component analysis and canonical correla-
tion analysis.
• PARTICLE [Fang and Zhang, 2019]: it transforms the

PML task to a multi-label problem through a label prop-
agation procedure. Then a calibrated label ranking mod-
el is induced to instantiate two effective PML methods
P-VLS and P-MAP.
• PML-kNN: we further induce a k-nearest neighbor mod-

el from the PML datasets and an averaging strategy is
adopted to obtain the predictions.

To validate the superiority of our gradient boosting procedure,
we further propose a Naı̈ve-DRAMA (N-DRAMA) method
that uses only a simple BR model in the second stage.

In this paper, δ1, δ2 are empirically set as 0.01, 1 for
Cal500 and 0.01, 0.5 for other datasets. The QP problems are
solved by interior-point method. For BR and our models, we
employ Scikit-learn’s [Pedregosa et al., 2011] implementa-
tion of SVM (for BR), SVR (for f0), and CART (for gradient

Figure 2: Performance of DARAMA changes as the number of
nearest neighbors k changes from 5 to 10 on 4 datasets.

boosting) as the base learners. Specifically, Gaussian kernel
is equipped by SVM and SVR to handle non-linear separable
cases. The number of boosting rounds is fixed to 10. k is
set as 10 for all the nearest neighbor based algorithms. For
CPLST, we take the first 5 principal components. Following
the experimental setting in [Fang and Zhang, 2019], we set
thr = 0.9 and α = 0.95 for PARTICLE.

Evaluation Metrics
Inspired by [Trohidis et al., 2008; Lin et al., 2018], we con-
sider three widely-used multi-label learning metrics to evalu-
ate the predictive performance of all the comparing methods,
i.e. Micro-F1, Macro-F1 and Example-F1.

4.2 Results
Table 3 lists the performance of each comparing algorithm in
terms of Micro-F1, Macro-F1 and Example-F1. Figure 2 il-
lustrates the parameter sensitivity of DRAMA w.r.t. the num-
ber of nearest neighbor k. From the results, we conclude that:
• The proposed DRAMA generally achieves the best per-

formance. For instance, on Emotions with 2 aver-
age candidate labels, in terms of Micro-F1, Macro-F1,
Example-F1, DRAMA improves the best results of the
baselines (except N-DRAMA) by 5.52%, 3.45%, 9.83%
respectively. The results listed above validate the supe-
riority of the proposed method.
• BR and PML-kNN is inferior to other methods due to

the ignorance of label correlations. CPLST addresses
this issue by label embedding and obtains excellent re-
sults on Emotions and CAL500 datasets. However, it
is prone to be misled by false positive labels and thus
underperforms on other datasets.
• N-DRAMA works well on many datasets, which proves

the effectiveness of our disambiguation strategy. Nev-
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Datasets avg.#CLs Micro-F1
DRAMA N-DRAMA P-VLS P-MAP CPLST PML-kNN BR

Image
2 .7489±.0037 .6480±.0061 .6386±.0045 .6616±.0087 .6591±.0036 .5766±.0026 .7328±.0055
3 .6658±.0055 .6272±.0040 .6301±.0045 .6251±.0100 .4976±.0019 .5168±.0122 .5129±.0046
4 .5691±.0092 .4761±.0063 .4522±.0154 .5584±.0029 .4074±.0014 .3967±.0068 .4070±.0022

Scene
2 .8250±.0021 .6659±.0037 .7666±.0044 .8023±.0058 .7004±.0081 .7144±.0050 .7463±.0019
3 .7469±.0041 .6810±.0043 .7345±.0096 .7633±.0085 .5006±.0036 .6760±.0067 .5399±.0038
4 .6954±.0172 .5352±.0036 .6683±.0057 .6873±.0139 .3489±.0011 .6054±.0077 .3899±.0018

Slashdot
2 .7337±.0023 .6145±.0011 .1721±.0863 .3169±.0304 .6073±.0035 .1711±.0029 .7411±.0034
3 .6635±.0041 .6188±.0068 .1797±.0827 .3050±.0435 .5722±.0036 .1751±.0190 .6035±.0032
4 .6122±.0086 .6218±.0061 .1808±.0902 .3206±.0129 .5348±.0053 .1681±.0075 .5075±.0031

Datasets avg.#CLs Macro-F1
DRAMA N-DRAMA P-VLS P-MAP CPLST PML-kNN BR

Image
2 .7528±.0047 .6490±.0069 .6415±.0039 .6658±.0089 .6596±.0035 .5785±.0026 .7345±.0059
3 .6672±.0068 .6290±.0039 .6346±.0054 .6285±.0106 .4956±.0018 .5159±.0129 .5117±.0042
4 .5691±.0097 .4747±.0063 .4607±.0235 .5582±.0057 .4063±.0015 .3940±.0061 .4059±.0021

Scene
2 .8305±.0022 .6508±.0040 .7757±.0050 .8109±.0057 .7071±.0073 .7220±.0048 .7474±.0019
3 .7503±.0040 .6870±.0047 .7441±.0100 .7707±.0088 .5004±.0034 .6809±.0063 .5387±.0038
4 .7048±.0182 .5392±.0032 .6850±.0089 .6829±.0152 .3487±.0013 .6048±.0090 .3888±.0017

Slashdot
2 .5332±.0013 .3196±.0075 .0936±.0555 .1933±.0177 .1884±.0012 .0390±.0021 .5591±.0022
3 .4705±.0010 .3296±.0135 .0737±.0310 .1910±.0352 .1755±.0027 .0368±.0087 .4499±.0029
4 .4360±.0120 .3454±.0079 .0764±.0419 .1909±.0201 .1652±.0052 .0363±.0053 .3796±.0020

Datasets avg.#CLs Example-F1
DRAMA N-DRAMA P-VLS P-MAP CPLST PML-kNN BR

Image
2 .7392±.0087 .5903±.0088 .6035±.0058 .6784±.0071 .6492±.0044 .5879±.0024 .7344±.0091
3 .6781±.0067 .6433±.0033 .6107±.0076 .6425±.0102 .5051±.0030 .5250±.0126 .5237±.0058
4 .5909±.0084 .4835±.0064 .4455±.0251 .5723±.0044 .4028±.0015 .4012±.0067 .4018±.0019

Scene
2 .8164±.0058 .5480±.0032 .7357±.0056 .8131±.0064 .6951±.0078 .7191±.0053 .7838±.0025
3 .7663±.0056 .7159±.0055 .7060±.0084 .7790±.0093 .5165±.0036 .6805±.0065 .5770±.0043
4 .7223±.0164 .5700±.0045 .6607±.0093 .6945±.0161 .3529±.0014 .6090±.0076 .4043±.0018

Slashdot
2 .7285±.0089 .5159±.0058 .1425±.1052 .3626±.0381 .4996±.0041 .1797±.0032 .7561±.0037
3 .6651±.0076 .5279±.0093 .1777±.0905 .3512±.0475 .4831±.0055 .1838±.0198 .6311±.0040
4 .6175±.0082 .5369±.0065 .1761±.0949 .3693±.0152 .4704±.0066 .1764±.0076 .5414±.0044

Table 2: Transductive performance (mean±standard deviation) of all the methods on 9 synthesized datasets. The best ones are in bold.

ertheless, DRAMA is better than N-DRAMA, because it
further considers high-order label correlations.

• It is worth noting that P-VLS and P-MAP are compet-
itive to other methods, but underperform our DRAMA.
Since PARTICLE only models second-order label depen-
dencies, its generalization ability is limited.

• Our method is relatively stable with varying values of k.

4.3 Further Analysis

In addition, we evaluate all the methods on six synthesized
PML datasets in the transductive setting, i.e. there is no test-
ing data. The transductive performance of a PML algorithm
manifests its disambiguating ability to the candidate label set-
s. The experimental results are reported in Table 2. We can
observe that our method is the most successful on all dataset-
s. For example, on Image with 3 average candidate labels,
in terms of Micro-F1, Macro-F1, Example-F1, DRAMA im-
proves the best results of the baselines (except N-DRAMA)
by 5.7%, 5.1%, 5.4% respectively.

5 Conclusion
This paper focuses on the challenging problem of disam-
biguation and label correlation extraction in partial multi-
label learning. We propose a novel two-stage DiscRimina-
tive and correlAtive partial Multi-label leArning (DRAMA)
algorithm that marries the concepts of problem transforma-
tion in PLL and feature augmentation in MLL. The resultan-
t algorithm firstly disambiguates the candidate label sets by
exploring the feature and label manifolds. Then we induce a
gradient boosting regressor to utilize the elicited label infor-
mation. In each boosting round, the original feature space is
augmented by the elicited labels such that the high-order label
correlations are exploited. Our empirical studies on a range of
real-world datasets demonstrate that DRAMA can effectively
handle PML tasks.
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Datasets avg.#CLs Micro-F1
DRAMA N-DRAMA P-VLS P-MAP CPLST PML-kNN BR

Cal500
27 .4027±.0118 .4025±.0054 .0027±.0016 .0726±.0041 .3576±.0157 .0576±.0010 .3434±.0144
30 .3846±.0205 .3845±.0152 .0088±.0007 .0694±.0061 .3602±.0083 .0565±.0010 .3340±.0108
60 .3715±.0849 .3688±.0622 .0006±.0017 .0716±.0022 .4529±.0200 .0498±.0038 .2885±.0079
90 .3948±.0033 .3908±.0091 .0011±.0005 .0672±.0029 .3723±.0048 .0445±.0034 .3551±.0040

Emotions
2 .6860±.0141 .6812±.0158 .5903±.0418 .5996±.0314 .6432±.0128 .4938±.0237 .6501±.0247
3 .6400±.0188 .6293±.0213 .5788±.0424 .6082±.0091 .6274±.0120 .4734±.0208 .5834±.0277
4 .6212±.0232 .6207±.0234 .5867±.0136 .5943±.0253 .5324±.0236 .4501±.0227 .5437±.0123

Image
2 .6223±.0170 .6101±.0087 .5513±.0762 .6137±.0233 .5311±.0140 .5669±.0150 .6016±.0310
3 .5878±.0143 .5696±.0161 .5132±.0905 .5843±.0311 .4609±.0143 .5220±.0176 .4677±.0107
4 .4956±.0211 .4406±.0114 .3690±.1548 .5319±.0109 .4023±.0045 .3946±.0167 .3962±.0054

Scene
2 .7228±.0142 .7130±.0124 .6736±.0473 .7140±.0173 .6058±.0093 .7053±.0098 .6101±.0143
3 .6692±.0178 .6396±.0161 .6333±.0457 .6660±.0277 .4583±.0143 .6628±.0303 .4663±.0118
4 .5759±.0168 .5028±.0115 .5828±.0724 .6331±.0154 .3438±.0052 .5923±.0170 .3546±.0029

Slashdot
2 .5262±.0164 .5461±.0256 .3950±.0655 .2658±.0075 .4350±.0094 .1706±.0262 .4086±.0143
3 .5250±.0124 .4649±.0219 .0814±.0690 .2810±.0072 .4183±.0185 .1588±.0065 .3060±.0127
4 .5195±.0136 .5186±.0189 .1434±.0787 .2626±.0140 .3752±.0079 .1657±.0203 .2674±.0114

Datasets avg.#CLs Macro-F1
DRAMA N-DRAMA P-VLS P-MAP CPLST PML-kNN BR

Cal500
27 .1852±.0113 .1809±.0033 .0009±.0005 .0070±.0012 .0819±.0074 .0087±.0004 .1657±.0098
30 .1809±.0118 .1697±.0130 .0021±.0002 .0065±.0016 .0851±.0039 .0084±.0007 .1682±.0083
60 .1996±.0840 .1994±.0343 .0003±.0007 .0069±.0008 .1489±.0111 .0092±.0008 .1903±.0045
90 .1901±.0043 .1228±.0057 .0010±.0006 .0059±.0005 .2251±.0050 .0108±.0015 .2301±.0055

Emotions
2 .6559±.0189 .6491±.0206 .5561±.0519 .5619±.0376 .6303±.0140 .4279±.0225 .6340±.0268
3 .6213±.0226 .6072±.0245 .5506±.0460 .5650±.0276 .6128±.0160 .4213±.0190 .5727±.0270
4 .6152±.0214 .6143±.0202 .5726±.0254 .5602±.0314 .5265±.0225 .4106±.0253 .5364±.0132

Image
2 .6244±.0176 .6151±.0106 .3561±.1273 .6171±.0247 .5304±.0140 .5652±.0151 .6028±.0311
3 .5867±.0130 .5673±.0156 .3502±.1108 .5862±.0302 .4581±.0136 .5202±.0173 .4641±.0108
4 .4973±.0214 .4410±.0112 .2972±.1260 .5344±.0095 .4011±.0043 .3945±.0160 .3948±.0049

Scene
2 .7324±.0168 .7075±.0133 .4119±.0367 .7226±.0159 .6143±.0106 .7148±.0065 .6163±.0168
3 .6791±.0154 .6415±.0137 .4037±.0353 .6679±.0319 .4589±.0148 .6672±.0266 .4664±.0123
4 .5811±.0151 .5052±.0106 .3863±.0290 .6415±.0150 .3412±.0053 .5918±.0173 .3531±.0028

Slashdot
2 .3428±.0098 .2655±.0033 .2635±.0082 .1201±.0131 .1335±.0053 .0315±.0076 .2317±.0125
3 .2875±.0102 .2031±.0091 .0248±.0089 .1636±.0056 .1273±.0077 .0281±.0086 .2099±.0101
4 .3002±.0112 .2223±.0053 .0325±.0154 .1478±.0124 .1232±.0078 .0275±.0073 .1901±.0085

Datasets avg.#CLs Example-F1
DRAMA N-DRAMA P-VLS P-MAP CPLST PML-kNN BR

Cal500
27 .4033±.0106 .4033±.0058 .0028±.0016 .0759±.0047 .3566±.0144 .0596±.0013 .3380±.0135
30 .3816±.0178 .3815±.0144 .0103±.0005 .0721±.0062 .3590±.0096 .0586±.0016 .3316±.0109
60 .3709±.0778 .3669±.0606 .0004±.0010 .0742±.0018 .4499±.0205 .0519±.0040 .2870±.0082
90 .3949±.0036 .3968±.0084 .0011±.0005 .0702±.0034 .3705±.0049 .0462±.0031 .3524±.0039

Emotions
2 .6806±.0158 .6761±.0173 .5355±.0505 .5954±.0258 .5974±.0179 .4989±.0305 .6197±.0221
3 .6195±.0291 .6064±.0311 .5115±.0605 .6090±.0136 .6137±.0139 .4778±.0203 .5688±.0311
4 .6018±.0260 .6012±.0273 .5454±.0271 .5850±.0319 .5262±.0258 .4542±.0216 .5329±.0108

Image
2 .6428±.0225 .6145±.0055 .5251±.0959 .6273±.0216 .5176±.0163 .5758±.0168 .5979±.0277
3 .6021±.0155 .5835±.0162 .4869±.1154 .5970±.0346 .4617±.0139 .5311±.0162 .4716±.0104
4 .5096±.0211 .4398±.0136 .3504±.1669 .5451±.0120 .3965±.0035 .3988±.0166 .3896±.0054

Scene
2 .7324±.0098 .6734±.0177 .6268±.0563 .7228±.0169 .5985±.0088 .7114±.0096 .6222±.0157
3 .7019±.0187 .6673±.0171 .5961±.0522 .6773±.0302 .4722±.0170 .6675±.0310 .4875±.0121
4 .6142±.0210 .5270±.0157 .5587±.0888 .6446±.0183 .3466±.0062 .5960±.0179 .3623±.0038

Slashdot
2 .5326±.0064 .4694±.0058 .4040±.0756 .2933±.0152 .3588±.0054 .1802±.0271 .3847±.0197
3 .5041±.0087 .3509±.0096 .0644±.0781 .3164±.0125 .3660±.0161 .1661±.0066 .3321±.0137
4 .5203±.0049 .4154±.0073 .1396±.0855 .2989±.0193 .3455±.0119 .1736±.0194 .2994±.0160

Table 3: Prediction performance (mean±standard deviation) of all the methods on 16 synthesized datasets. The best ones are in bold.
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