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Abstract

We consider the differentially private sparse learn-
ing problem, where the goal is to estimate the
underlying sparse parameter vector of a statisti-
cal model in the high-dimensional regime while
preserving the privacy of each training example.
We propose a generic differentially private itera-
tive gradient hard threshoding algorithm with a lin-
ear convergence rate and strong utility guarantee.
We demonstrate the superiority of our algorithm
through two specific applications: sparse linear re-
gression and sparse logistic regression. Specifi-
cally, for sparse linear regression, our algorithm
can achieve the best known utility guarantee with-
out any extra support selection procedure used in
previous work [Kifer et al. 2012]. For sparse lo-
gistic regression, our algorithm can obtain the util-
ity guarantee with a logarithmic dependence on the
problem dimension. Experiments on both synthetic
data and real world datasets verify the effectiveness
of our proposed algorithm.

1 Introduction
In modern high-dimensional data analytics, where the prob-
lem dimension can increase with the number of observations,
sparse learning has emerged as a prominent method to allevi-
ate overfitting and provide statistically reliable results. Con-
sequently, many sparse learning algorithms such as `1 con-
vex relaxation based methods [Tibshirani, 1996; Van de Geer
and others, 2008; Negahban et al., 2009] have been pro-
posed in the past two decades. Compared with `1 convex
relaxation based sparse learning algorithms, `0 constrained
sparse learning algorithms [Zhang, 2011; Yuan et al., 2014;
Jain et al., 2014; Chen and Gu, 2016] received increasing at-
tention due to its small estimation bias. In specific, the `0
constrained sparse learning is formulated as follows

min
θ∈Rd

LS(θ) :=
1

n

n∑
i=1

`(θ; zi) subject to ‖θ‖0 ≤ s, (1.1)

where S = {z1, z2, . . . , zn} denotes the training dataset with
zi = (xi, yi), LS is the empirical loss function, ‖θ‖0 denotes

the number of nonzero entries in θ, s is a parameter for tun-
ing the sparsity level of θ, and we assume that the data are
generated from some underlying statistical model with sparse
parameter vector θ∗ ∈ Rd such that ‖θ∗‖0 = s∗. The goal of
sparse learning is to recover θ∗.

In many applications, the data used for sparse learning are
sensitive datasets, such as financial records or genomic data,
raising a big concern that the adversaries may be able to in-
fer the private information from the trained model. This pri-
vacy concern necessitates the private-preserving algorithms
for learning sparse models. The prerequisite for develop-
ing such algorithms is a rigorous privacy definition. In re-
cent years, differential privacy [Dwork et al., 2006] has been
served as the most widely adopted notion of statistical data
privacy and has been applied to many real world applications
[Erlingsson et al., 2014; Ding et al., 2017]. The formal defi-
nition of differential privacy is as follows.

Definition 1.1 (Differential privacy [Dwork et al., 2006]).
A randomized mechanism M : Sn → R satisfies (ε, δ)-
differential privacy if for any two adjacent data sets S, S′ ∈
Sn differing by one example, and any output subset O ⊆ R,
it holds that

P[M(S) ∈ O] ≤ eε · P[M(S′) ∈ O] + δ.

According to the definition, differential privacy requires
that datasets differing by one example lead to similar distribu-
tions on the output of a randomized algorithm. This implies
that an adversary will draw essentially the same conclusions
about an individual whether or not that individual’s data was
used even if many records are known a priori to the adversary.

There exist several studies [Kifer et al., 2012; Thakurta and
Smith, 2013; Talwar et al., 2015] trying to develop differen-
tially private algorihthms for solving sparse learning prob-
lems. However, they only consider sparse linear regression,
and the convergence rates and utility guarantees of these
methods are suboptimal. In order to overcome the limita-
tions of existing differentially private sparse learning algo-
rithms, we propose a differentially private iterative gradient
hard thresholding (DP-IGHT) algorithm for solving the spar-
sity constrained learning problem (1.1), which is not only
very efficient but also has comparable or even better utility
guarantees than the state-of-the-art methods. We summarize
the contributions of our work as follows
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• Compared with existing work that is limited to sparse
linear regression, our differentially private sparse learn-
ing algorithm is generic enough that it can be applied to a
broad family of loss functions that satisfy the restricted
strong convexity and smoothness conditions [Bickel et
al., 2009; Negahban et al., 2009], and each component
function is Lipschitz continuous. We demonstrate the
superiority of our framework through two concrete ex-
amples: sparse linear regression and sparse logistic re-
gression.

• We prove the linear convergence rate for our DP-IGHT
algorithm, which outperforms the sub-linear conver-
gence rate of Frank-Wolfe based method [Talwar et
al., 2015], and does not rely on any computationally
intractable support selection algorithm as required by
[Kifer et al., 2012].

• We establish strong utility guarantee for our DP-IGHT
algorithm. Specifically, it achieves the best known util-
ity guarantee [Kifer et al., 2012] for sparse linear re-
gression while not requiring any extra support selection
procedure. Our approach also provides the first utility
guarantee for sparse logistic regression.

Notation. For a d-dimensional vector x = [x1, ..., xd]
>, we

use ‖x‖2 = (
∑d
i=1 |xi|2)1/2 to denote its `2-norm, and use

‖x‖∞ = maxi |xi| to denote its `∞-norm. We let supp(x)
be the index set of nonzero entries of x, and supp(x, s) be
the index set of the top s entries of x in terms of magnitude.
We use Sn to denote the input space with n examples and
R to denote the output space. Given two sequences {an}
and {bn}, if there exists a constant 0 < C < ∞ such that
an ≤ Cbn, we write an = O(bn), and we use Õ(·) to hide the
logarithmic factors. We denote the d by d identity matrix by
Id. For simplicity, we use `i(·) to denote `(·; zi) throughout
the paper.

2 Related Work
To develop differentially private algorithms, the commonly
used methods include output perturbation [Chaudhuri and
Monteleoni, 2009], objective perturbation [Chaudhuri and
Monteleoni, 2009], and gradient (iterative) perturbation
[Bassily et al., 2014]. More specifically, output perturba-
tion adds random noise to the output of a non-private algo-
rithm. Objective perturbation perturbs the objective func-
tion of learning algorithms by random noise before learn-
ing. And the idea of gradient perturbation is to introduce
random noise into the intermediate steps of the learning al-
gorithm. Although these approaches have been extensively
studied for empirical risk minimization [Chaudhuri and Mon-
teleoni, 2009; Chaudhuri et al., 2011; Kifer et al., 2012;
Bassily et al., 2014; Zhang et al., 2017; Wang et al., 2017;
2018; Jayaraman et al., 2018] in classical setting, their ap-
plications to sparse learning in the high-dimensional regime
remain understudied.

There exist several ad hoc approaches [Kifer et al., 2012;
Thakurta and Smith, 2013; Jain and Thakurta, 2014; Talwar
et al., 2015] to solving differentially private (sparse) learn-
ing in the high-dimensional setting. For example, [Jain and

Thakurta, 2014] proposed a differentially private algorithm
with the dimension independent utility guarantee for empiri-
cal risk minimization. Nevertheless, their method only works
for specific loss functions and the utility guarantee is sub-
optimal in terms of other parameters. The most relevant
studies to ours are [Kifer et al., 2012; Thakurta and Smith,
2013; Talwar et al., 2015], which studied differentially pri-
vate sparse linear regression. In detail, [Kifer et al., 2012;
Thakurta and Smith, 2013] proposed to first perform some
differentially private model selection algorithms to estimate
the support set of sparse model parameter vector, and then
run the objective perturbation algorithm to estimate the pa-
rameter vector with its support restricted to the estimated sub-
set. While, their method can achieve O

(
s∗2 log(2/γ)/(nε)2

)
utility guarantee, where ε is the privacy budget and γ is the
probability that the model selection algorithms can success-
fully select the true support, the model selection algorithms,
such as exponential mechanism, may be computational inef-
ficient or even intractable in practice. In addition, the privacy
and utility guarantees of their algorithm only holds for the
exact optimal solution to the perturbed optimization problem.
Later on, [Talwar et al., 2015] developed a differentially pri-
vate Frank-Wolfe algorithm, which is based on the gradient
perturbation, for sparse learning. They showed that their al-
gorithm can achieve O

(
ω(C)2/3 log n/(nε)3/2

)
utility guar-

antee, where ω(C) is the Gaussian width of the constraint set
C. However, their approach only has a sublinear convergence
rate and the Gaussian width ω(C) can only be estimated for
some specific convex set such as `1-norm ball.

Different from the aforementioned methods for sparse
learning, our proposed DP-IGHT algorithm does not require
exactly solving the optimization problem or the extra model
selection procedure. Therefore, it is able to attain better em-
pirical performances and more preferable in practice. In addi-
tion, our algorithm enjoys a linear convergence rate, which is
more efficient than previous methods. The detailed compar-
isons of different algorithms for sparse linear regression are
summarized in Table 1.

3 Preliminaries
In this section, we present some definitions that will be used
throughout our paper. We first introduce several classes of
functions that we considered in our work.
Definition 3.1 (G-Lipschitz continuous). A function f :
Rd → R is G-Lipschitz continuous, if the following inequal-
ity holds for all θ1,θ2 ∈ domf

|f(θ1)− f(θ2)| ≤ G‖θ1 − θ2‖2.
Note that for a differentiable function f , G-Lipschitz

continuous implies that the gradient norm is bounded, i.e.,
‖∇f(θ)‖2 ≤ G for all θ ∈ domf .
Definition 3.2 (Sparse eigenvalue condition). A twice differ-
entiable function f : Rd → R satisfies sparse eigenvalue
condition with parameters µ > 0 and β > 0, if the following
holds for the Hessian of f for all θ ∈ domf ,

µ = inf
v

{
v>∇2f(θ)v | ‖v‖0 ≤ s, ‖v‖2 = 1

}
,

β = sup
v

{
v>∇2f(θ)v | ‖v‖0 ≤ s, ‖v‖2 = 1

}
.
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Algorithm Method Utility Convergence RSC/RSS Support selection

Frank-Wolfe Iterative O
(

log(nd)
(nε)2/3

)
Sub-linear No No[Talwar et al., 2015]

Two stage Objective O
(
s∗2 log(2/γ)

(nε)2

)
NA Yes Yes[Kifer et al., 2012]

DP-IGHT Iterative O
(
s∗2 log d
(nε)2

)
Linear Yes NoThis paper

Table 1: Comparison of different (ε, δ)-DP algorithms for sparse linear regression. We ignore the log(1/δ) term in the utility guarantees.
Note that γ is the probability that the differentially private model selection algorithms can successfully recover the true support.

For sparse learning problems, sparse eigenvalue condition
[Bickel et al., 2009] implies the restricted strong convexity
and smoothness conditions [Negahban et al., 2009; Loh and
Wainwright, 2013], which guarantee the objective function
behaves like a strongly convex and smooth function over a
sparse domain even the function is general convex in its entire
domain. In the following discussion, we denote κ by β/µ.
Zero-concentrated differential privacy. Although the no-
tion of (ε, δ)-DP, i.e., Definition 1.1, is widely used for the
analysis of the output and objective perturbation methods, it is
not suitable for the gradient perturbation method since it will
give loose composition results. We propose to use the notion
of zero-concentrated differential privacy [Bun and Steinke,
2016], which has a sharp composition result and thus is a bet-
ter choice for gradient perturbation method.
Definition 3.3 (Zero-concentrated differential privacy). A
randomized mechanism M : Sn → R satisfies ρ-zero-
concentrated differential privacy (ρ-zCDP) if for any two ad-
jacent datasets S, S′ ∈ Sn differing by one example, it holds
that for all α ∈ (1,∞)

Dα(M(S)||M(S′)) ≤ ρα, (3.1)
where Dα(M(S)||M(S′)) is the α-Renyi divergence1 be-
tween two distributionsM(S) andM(S′).

Note that ρ-zCDP can be converted to (ε, δ)-DP through
the following lemma, which is established in [Bun and
Steinke, 2016].
Lemma 3.4. If a randomized mechanism M : Sn → R
satisfies ρ-zCDP, then it satisfies (ρ + 2

√
ρ log(1/δ), δ)-

differential privacy for any δ > 0.
Next, we introduce the definition of `2-sensitivity, which is

used to control the variance of the Gaussian Mechanism for
ensuring ρ-zCDP.
Definition 3.5 (`2-sensitivity [Dwork et al., 2006]). For two
adjacent datasets S, S′ ∈ Sn differing by one example, the
`2-sensitivity ∆2(q) of a function q : Sn → Rd is defined as
∆2(q) = supS,S′ ‖q(S)− q(S′)‖2.

Based on `2-sensitivity, we can use Gaussian mechanism
to make our algorithms satisfy ρ-zCDP.
Lemma 3.6 (Gaussian mechanism [Bun and Steinke, 2016]).
Given a function q : Sn → Rd, the Gaussian Mecha-
nism M(S) = q(S) + u, where u ∼ N(0, σ2I), satisfies
∆2(q)2/(2σ2)-zCDP.

1The formal definition can be found in [Rényi, 1961].

ρ-zCDP has the invariant property of post-processing and
the property of composition as follows.

Lemma 3.7 ([Bun and Steinke, 2016]). For two randomized
mechanisms M1 : Sn → Rd, M2 : Sn × Rd → Rd.
If M1 satisfies ρ1-zCDP and M2 satisfies ρ2-zCDP, then
M2(S,M1(S)) satisfies (ρ1 + ρ2)-zCDP.

4 Algorithmic Framework
In this section, we present our differentially private iterative
gradient hard thresholding (DP-IGHT) algorithm, which is
illustrated in Algorithm 1, for solving the sparsity constrained
optimization problem (1.1).

Algorithm 1 Differentially Private Iterative Gradient Hard
Thresholding (DP-IGHT)

Input: loss function LS , thresholding parameters s, step size
η, iteration number T , initial estimator θ0, privacy budget
ρ, Lipschitz constant G
for t = 1, 2, 3, . . . , T do
θt = Hs

(
θt−1 − η(∇LS(θt−1) + u)

)
, where u ∼

N(0, σ2Id) with σ2 = TG2/(n2ρ)
end for

Output: θT

At the core of our proposed Algorithm 1 is the gradient
perturbation procedure at each iteration, which ensures the
differential privacy. More specifically, we perturb the gra-
dient with Gaussian noise at each iteration and make use
of the composition and post-processing properties of differ-
ential privacy to characterize the upper bound on the to-
tal privacy loss. Compared with the objective perturba-
tion based approaches [Chaudhuri and Monteleoni, 2009;
Chaudhuri et al., 2011; Kifer et al., 2012], our algorithm does
not require the optimization problem to be solved exactly in
order to achieve the privacy and utility guarantees. In addi-
tion, since it is very hard to characterize the sensitivity of the
optimization problem with the sparsity constraint [Xu et al.,
2012], we do not pursue the output perturbation based ap-
proaches [Chaudhuri et al., 2011; Zhang et al., 2017].

According to Algorithm 1, to enforce the sparsity con-
straint, we use the iterative gradient hard thresholding (IGHT)
algorithm, which has been shown to have a linear rate of con-
vergence [Jain et al., 2014; Yuan et al., 2014; Chen and Gu,
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2016]. Note that if we set σ2 = 0 in Algorithm 1, it will re-
duce to the original IGHT algorithm. The hard thresholding
operatorHs(·) in Algorithm 1 is defined as follows:

[Hs(θ)]i =

{
θi, if i ∈ supp(θ, s)
0, otherwise . (4.1)

Hs(θ) preserves the top s elements in θ in terms of magni-
tude and set others to be zero. We will show later that the pro-
posed DP-IGHT algorithm also enjoys a linear convergence
rate, and therefore is more efficient than existing methods.

5 Main Results
In this section, we first present the main theoretical properties
of Algorithm 1 for generic models, and then show its appli-
cations to two specific examples: sparse linear regression and
sparse logistic regression.

Recall that the goal of sparse learning is to estimate the
underlying sparse parameter vector θ∗ of a statistical model.
Thus, we impose a high probability upper bound on the gra-
dient of the objective function at θ∗, which is used to charac-
terize the statistical error of different statistical models.

Condition 5.1. For a given sample size n and tolerance pa-
rameter γ ∈ (0, 1), let ε(n, γ) be the smallest scalar such that
with probability at least 1− γ, we have

‖∇LS(θ∗)‖∞ ≤ ε(n, γ),

where ε(n, γ) depends on the sample size n and γ.

Equipped with this condition, we are ready to establish the
main theoretical results of Algorithm 1.

5.1 Results for Generic Model
We first present the privacy guarantee of Algorithm 1 for solv-
ing sparse learning problem (1.1) under ρ-zCDP.

Theorem 5.2. Suppose each component function `i of LS is
G-Lipschitz continuous, the output θT of Algorithm 1 satis-
fies ρ-zCDP after T iterations if σ2 = TG2/(n2ρ).

Remark 5.3. According to Lemma 3.4, we can also derive
that the output θT of Algorithm 1 satisfies (ε, δ)-DP if σ2 =

TG2/
(
n
(√

log(1/δ) + ε −
√

log(1/δ)
))2

. Furthermore, if
ε ≤ log(1/δ), we can get σ2 ≤ 6TG2 log(1/δ)/(nε)2, which
matches the bound of the noise variance for gradient pertur-
bation methods [Wang et al., 2017]. Note that for the Lip-
schitz parameter G, we can exactly calculate a tight upper
bound for sparse linear regression and sparse logistic regres-
sion. However, for general loss functions, one practical ap-
proach to choose G is to use gradient clipping [Abadi et al.,
2016].

Next, we provide the utility guarantee of Algorithm 1 for
solving sparse learning problem (1.1).

Theorem 5.4. Suppose the loss function LS satisfies sparse
eigenvalue condition with parameters µ, β, and Condition
5.1, and each component function `i is G-Lipschitz con-
tinuous. There exist constants {Ci}5i=1 such that if σ2 =
TG2/(n2ρ), η = C1/(β + µ), and s ≥ C2κ

2s∗, then θT
converges to θ∗ at a linear rate. In addition, if we choose

T = C3κ log
(
ρn2µ2‖θ∗‖22/(κ2G2s log d)

)
, the following

holds with probability at least 1− γ

E‖θT − θ∗‖22 ≤ C4
κ2s∗

µ2
ε(n, γ)2

+ C5
κ3G2s∗ log d

n2µ2ρ
· log

ρnµ‖θ∗‖2
s∗κG

, (5.1)

where the expectation is taken over the randomness of the
Gaussian noises in Algorithm 1.

Remark 5.5. The utility bound in (5.1) consists of two terms:
the first one denotes the statistical error, while the second
term corresponds to the error introduced by the Gaussian
mechanism. It is worth noting that the error term caused
by the Gaussian mechanism depends on s∗ log d instead of d
comparing with the previous differentially private learning al-
gorithms [Bassily et al., 2014]. According to Lemma 3.4, we
can also derive the following utility guarantee under (ε, δ)-DP

O

(
s∗κ2ε(n, γ)2

µ2
+
κ3G2s∗ log d log(1/δ)

n2ε2µ2

)
,

and we defer such result to the supplemental material.

5.2 Implications for Specific Examples
In this subsection, we demonstrate the implications of the
main theory for Algorithm 1 when it is applied to specific ex-
amples. Note that here we directly spell out the utility results
under (ε, δ)-DP for the ease of comparison.

Sparse Linear Regression
The first example we considered is the linear regression prob-
lem in the high-dimensional regime yi = 〈xi,θ∗〉 + ξi,
where y = [y1, . . . , yn] ∈ Rn denotes the response vec-
tor, X = [x1, . . . ,xn]> ∈ Rn×d is the design matrix,
ξ = [ξ1, . . . , ξn] ∈ Rn is a noise vector, and θ∗ ∈ Rd
with ‖θ∗‖0 = s∗ is the underlying sparse regression coeffi-
cient vector that we want to recover. In the high-dimensional
regime, we have n � d. In order to estimate the sparse
parameter vector θ∗, according to (1.1), we consider the
following sparsity constrained optimization problem, which
has been studied in many previous works [Zhang, 2011;
Yuan et al., 2014; Jain et al., 2014; Chen and Gu, 2016]

min
θ∈Rd

F (θ) :=
1

2n
‖Xθ − y‖22 subject to ‖θ‖0 ≤ s, (5.2)

where we have each component function as `i(θ) =(
〈xi,θ〉 − yi

)2
/2. The next corollary provides the privacy

and utility guarantees of Algorithm 1 for solving (5.2).

Corollary 5.6. Suppose each row of the design matrix
xi is an independent sub-Gaussian random vector with
‖xi‖2 ≤ K, and the noise vector ξ ∼ N(0, ν2In).
For a given privacy budget ε > 0 and a constant δ ∈
(0, 1), there exist constants {Ci}3i=1 such that if n ≥
C1s log d, and we choose σ2 = 2λTK2(

√
2s‖θ∗‖2 +

ν log n)2 log(1/δ)/(n2ε2), appropriate η, large enough s,
then for T = C2κ log

(
n2ε2/(sK2 log d log(1/δ))

)
, the out-

put θT of Algorithm 1 satisfies (ε, δ)-DP. In addition, with
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probability at least 1− exp(−C3n), we have

E‖θT − θ∗‖22 ≤ C4ν
2K2 s

∗ log d

n

+ C5K
2
(
‖θ∗‖22 + ν2

)s∗2 log d log(1/δ)

n2ε2
,

where C4, C5 are some constants depending on log terms,
which are small constants.

Remark 5.7. Corollary 5.6 implies that our algorithm
achieves O

(
s∗ log d/n + s∗2 log d log(1/δ)/(n2ε2)

)
utility

guarantee in the setting of (ε, δ)-DP. The term O(s∗ log d/n)
denotes the statistical error for sparse vector estimation,
which matches the minimax lower bound [Raskutti et al.,
2011]. The term O(s∗2 log d log(1/δ)/(n2ε2)) corresponds
to the error introduced by the Gaussian mechanism, which
matches the best known result [Kifer et al., 2012].

Sparse Logistic Regression
For logistic regression, we assume that each observation yi
is drawn from the following Bernoulli distribution P(yi =
1|xi,θ∗) = exp

(
〈θ∗,xi〉 − log

(
1 + exp(〈θ∗,xi〉)

))
, where

xi ∈ Rd is the predictive vector, θ∗ ∈ Rd with ‖θ∗‖0 = s∗

is the underlying parameter vector we want to recover. Ac-
cording to (1.1), we propose to solve the following sparsity
constrained maximum likelihood estimation problem [Yuan
et al., 2014; Li et al., 2016; Chen and Gu, 2016]

min
θ∈Rd

LS(θ) := − 1

n

n∑
i=1

[
yi〈θ,xi〉 − log

(
1 + exp(〈θ,xi〉)

)]
subject to ‖θ‖0 ≤ s, (5.3)

where we have each component function as `i(θ) = log
(
1 +

exp(〈θ,xi〉)
)
− yi〈θ,xi〉. We have the following theoretical

guarantees for sparse logistic regression.

Corollary 5.8. Suppose each row of the design ma-
trix xi is independent sub-Gaussian random vector and
‖xi‖2 ≤ K. For a given privacy budget ε > 0
and a constant δ ∈ (0, 1), there exist constants {Ci}4i=1
such that if n ≥ C1s log d, and we choose σ2 =
TK2 log(1/δ)/(n2ε2), appropriate η, large enough s, then
for T = C2κ log

(
n2ε2/(sK2 log d log(1/δ))

)
, the output θT

of Algorithm 1 is (ε, δ)-DP. In addition, with probability at
least 1− exp(−C3n)− C4/d, we have

E‖θT − θ∗‖22 ≤ C5K
2 s
∗ log d

n
+ C6K

2 s
∗ log d

n2ε2
log(1/δ),

where C5, C6 are some constants depending on log terms,
which are small constants.

Remark 5.9. In the setting of (ε, δ)-DP, our proposed algo-
rithm can achieve O(s∗ log d/n + s∗ log d log(1/δ)/(n2ε2))
utility guarantee after T = O(log

(
n2ε2/s)

)
iterations. In

particular, the term O(s∗ log d/n) corresponds to the statisti-
cal error, while the termO(s∗ log d log(1/δ)/(n2ε2)) denotes
the error caused by the Gaussian mechanism. To the best of
our knowledge, this is the first utility guarantee for sparse lo-
gistic regression.

6 Numerical Experiments
In this section, we present experimental results of our pro-
posed algorithm on both synthetic and real datasets. We com-
pare our algorithm with Two stage [Kifer et al., 2012] and
Frank-Wolfe [Talwar et al., 2015] methods. Although these
two approaches were originally proposed for sparse linear re-
gression, and have no theoretical guarantees for sparse lo-
gistic regression, they can still be applied to sparse logistic
regression and produce reasonable empirical results. Thus
we also include them as two baselines for sparse logistic re-
gression. For all the experiments, we choose the variance of
the random noise of different methods as suggested by their
theoretical guarantees, and select other parameters, such as
the step size, iteration number, and thresholding parameter by
five-fold cross-validation. Note that we use the non-private it-
erative gradient hard thresholding method as the non-private
baseline. In contrast to DP-IGHT, the non-private IGHT does
not add any noise in the gradient step.

6.1 Synthetic Data Experiments
We first investigate the performances of different methods on
synthetic datasets for sparse linear and logistic regression.
Sparse Linear Regression. For sparse linear regression,
the underlying sparse vector θ∗ has s∗ nonzero entries that
are drawn independently from a uniform distribution over the
interval (−1, 1). We generate the design matrix X ∈ Rn×d
such that each element of X follows i.i.d. uniform distribu-
tion over the interval (−2, 2), then we scale each row xi such
that ‖xi‖2 ≤ 2s∗. The observation is generated according
to y = X>θ∗ + ξ, where the noise vector ξ ∼ N(0, ν2I)
with ν2 = 0.1. We consider the following settings: (i)
n = d = 1000, s∗ = 10; (ii) n = d = 5000, s∗ = 30. We set
δ = 0.01 and vary the privacy budget ε from 2 to 10. Note that
due to the hardness of the problem itself, we choose relatively
large privacy budgets compared with the low-dimensional
problem to ensure meaningful results. Figure 1(a) and 1(b)
illustrate the relative estimation error ‖θ̂ − θ∗‖2/‖θ∗‖2 ver-
sus privacy budget of different methods over 10 trails. We
can see that the relative estimation errors of our method are
close to the non-private baseline (IGHT), and are better than
existing private methods.
Sparse Logistic Regression. For sparse logistic regression,
we generate the underlying sparse vector θ∗ and the design
matrix X ∈ Rn×d in the same way as sparse linear regression.
Each observation yi is generated from the following logistic
distribution

yi =

{
1, with probability 1/

(
1 + exp(〈xi,θ∗〉)

)
,

0, with probability 1− 1/
(
1 + exp(〈xi,θ∗〉)

)
.

We also consider the following two settings: (i) n =
1000, d = 1000, s∗ = 10; (ii) n = 5000, d = 5000, s∗ = 30.
In addition, we choose the privacy budget ε from 2 to 10, and
set δ = 0.01. We demonstrate the relative estimation error
‖θ̂ − θ∗‖2/‖θ∗‖2 versus privacy budget ε of different meth-
ods in Figure 1(c) and 1(d). The results show that our method
can output accurate estimators when we have relative large
privacy budget. In addition, it consistently outperforms the
baseline algorithms under different privacy budget.
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Figure 1: Numerical results for sparse linear regression and sparse logistic regression. (a), (b): Relative estimation error versus privacy budget
for sparse linear regression; (c), (d): Relative estimation error versus privacy budget for sparse logistic regression. All the results validate the
effectiveness of our algorithm DP-IGHT.

Method ε = 2 ε = 4 ε = 6 ε = 8 ε = 10

IGHT 0.785 0.785 0.785 0.785 0.785
Frank-Wolfe 1.514 (0.093) 1.320 (0.090) 1.210 (0.084) 1.105 (0.079) 1.094 (0.071)
Two stage 1.286 (0.112) 1.072 (0.101) 1.042 (0.082) 0.997 (0.080) 0.986 (0.075)
DP-IGHT 1.057 (0.107) 0.890 (0.081) 0.854 (0.073) 0.823 (0.070) 0.810 (0.066)

Table 2: Comparison of different algorithms for various privacy budgets ε in terms of MSE on the test data and its corresponding standard
error (in the parenthesis) on E2006-TFIDF. Note that we set δ = 0.01 in this experiment.

Method ε = 2 ε = 4 ε = 6 ε = 8 ε = 10

IGHT 0.0625 0.0625 0.0625 0.0625 0.0625
Frank-Wolfe 0.1271 (0.0043) 0.1034 (0.0037) 0.0938 (0.0034) 0.0852 (0.0036) 0.0807 (0.0031)
Two stage 0.1213 (0.0041) 0.0989 (0.0039) 0.0893 (0.0035) 0.0810 (0.0033) 0.0791 (0.0034)
DP-IGHT 0.1168 (0.0038) 0.0956 (0.0035) 0.0841 (0.0037) 0.0797 (0.0030) 0.0762 (0.0032)

Table 3: Comparison of different algorithms for various privacy budgets ε in terms of test error and its corresponding standard deviation on
RCV1 data. Note that we set δ = 0.01 in this experiment.

6.2 Real Data Experiments

In this experiment, we use two real datasets, E2006-TFIDF
dataset [Kogan et al., 2009] and RCV1 dataset [Lewis et
al., 2004], for the evaluation of sparse linear regression and
sparse logistic regression, respectively.

E2006-TFIDF Data. For sparse linear regression problem,
we use E2006-TFIDF dataset, which consists of financial risk
data from thousands of U.S. companies. In detail, it contains
16087 training examples, 3308 testing examples, and we ran-
domly sample 50000 features for this experiment. In addition,
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we set s∗ = 2000, δ = 0.01, ε ∈ [2, 10]. Table 2 reports the
mean square error (MSE) on the test data of different methods
for various privacy budgets over 10 trails. In specific, MSE on
the test data is defined as follows: ‖X>testθ̂ − ytest‖22/(2ntest),
where {Xtest,ytest} are the test data, ntest is the number of test
examples, and θ̂ is the estimator learned on the training data.
The results in Table 2 show that the performance of our algo-
rithm is close to the non-private baseline (i.e., IGHT), and is
much better than Frank-Wolfe and Two stage.

RCV1 Data. In order to compare different algorithms for
sparse logistic regression, we use RCV1 dataset, which is
a Reuters Corpus Volume I data set for text categorization
research. More specifically, RCV1 is an archive of over
800000 manually categorized newswire stories made avail-
able by Reuters, Ltd. for research purposes. It contains 20242
training examples, 677399 testing examples and 47236 fea-
tures. We use the whole training dataset and a subset of the
test dataset, which contains 20000 testing examples for our
experiment. In detail, we set s∗ = 500, δ = 0.01, ε ∈ [2, 10].
We compare all algorithms in terms of their classification er-
ror on the test set over 10 replications, which is summarized
in Table 3. It is obvious that our algorithm achieves the lowest
test error among private algorithms on RCV1 dataset, which
demonstrates the superiority of our algorithm.

7 Conclusions
In this paper, we proposed a privacy preserving iterative gra-
dient hard thresholding algorithm for sparse learning. We es-
tablish a linear convergence rate and strong utility guaran-
tee of our algorithm. Experiments on both synthetic and real
world data demonstrate the superiority of our algorithm.

Acknowledgements
This research was sponsored in part by the National Science
Foundation SaTC-1717950.

References
[Abadi et al., 2016] Martin Abadi, Andy Chu, Ian Goodfel-

low, H Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy.
In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 308–318.
ACM, 2016.

[Bassily et al., 2014] Raef Bassily, Adam Smith, and
Abhradeep Thakurta. Differentially private empirical risk
minimization: Efficient algorithms and tight error bounds.
arXiv preprint arXiv:1405.7085, 2014.

[Bickel et al., 2009] Peter J Bickel, Ya’acov Ritov, Alexan-
dre B Tsybakov, et al. Simultaneous analysis of lasso
and dantzig selector. The Annals of Statistics, 37(4):1705–
1732, 2009.

[Bun and Steinke, 2016] Mark Bun and Thomas Steinke.
Concentrated differential privacy: Simplifications, exten-
sions, and lower bounds. In Theory of Cryptography Con-
ference, pages 635–658. Springer, 2016.

[Chaudhuri and Monteleoni, 2009] Kamalika Chaudhuri and
Claire Monteleoni. Privacy-preserving logistic regression.
In Advances in Neural Information Processing Systems,
pages 289–296, 2009.

[Chaudhuri et al., 2011] Kamalika Chaudhuri, Claire Mon-
teleoni, and Anand D Sarwate. Differentially private em-
pirical risk minimization. Journal of Machine Learning
Research, 12(Mar):1069–1109, 2011.

[Chen and Gu, 2016] Jinghui Chen and Quanquan Gu. Ac-
celerated stochastic block coordinate gradient descent for
sparsity constrained nonconvex optimization. In UAI,
2016.

[Ding et al., 2017] Bolin Ding, Janardhan Kulkarni, and
Sergey Yekhanin. Collecting telemetry data privately.
In Advances in Neural Information Processing Systems,
pages 3571–3580, 2017.

[Dwork et al., 2006] Cynthia Dwork, Frank McSherry,
Kobbi Nissim, and Adam Smith. Calibrating noise to sen-
sitivity in private data analysis. In Theory of Cryptography
Conference, pages 265–284. Springer, 2006.
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