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Abstract
Label Distribution Learning (LDL) is a general
learning paradigm in machine learning, which in-
cludes both single-label learning (SLL) and multi-
label learning (MLL) as its special cases. Recent-
ly, many LDL algorithms have been proposed to
handle different application tasks such as facial age
estimation, head pose estimation and visual senti-
ment distributions prediction. However, the train-
ing time complexity of most existing LDL algo-
rithms is too high, which makes them unapplica-
ble to large-scale LDL. In this paper, we propose
a novel LDL method to address this issue, termed
Discrete Binary Coding based Label Distribution
Learning (DBC-LDL). Specifically, we design an
efficiently discrete coding framework to learn bi-
nary codes for instances. Furthermore, both the
pair-wise semantic similarities and the original la-
bel distributions are integrated into this framework
to learn highly discriminative binary codes. In ad-
dition, a fast approximate nearest neighbor (AN-
N) search strategy is utilized to predict label distri-
butions for testing instances. Experimental result-
s on five real-world datasets demonstrate its supe-
rior performance over several state-of-the-art LDL
methods with the lower time cost.

1 Introduction
Learning with label ambiguity has attracted considerable at-
tention in recent years, because it lays the foundation for
many important fields, including machine learning, com-
puter vision and data mining. Single-label learning (SLL)
and multi-label learning (MLL) are two prevailing learning
paradigms for solving the problem of label ambiguity. How-
ever, SLL and MLL only can model the ambiguity of “what
describes the instance”, but fail to model the more gener-
al ambiguity of “how to describe the instance” [Xing et al.,
2016]. To solve this problem, Geng (2016) proposed label
distribution learning (LDL), which assumes that an instance
is labeled by a label distribution over all labels. Each element
of the label distribution is named the description degree. For
∗Corresponding author.

example, dyx is the description degree of y to the instance x.
Without loss of generality, LDL assumes that dyx ∈ [0, 1] and∑
y d

y
x = 1. Different from SLL and MLL, LDL aims at

learning a group of projection functions from an instance to
its label distribution.

Many LDL methods have already been proposed. Some
representative works include IIS-LDL [Geng et al., 2013],
conditional probability neural network (CPNN) [Geng et al.,
2013], label distribution support vector regressor (LDSVR)
[Geng and Hou, 2015], BFGS-LDL [Geng, 2016], PT-Bayes
[Geng, 2016], PT-SVM [Geng, 2016], AA-BP [Geng, 2016],
LDLogitBoost [Xing et al., 2016], AOSO-LDLogitBoost [X-
ing et al., 2016], deep label distribution learning (DLDL)
[Gao et al., 2017], structural label distribution learning
(SLDL)[Ren and Geng, 2017] and label distribution forest-
s (LDLFs) [Shen et al., 2017]. However, the training time
complexity of most methods is high. How to design a LDL
algorithm to achieve good accuracy performance with low
training time complexity is still a challenging problem.

To address the above-mentioned problem, Geng (2016) put
forward a LDL approach named AA-kNN, which is an adap-
tation algorithm of k-Nearest Neighbor (k-NN). Although
AA-kNN does not need a training process, its testing pro-
cess (linear search) usually cost much time. Wang and Geng
(2018) proposed a scalable LDL algorithm called BC-LDL,
which uses the binary coding techniques to deal with the
large-scale LDL problem. Compared with AA-kNN, the test-
ing time cost of BC-LDL can be greatly reduced, because the
similarity of two instances can be efficiently measured via X-
OR operations. However, BC-LDL suffers two drawbacks.
Firstly, the discrete constraints are discarded to simplify the
optimization, and the binary codes of training instances are
approximately obtained by quantization. The errors caused
by quantization may lead to low-quality binary codes. Sec-
ondly, BC-LDL adopts an iterative optimization strategy in
the training phase, and the iteration number is equal to the
code length. BC-LDL requires relatively long binary codes
(i.e., over 64 bits) to achieve acceptable accuracy. Therefore,
the training phase of BC-LDL is still time-consuming.

Recently, the discrete binary coding techniques have at-
tracted increasing interest and many discrete optimization
based hashing methods have been proposed. The desirable
binary codes can be generated by these discrete methods,
because the binary codes of training instances are directly
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learned without any quantization loss during the optimization
procedure. Since supervised discrete hashing methods take
the useful label information into consideration when learning
binary codes and hash functions, they usually yield higher
accuracy than unsupervised ones. Representative supervised
discrete hashing methods include supervised discrete hashing
(SDH) [Shen et al., 2015], column sampling based discrete
supervised hashing (COSDISH) [Kang et al., 2016], asym-
metric discrete graph hashing (ADGH) [Shi et al., 2017], fast
supervised discrete hashing (FSDH) [Gui et al., 2018] , fast
scalable supervised hashing (FSSH) [Luo et al., 2018a], scal-
able supervised discrete hashing (SSDH) [Luo et al., 2018b]
etc. However, most of them may suffer some drawbacks
when using the pair-wise similarity matrix (denoted as Sn×n)
in the training phase. For example, COSDISH and ADGH
only use some points of S for training. FSSH and SSDH em-
bed S into a small-size matrix in the pre-processing phase,
but the complexity of this pre-processing phase is O(n2).

The motivations of this paper are three-fold: (1) addressing
the issue of quantization loss in BC-LDL; (2) designing a lin-
ear discrete hashing algorithm with all the points of S utilized
for instances labeled by a label distribution; (3) proposing an
efficient LDL approach based on this discrete algorithm.

In this paper, we take an initial attempt to apply the discrete
hashing techniques to large-scale LDL and further present a
scalable LDL method, named Discrete Binary Coding based
Label Distribution Learning (DBC-LDL). Different from the
previous discrete hashing methods, the binary coding part of
DBC-LDL is specially designed for instances labeled by a
label distribution. The main contributions of this work are
briefly summarized as follows:

• A novel supervised discrete binary coding method is
proposed for instances annotated by a label distribution.
In our algorithm, we consider both the pair-wise sim-
ilarities of different training instances and the original
label distributions, leading to high-quality binary codes.
Moreover, the similarity matrix S is avoided directly u-
tilizing during the optimization procedure. The time and
storage cost of our method can be reduced significantly.

• An iterative optimization strategy is proposed to learn
the binary codes for training instances and the binary
coding functions. The global non-convex optimization
problem can be decomposed into several tractable sub-
problems, and each variable has a closed-form solution.

• Integrating discrete binary coding and ANN search into
a joint framework, a scalable LDL approach is proposed
to deal with the large-scale LDL. Compared with BC-
LDL, the desirable binary codes of training instances can
be directly learned in the training phase, thus the quan-
tization errors are avoided in DBC-LDL.

• Extensive experiments are conducted on five benchmark
datasets to evaluate the proposed DBC-LDL. Experi-
mental results verify the effectiveness of our approach.

The remainder of this paper is organized as follows. In
Section 2, the details of the DBC-LDL algorithm are present-
ed. In Section 3, we report the experimental results on five
public datasets, followed by the conclusion in Section 4.

Symbols Descriptions

X , X the feature matrix, X = [X;1n]
Y the complete set of labels
D the label distributions matrix
D the adjusted label distributions matrix

P , W the projection matrices
e, P the bias vector, P = [P , e]
S the n× n pair-wise similarity matrix
B the the binary code matrix
l, T the code length, the maxiter number

Table 1: Important notations used in this paper.

2 The Proposed Method
2.1 Notations and Problem Definition
Suppose that X = [x1,x2, · · · ,xn] ∈ Rm×n is the feature
space, and Y = {y1, y2, · · · , yc} is the complete set of labels.
c denotes the number of the labels. Here, we use dyx to repre-
sent the description degree of the label y ∈ Y to the instance
x ∈ X . Z = {(x1,d1), (x2,d2, ), · · · , (xn,dn)} denotes
the training set, where xi ∈ Rm×1 is a training instance, and
di = [dy1xi

; dy2xi
; · · · ; dycxi

] is the corresponding label distribu-
tion of xi. n is the number of training instances. Without
loss of generality, we consider that the instances are zero-
centered, i.e.,

∑n
i=1 xi = 0. Table 1 shows the important

notations used in this paper.
In this paper, the target of DBC-LDL is to learn the binary

codes for training instances and binary coding functions for
future instances. Then, the same ANN search strategy as that
in [Wang and Geng, 2018] is adopted to generate label distri-
butions for future instances. The binary coding function h(x)
is defined as follows:

h(x) = sign(Px + e), (1)

where P ∈ Rl×m is the projection matrix, and e ∈ Rl×1 is
the bias vector. Here, l represents the length of binary codes.

2.2 Pair-wise Similarity Matrix
For most existing supervised discrete hashing approach-
es [Kang et al., 2016; Shi et al., 2017; Li et al., 2017;
Luo et al., 2018a; 2018b; Jiang et al., 2018], the semantic
similarity of two instances can be obtained via modeling the
label consistency between them. However, it is not appropri-
ate to apply this idea to LDL, because an instance is labeled
by a distribution consisting of some real numbers in LDL,
rather than annotated by a binary label vector.

In this paper, we employ the adjusted cosine similarity
(ACS) metric [Sarwar et al., 2001; Wang and Geng, 2018]
to build the similarity matrix S ∈ [−1, 1]

n×n. Suppose there
are two instances xi and xj from the training set, the similar-
ity between them is defined as follows:

sij =
(di − ε)T ·(dj − ε)
||di − ε||2||dj − ε||2

= D
T

i∗Dj∗,

(2)
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where “·” represents the inner product between two vectors,
|| · ||2 represents the L2 norm of a vector, ε is the mean of all
the label distributions, and Di∗ = di−ε

||di−ε||2 .
Thus, the pair-wise similarity matrix can be explicitly cal-

culated by S = D
T
D. We can find that the complexity of

both storage and computational time to construct this similar-
ity matrix is O(n2). Fortunately, the high storage and time
cost can be avoided in DBC-LDL, because the similarity ma-
trix will not be directly used in the optimization phase.

2.3 Graph Term
Graph based supervised hashing methods aim at transform-
ing the high-dimensional original features into compact bi-
nary codes with semantic similarities between different in-
stances best maintained. Similar to some existing graph based
hashing algorithms [Weiss et al., 2009; Liu et al., 2011;
2014], the graph term is defined as follows:

min
B

n∑
i,j=1

sij ||bi − bj ||22, (3)

where B ∈ {−1, 1}l×n is the binary code matrix.
Actually, the element of the similarity matrix S is a con-

stant, and bTi bi = l(∀i). Eq. (3) can be rewritten as follows:

min
B

n∑
i,j=1

−2sijb
T
i bj + const

= min
B
−2tr(BSBT ).

(4)

where tr(·) denotes the trace operator.
The above graph term is defined on the directly learned bi-

nary codes B. However, the binary codes of testing instances
are generated by using binary coding functions (i.e., quanti-
zation). For training instances, we expect B and the binary
codes generated by quantization are as similar as possible.
This is because it can help testing instances to reduce the la-
tent quantization loss. Thus, we put the constraints of seman-
tic similarity preserving on B and (PX + E), and further
reformulate the graph term by adding a new constraint as:

min
B,P ,E

−2tr((PX + E)SBT ) + α||B − (PX + E)||2F

= min
B,P
−2tr(P X SBT ) + α||B − P X ||2F ,

(5)
where E = [e, e, · · · , e] ∈ Rl×n, X = [X;1n] and P =
[P , e]. α is a tradeoff parameter.

2.4 Label Distribution Embedding Term
To further improve the quality of the learned binary codes, the
original label distributions are taken into consideration when
constructing the objective function. By assuming an explicit
projection from label distributions to binary codes, we can
define the following optimization problem:

min
W
||B −WD||2F , (6)

where D ∈ Rc×n is the label distributions matrix, and W ∈
Rl×c is the corresponding mapping matrix.

2.5 Overall Objective Function
The overall objective function, consisting of the graph term
in (5), the label distribution embedding term in (6) and an
additional regularization term, is written as follows:

min
B,P ,W

Θ(B,P ,W )

=− 2tr(P X SBT ) + α||B − P X ||2F
+ β||B −WD||2F + γR(P ,W ),

(7)

where the regularization term R(·) = || · ||2F is introduced to
resist overfitting. α, β, γ are balance parameters.

2.6 Optimization
The optimization problem stated in (7) is hard to be directly
solved due to its non-convexity with three matrix variables B,
P , W . In this paper, we use an iterative strategy to solve this
optimization problem, and each variable can obtain a closed-
form solution according to this strategy. The detailed opti-
mization procedure is presented below.

Step 1: Fix B, W , let ∂Θ
∂P

= 0, then obtain:

P = B(X +
1

α
XS)(XX

T
+
γ

α
Im)−1, (8)

where Im is a m×m identity matrix.
Step 2: Fix B, P , let ∂Θ

∂W = 0, then obtain:

W = BDT (DDT +
γ

β
Ic)
−1. (9)

Step 3: Fix P , W , then obtain the following problem:
min
B
− 2tr(P X SBT ) + αtr((B − P X)(B − P X)T )

+ βtr((B −WD)(B −WD)T ).
(10)

It is easy to see that tr(BBT ), tr((P X)(P X)T ) and
tr((WD)(WD)T ) are constants in (10). Thus, the above
optimization problem can be reformulated as follows:

min
B
−2tr((P X S + αP X +βWD)BT ). (11)

Finally, a closed-form solution of B can be obtained:
B = sign(P X S + αP X +βWD). (12)

It can be seen that the time complexity of XS in Eq. (8)
and (12) is O(mn2). However, XS = (XD

T
)D, and the

time complexity of the latter is onlyO(cmn). By doing so, all
the pair-wise similarities can be utilized, and the consumption
of storage and time can be reduced remarkably in our algo-
rithm. The whole optimization algorithm is summarized in
Algorithm 1. T is set to 10 in this paper.

2.7 Label Distribution Generation
Inspired by BC-LDL [Wang and Geng, 2018], the proposed
DBC-LDL employs the same strategy to generate a label dis-
tribution for a future instance. Specifically, the binary codes
of a future instance can be generated via the binary coding
function in Eq. (1). Then, we use the ANN search strate-
gy to find k nearest training instances in the Hamming space.
Benefit from the fast XOR operations, this search procedure
is quite efficient. Finally, the mean of the label distributions
of these training instances is computed as the predicted label
distribution for this future instance.
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Algorithm 1 DBC-LDL

1: Input: Feature matrix X; label distributions matrix D;
Adjusted label distributions matrix D; Code length l.

2: Output: Projection matrix P ; Bias vector e; Binary
codes matrix B.

3: X ← [X;1n].
4: Initialize B, P , W by randomization.
5: repeat
6: Fix B, W , update P by Eq. (8);
7: Fix B, P , update W by Eq. (9);
8: Fix P , W , update B by Eq. (12);
9: until convergence or reaching the maxiter T

10: P ← P (:, 1 : end− 1); e← P (:, end).

2.8 Complexity Analysis
In this subsection, we discuss the time complexity of DBC-
LDL. DBC-LDL adopts an iterative optimization strategy to
learn variables, where each iteration contains three main step-
s. The time cost of updating P , W , and B isO(cmn+lmn+
nm2 +m3), O(cln+ nc2 + lc2 + c3), and O(cmn+ lmn+
cln), respectively. Therefore, the whole time complexity is
O((cmn + lmn + nm2 + m3 + cln + nc2 + lc2 + c3)t),
where t is the number of iterations. Since c,m � n, the
training time complexity of DBC-LDL is linear to n.

3 Experiment
We conduct our experiments on five real-world datasets,
namely M2B (Multi-Modality Beauty) [Nguyen et al., 2012],
s-BU 3DFE (scores-Binghamton University 3D Facial Ex-
pression) [Zhou et al., 2015], Twitter LDL [Yang et al.,
2017], Flickr LDL [Yang et al., 2017], and Ren-CECps
[Quan and Ren, 2010], to evaluate our algorithm in terms of
both accuracy and efficiency.

M2B and s-BU 3DFE are two regular-scale image dataset-
s. The application task of the former is the facial beauty
sense and the task of the latter is the facial expression recog-
nition. Twitter LDL and Flickr LDL are two large-scale im-
age datasets. The application task of them is the visual sen-
timent distributions prediction. Ren-CECps is a large-scale
text dataset, and its application task is the text emotion distri-
butions prediction. Due to the page limitation, here we only
show statistics of the five real-world datasets in Table 2.

All the experiments are implemented using Matlab on a
standard PC with a 2.30GHz Intel CPU and 12GB memory.

3.1 Baselines Evaluation and Protocols
In this paper, the baselines contain one adaptation algorithm
AA-kNN, and five representative specialized LDL algorithm-
s, i.e., IIS-LDL, BFGS-LDL, CPNN, LDSVR and BC-LDL.
For the proposed DBC-LDL, we empirically set the parame-
ter α = 104, β = 104 and γ = 10−2 . The code length in
DBC-LDL and BC-LDL is same (i.e., 128 bits) for making a
fair comparison, and k in DBC-LDL, BC-LDL and AA-kNN
is chosen from {10, 20, · · · , 50}. For the other baselines, we
set the corresponding parameters by following the authors’
suggestions. All the results are averaged over 10-fold cross
validation in terms of both accuracy and time cost.

Dataset #Instances #Features #Labels

M2B 1,240 250 5
s-BU 3DFE 2,500 243 6
Twitter LDL 10,045 200 8
Flickr LDL 10,700 200 8
Ren-CECps 35,096 100 8

Table 2: Statistics of the five real-world datasets.

According to the suggestion in [Geng, 2016], six prevailing
metrics are adopted to evaluate the accuracy performance of
different algorithms, including Chebyshev distance (Cheb),
Clark distance (Clark), Canberra metric (Canber), Kullback-
Leibler divergence (K-L), cosine coefficient (Cosine) and in-
tersection similarity (Intersec). Since the first four are used to
measure the distance between two distributions, they are the
smaller the better. The last two are similarity metrics, so they
are the larger the better.

3.2 Experimental Results
The detailed experimental results of the proposed DBC-LDL
and other comparing algorithms on the five evaluated datasets
are reported in Table 3. To show the accuracy, efficiency and
comprehensive performance of these approaches, three rank
measurements are introduced, including Accuracy Rank (Ac-
c. Rank), Time Rank and Average Rank (Avg. Rank). More-
over, the ranks of six evaluation metric values are presented
in the parentheses right after the corresponding measure val-
ues. The average value of these six ranks is denoted as Acc.
Rank. In addition, Avg. Rank is the average value between
Acc. Rank and Time Rank, which can effectively reflect the
comprehensive performance of an algorithm.

From Table 3, it can be seen that DBC-LDL achieves the
best accuracy performance on four datasets, and achieves the
second best performance on other datasets. Moreover, DBC-
LDL can yield the best efficiency performance and compre-
hensive performance on all the evaluated datasets. Note that
the results of LDSVR on Ren-CECps are not reported due to
the high memory consumption. Overall, we have the follow-
ing five observations based on the experimental results:

• On the five evaluated datasets, DBC-LDL ranks 1st in
63.3% cases and ranks 2st in 13.3% cases across all the
distance and similarity metrics, which can demonstrate
its superiority.

• Compared with BC-LDL, DBC-LDL can yield the bet-
ter accuracy performance on four datasets (i.e., M2B, s-
BU 3DFE, Twitter LDL and Flickr LDL) and the same
accuracy performance on Ren-CECps. The better per-
formance of DBC-LDL can be attributed to its ability to
learn good binary codes for training instances by a dis-
crete optimization strategy without quantization loss.

• AA-kNN achieves the desirable accuracy performance
on Twitter LDL and Flickr LDL, which is also observed
in [Wang and Geng, 2018]. This is because that the high-
quality features of these datasets are extracted via VG-
GNet [Simonyan and Zisserman, 2014]. AA-kNN can

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3736



M2B

Algorithm Accuracy Time Cost(s) Avg. Rank
Cheb↓ Clark↓ Canber↓ K-L↓ Cosine↑ Intersec↑ Acc. Rank Train Test Sum(Time Rank)

DBC-LDL 0.3467(1) 1.1452(1) 2.2768(1) 0.5855(4) 0.7036(2) 0.5958(1) 1.67 0.0585 0.0066 0.0651(1) 1.34
BC-LDL 0.3511(2) 1.1783(2) 2.3433(2) 0.5937(5) 0.6976(5) 0.5866(2) 3.00 0.5192 0.0073 0.5265(3) 3.00

BFGS-LDL 0.3844(6) 1.2857(5) 2.5798(5) 0.7332(6) 0.6463(6) 0.5399(6) 5.67 5.3490 0.0036 5.3526(5) 5.34
IIS-LDL 0.3736(5) 1.3342(7) 2.6718(7) 0.5760(3) 0.6983(4) 0.5457(5) 5.17 330.37 0.0011 330.37(7) 6.09
CPNN 0.3912(7) 1.3289(6) 2.6592(6) 0.9542(7) 0.6363(7) 0.5439(7) 6.67 18.417 0.0124 18.429(6) 6.34

LDSVR 0.3613(3) 1.2700(3) 2.5450(3) 0.5360(1) 0.7233(1) 0.5782(3) 2.33 0.5435 0.0120 0.5555(4) 3.17
AA-kNN 0.3709(4) 1.2796(4) 2.5678(4) 0.5753(2) 0.7023(3) 0.5649(4) 3.50 0 0.2993 0.2993(2) 2.75

s-BU 3DFE

Algorithm Accuracy Time Cost(s) Avg. Rank
Cheb↓ Clark↓ Canber↓ K-L↓ Cosine↑ Intersec↑ Acc. Rank Train Test Sum(Time Rank)

DBC-LDL 0.1003(1) 0.3131(1) 0.6411(1) 0.0553(2) 0.9441(4) 0.8825(1) 1.67 0.0686 0.0245 0.0931(1) 1.34
BC-LDL 0.1005(2) 0.3176(2) 0.6515(2) 0.0541(1) 0.9451(3) 0.8811(2) 2.00 0.5360 0.0246 0.5606(2) 2.00

BFGS-LDL 0.1058(3) 0.3545(4) 0.7417(4) 0.0559(4) 0.9457(1) 0.8692(4) 3.33 90.969 0.0040 90.973(6) 4.17
IIS-LDL 0.1211(5) 0.3756(5) 0.8049(5) 0.0654(5) 0.9359(5) 0.8561(5) 5.00 366.47 0.0015 366.47(7) 6.00
CPNN 0.1064(4) 0.3462(3) 0.7288(3) 0.0554(3) 0.9456(2) 0.8703(3) 3.00 38.888 0.0223 38.910(5) 4.00

LDSVR 0.1260(7) 0.3834(6) 0.8261(7) 0.0726(6) 0.9289(6) 0.8518(6) 6.33 1.3039 0.0251 1.3290(4) 5.17
AA-kNN 0.1249(6) 0.3877(7) 0.8217(6) 0.0734(7) 0.9280(7) 0.8517(7) 6.67 0 1.2826 1.2826(3) 4.84

Twitter LDL

Algorithm Accuracy Time Cost(s) Avg. Rank
Cheb↓ Clark↓ Canber↓ K-L↓ Cosine↑ Intersec↑ Acc. Rank Train Test Sum(Time Rank)

DBC-LDL 0.2688(4) 1.9757(1) 4.4457(1) 0.4447(1) 0.8350(4) 0.6740(1) 2.00 0.2299 0.4079 0.6378(1) 1.50
BC-LDL 0.2673(3) 2.0846(2) 4.8567(2) 0.4741(3) 0.8441(2) 0.6678(3) 2.50 0.7112 0.4030 1.1142(2) 2.25

BFGS-LDL 0.4597(6) 2.4097(5) 6.2895(5) 1.1421(6) 0.6370(6) 0.4325(6) 5.67 48.729 0.0041 48.733(4) 4.84
IIS-LDL 0.4842(7) 2.4037(4) 6.2672(4) 1.1503(7) 0.6102(7) 0.4056(7) 6.00 520.65 0.0025 520.65(7) 6.50
CPNN 0.3058(5) 2.4471(7) 6.4213(7) 0.7539(5) 0.7992(5) 0.6207(5) 5.67 163.34 0.1060 163.45(5) 5.34

LDSVR 0.2661(2) 2.4196(6) 6.3380(6) 0.5531(4) 0.8403(3) 0.6649(4) 4.17 245.38 0.2721 245.65(6) 5.09
AA-kNN 0.2608(1) 2.0900(3) 4.8778(3) 0.4645(2) 0.8538(1) 0.6739(2) 2.00 0 16.261 16.261(3) 2.50

Flickr LDL

Algorithm Accuracy Time Cost(s) Avg. Rank
Cheb↓ Clark↓ Canber↓ K-L↓ Cosine↑ Intersec↑ Acc. Rank Train Test Sum(Time Rank)

DBC-LDL 0.2561(4) 2.0695(1) 4.9239(1) 0.5004(2) 0.8152(4) 0.6608(2) 2.67 0.2521 0.4905 0.7426(1) 1.84
BC-LDL 0.2548(2) 2.0988(3) 5.0498(3) 0.5041(4) 0.8222(3) 0.6569(3) 3.00 0.8119 0.4860 1.2979(2) 2.50

BFGS-LDL 0.3487(6) 2.2019(5) 5.4894(5) 0.8124(6) 0.7242(5) 0.5421(6) 5.50 55.955 0.0043 55.959(4) 4.75
IIS-LDL 0.3692(7) 2.1904(4) 5.4339(4) 0.8221(7) 0.7030(7) 0.5185(7) 6.67 536.23 0.0027 536.23(6) 6.34
CPNN 0.3240(5) 2.2626(7) 5.7674(7) 0.7903(5) 0.7229(6) 0.5642(5) 5.83 178.62 0.1042 178.72(5) 5.42

LDSVR 0.2556(3) 2.2022(6) 5.5249(6) 0.5016(3) 0.8260(2) 0.6548(4) 4.00 599.93 0.3610 600.29(7) 5.50
AA-kNN 0.2451(1) 2.0869(2) 4.9946(2) 0.4707(1) 0.8369(1) 0.6679(1) 1.33 0 23.665 23.665(3) 2.17

Ren-CECps

Algorithm Accuracy Time Cost(s) Avg. Rank
Cheb↓ Clark↓ Canber↓ K-L↓ Cosine↑ Intersec↑ Acc. Rank Train Test Sum(Time Rank)

DBC-LDL 0.5576(1) 1.9447(1) 4.2308(1) 1.0468(1) 0.5173(6) 0.3977(1) 1.83 0.4841 2.1890 2.6731(1) 1.42
BC-LDL 0.5605(2) 2.2985(2) 5.6406(2) 1.2018(2) 0.5734(1) 0.3757(2) 1.83 0.7957 2.2011 2.9968(2) 1.92

BFGS-LDL 0.6037(4) 2.6492(5) 7.3189(4) 1.4993(5) 0.5455(2) 0.3041(4) 4.00 202.06 0.0041 202.06(4) 4.00
IIS-LDL 0.6245(6) 2.6544(6) 7.3573(6) 1.5643(6) 0.5187(5) 0.2724(6) 5.83 424.74 0.0032 424.74(5) 5.42
CPNN 0.6204(5) 2.6478(4) 7.3203(5) 1.4759(4) 0.5337(4) 0.2866(5) 4.50 484.69 0.2703 484.96(6) 5.25

LDSVR − − − − − − − − − − −
AA-kNN 0.5933(3) 2.3934(3) 6.0730(3) 1.3424(3) 0.5355(3) 0.3283(3) 3.00 0 157.21 157.21(3) 3.00

Table 3: Experimental results on the five evaluated datasets. The best results are highlighted in bold face.

obtain the accurate search results by using these high-
quality features.

• Compared with IIS-LDL, BFGS-LDL can achieve high-
er accuracy results with the lower training time cost on
most datasets. The training time of LDSVR growing
rapidly with the size of datasets increasing, because its
time complexity is O(n2).

• Benefit from the efficient optimization strategy and the
fast binary code based ANN search approach, the total
time cost of DBC-LDL is lowest on all the evaluated
datasets, which verifies the efficiency of our method.

3.3 Parameter Analysis
There are three parameters in our objective function, includ-
ing α, β and γ. Due to the limitation of space, we only re-
port the Cheb and Intersec results and use them to study the
performance variation with respect to the different parame-
ter values of α, β and γ. The results of other metrics are
similar. The experiments are conducted by varying the val-
ue of one parameter while fixing the other two to the settings
mentioned in Subsection 3.1. Here, we vary α in the range
of {10−2, 10−1, · · · , 105}, β in the range of {0, 1, · · · , 106}
and γ in the range of {10−4, 10−3, · · · , 103}. Figure 1 shows
the results on the testing dataset (i.e., s-BU 3DFE). We can
find that our method can achieve satisfactory results, when
α ∈ [103, 104], β ∈ [104, 105] and γ ∈ [10−2, 10−1].
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Figure 1: The parameter analysis of DBC-LDL on s-BU 3DFE with Cheb and Intersec metrics.

0 5 10 15 20 25
Number of Iterations

0

2

4

6

8

O
b

ej
ec

ti
v

e 
F

u
n

ct
io

n
 V

a
lu

e ×1010

Ren-CECps

Figure 2: The convergence curve of DBC-LDL on Ren-CECps.

3.4 Convergency Analysis
In this part, we evaluate the convergence of the proposed
DBC-LDL. Figure 2 plots the convergence curve of the ob-
jective function during training on Ren-CECps. It can be
observed that our method can successfully converge within
10 iterations and the value of the objective function decrease
slowly after 4 iterations. The time consumption for optimiza-
tion of DBC-LDL is not expensive, because it can converge
quite fast.

3.5 Binary Code Length Analysis
In this subsection, we study the accuracy performance of our
method regarding different code lengths. Table 4 summa-
rizes the evaluation results on s-BU 3DFE and Ren-CECps.
We can learn that DBC-LDL achieves better accuracy perfor-
mance with longer binary codes. It means that more useful
information can be preserved by DBC-LDL when learning
longer binary codes.

s-BU 3DFE

Code Length Cheb↓ Clark↓ Canber↓ K-L↓ Cosine↑ Intersec↑

32 bits 0.1075 0.3350 0.6881 0.0619 0.9378 0.8738
64 bits 0.1022 0.3198 0.6551 0.0566 0.9430 0.8802

128 bits 0.1003 0.3131 0.6411 0.0553 0.9441 0.8825
256 bits 0.0990 0.3085 0.6311 0.0540 0.9453 0.8843
512 bits 0.0978 0.3044 0.6226 0.0528 0.9464 0.8857

Ren-CECps

Code Length Cheb↓ Clark↓ Canber↓ K-L↓ Cosine↑ Intersec↑

32 bits 0.5749 2.0239 4.4613 1.1372 0.4960 0.3807
64 bits 0.5646 1.9849 4.3655 1.0991 0.5078 0.3898

128 bits 0.5576 1.9447 4.2308 1.0468 0.5173 0.3977
256 bits 0.5514 1.9312 4.1904 1.0325 0.5254 0.4037
512 bits 0.5448 1.9022 4.1231 1.0182 0.5328 0.4099

Table 4: Experimental results on s-BU 3DFE and Ren-CECps
with respect to different code lengths.

4 Conclusion

In this paper, we have presented a novel LDL method (DBC-
LDL) to tackle the task of large-scale LDL. In DBC-LDL,
the pair-wise semantic similarities and original label distribu-
tions are taken into consideration for learning precise binary
codes. Moreover, an efficiently discrete optimization strate-
gy is proposed to learn binary codes directly for training in-
stances. In addition, a binary code based ANN search method
is employed to predict label distributions for testing instances.
Experimental results on five benchmark LDL datasets show
that DBC-LDL outperforms several state-of-the-art LDL ap-
proaches. The binary coding part of DBC-LDL is an one-step
method. In future work, we plan to develop a two-step dis-
crete method to solve the large-scale LDL problem.
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